
LIGHT LINEAR LOGIC

Jean-Yves Girard
Institut de Mathématiques de Luminy, UPR 9016 – CNRS

163, Avenue de Luminy, Case 930, F-13288 Marseille Cedex 09

girard@iml.univ-mrs.fr

Abstract

The abuse of structural rules may have damaging complexity effects.

1 INTRODUCTION : A LOGIC OF POLY-

TIME ?
We are seeking a

�
logic of polytime � . Not yet one more axiomatization, but

an intrinsically polytime system. Our methodological bias will be to consider
that the expressive power of a system is the complexity of its cut-elimination
procedure, and we therefore seek a system with a polytime complexity for cut-
elimination (to be precise : besides the size of the proof, there will be an auxiliary
parameter, the depth, controlling the degree of the polynomial). This cannot
be achieved within classical or intuitionistic logics, because of structural rules,
especially contraction : this is why the complexity of cut-elimination in all extant
logical systems (including the standard version of linear logic which controls
structural rules without forbidding them) is catastrophic, elementary (towers of
exponentials) or worse. Light Linear Logic is a purely logical system with a more
careful handling of structural rules : this system is strong enough to represent
all polytime functions, but cut-elimination is (locally) polytime. With LLL our
control over the complexity of cut-elimination improves a lot.
But this is not the only potentiality of LLL : why not transforming it into a
system of mathematics, and try to formalize

�
polytime mathematics � in the

same way as Heyting arithmetic formalizes constructive mathematics ? The
possibility is clearly open, since LLL admits extensions into a naive set-theory,
with full comprehension, still with a polytime cut-elimination. This system
admits full induction on data types, which shows that, within LLL, induction
is compatible with low complexity. . .

1

2 Jean-Yves Girard

1.1 Background

1.1.1 Complexity of normalization
Our goal is to find a logical system in which the I/O dependencies are given by
polytime functions. We shall try a proof-theoretic approach, namely to make
sure that cut-elimination is polytime. In fact we shall concentrate on the follow-
ing question : which logical system(s) induce normalizations of a given complex-
ity (polytime or not) ?
There is an answer, namely MALLq (multiplicative-additive-quantifiers (of any
order) linear logic) : the small normalization theorem of [3] assigns a size bound
to proofs ; this size shrinks during lazy cut-elimination, hence induces linear time
functions. A crucial technological point is that the notion of cut-degree disap-
pears, i.e. the procedure is not dependent on the fact that cuts are replaced
with simpler ones. The operation has perfectly succeeded, but the patient died
(of starvation) : this system is desperately inexpressive.
Linear logic wisely has another stock of connectives, namely exponentials which
should compensate for this limitation, by restoring the necessary amount of
structural manipulations (mainly the contraction rule). Now the patient is still
dying, but of overfeeding : the complexity is no longer bounded by any reason-
able measure, since usual logic (classical or intuitionistic) imbeds. The question
is therefore to find more reasonable connectives, sitting in between MALLq and
LL. These connectives are the light exponentials.
The first attempt dates back from 1987 (joint work with A. Scedrov & P. Scott,
[2]) and is based on the idea of replacing !A (which usually means A ad libitum)
by (1 & A) ⊗ . . . ⊗ (1 & A), i.e. essentially by a finite tensor power of A, !nA.
It is also immediate to see that the rules of weakening, dereliction, contraction
and promotion are still valid w.r.t. bounded exponentials : the bounds are re-
spectively given by 0, 1,+, ., i.e. the maintenance is polynomial. This very good
starting point leads to BLL (Bounded Linear Logic) ; BLL has a lot of qualities
(it exactly corresponds to polytime etc.), but it has a major drawback : it men-
tions the polynomial bounds which should remain hidden 1. By the way observe
that BLL is far from giving good bounds : the main property of exponentials
is the isomorphism between !A⊗!B and !(A & B), but BLL yields the bounds
!n+m(A&B)−◦!nA⊗!mB and !nA⊗!nB−◦!n(A&B), which induce by composi-
tion !2n(A&B)−◦!n(A&B), not quite an isomorphism.
Since this first attempt, many other restrictions have been tried by Danos, Joinet,
Lafont, Schellinx and myself, without obtaining truly convincing results 2.
Other connections between polytime complexity and normalization have been
made in recent years, typically works of Leivant, Leivant-Marion [10, 11], and
Hillebrand-Kanellakis-Mairson, [6]. These approaches stay inside typed λ-calculi,
i.e. systems which are by no standards polytime (the complexity is at least el-
ementary), but they individualize certain interesting situations where the com-
plexity is exactly polytime (this is based on the fact that in traditional situations,

1. These bounds do not refer to time, but to size.
2. A posteriori it is clear that all these attempts failed because they included the principle
[V], see 1.1.3.

Light Linear Logic 3

the complexity is determined by the cut-formulas : the basic idea is to restrict
one to cuts of a certain form to achieve complexity effects). The obvious advan-
tage of these approaches lies is the use of traditional systems (or at least systems
not too far from that). But these systems can hardly claim to bring some insight
as to the logical nature of polytime, since as soon as we iterate their logical prim-
itives, the complexity explodes, in other terms the logical primitives (basically
intuitionistic implication) make mistakes w.r.t. complexity. To take an anal-
ogy : classical (Peano) arithmetic is indeed constructive for Π0

2 sentences, where
it coincides with Heyting arithmetic ; for more complex formulas, it is construc-
tively wrong. There is therefore still a want for a system which is intrinsically
polytime, in the way that Heyting arithmetic is intrinsically constructive. An
answer is LLL.

1.1.2 LLL and naive set-theory
We are seeking a logical system with a light complexity. This basically means
that the cut-elimination bounds will not depend on the cut-formulas, i.e. will
not rely on the replacement of a cut by a simpler one. Then such a system will
accommodate naive set-theory. This is simply because naive set-theory has a
normalization procedure (the one described by Prawitz in the 60’s) which will
terminate in such a framework. Typically this works for MALLq (this is indeed
an old remark of Grishin, [5]), since the naive comprehension scheme does not
prevent normalization from shrinking !
Our crucial test for selecting the right rules, will be to check whether or not
naive set-theory becomes inconsistent with the proposed set of rules for expo-
nentials. Typically, naive set-theory enables us to get fixpoints of any logical
operation (like naive function theory, i.e. λ-calculus), and it suffices to check
the impossibility of getting a contradiction from fixpoints. The best candidate
is the one arising from Russell’s paradox, i.e. A '!A⊥. For those who find this
methodology surprising, we can phrase it differently : inconsistency provides a
non-terminating cut-elimination, and non-termination can be seen as the worse
possible complexity.
We shall therefore tailor our light exponentials w.r.t. naive set-theory, but keep
only the second order propositional logic arising from this study. It would be
possible to do much more : one can add the logical rules of naive set-theory
to LLL, and this provides a very powerful system. In this system extensional-
ity fails (as already observed by Grishin), but Leibniz equality can do wonders.
Integers in unary (or binary) representation can be defined, and full induction
therefore works. In other terms, one can get a pure logical system without any
proper axiom, which contains both a light set-theory and a light arithmetic.

1.1.3 Dissection of exponentials
Exponentials are used to “classicize” LL. This involves a lot of micro properties,
that we can individualize below :

I [I] : !(A&B)−◦!A⊗!B (and !>−◦ 1)

I [II] : !A⊗!B−◦!(A&B) (and 1−◦!>)

4 Jean-Yves Girard

I [III] : from A−◦B derive !A−◦!B

I [IV] : !A−◦?A

I [V] : !A⊗!B−◦!(A⊗B) (and !1)

I [VI] : !A−◦A

I [VII] : !A−◦!!A
The first two principles express the usual isomorphism which is responsible for
the name “exponential” : principle [I] expresses contraction and principle [II]
expresses weakening.
Principle [III] expresses functoriality of the exponentials and is absolutely basic.
Principle [IV] is a weak form of dereliction (i.e. principle [VI]).
These four principles will constitute the basis of LLL.
Principle [V] enables one to give a multilinear version of functoriality (from
Γ − B derive !Γ −!B), and will not be accepted in LLL, although it is also
compatible with naive set-theory 3.
In the presence of the fixpoint A '!A⊥, it is possible to derive the sequent − (so
no cut-elimination !), in two ways

I from [I] + [III] + [VI]

I from [I] + [III] + [IV] + [VII]

In both cases one first proves −?A, ?A from the fixpoint principle − A, ?A :

I dereliction [VI] yields −?A, ?A

I [III] yields −!A, ??A, then [IV] yields −?A, ??A and [VII] removes the extra
“?”

From −?A, ?A contraction [I] yields −?A, and by fixpoint one gets − A⊥, which
by promotion yields in turn −!A⊥. We end with a cut between −?A and −!A⊥.
Therefore principles [VI] and [VII] are definitely excluded.
The failure of dereliction is the reason for the introduction of the weaker principle
[IV]. Unfortunately it turns out that this principle is too weak in terms of
expressive power, and this is the reason why an additional modality is introduced.

1.1.4 The three modalities
In LLL there are indeed three modalities !, §, ?. § (neutral) is a new intermediate
modality. § is self-dual, i.e. (§A)⊥ is §A⊥, and its intuitive meaning is the
(common) unary case of ! and ?. The principles of LLL are :

I [I], [II], [III] (written in terms of !, ?)

I [VIII] : from A−◦B derive §A−◦ §B

I [IX] : !A−◦ §A
3. It yields another logic with an elementary complexity for cut-elimination, ELL.

Light Linear Logic 5

I [X] : §A⊗ §B −◦ §(A⊗B) (and §1)

[VIII] is just usual functoriality, and [X] enables one to get a n-ary version ;
[IX] is a compensation for the want of dereliction. . . observe that it implies by
duality §A − ?A and is therefore an improved version of [IV].
These principles can be organized along a sequent calculus which enjoys a cut-
elimination with polynomial bounds, as we shall see below.

1.2 Expressive power of LLL

LLL can be seen as a system of set-theory (or arithmetic). It can also be seen
as a system of typed λ-calculus. We have to explain how to encode data and
polytime algorithms.

1.2.1 Integers
Remember that complexity depends on the representation of data : typically
integers can be given in tally representation or in binary representation, with an
exponential reduction of their size. This is why we introduce two types, int and
bint for integers.
Tally integers can be given the type int = ∀X.!(X −◦X) −◦ §(X −◦X), where
X is a second order variable. The traditional type ∀X.!(X −◦X) −◦ (X −◦X)
cannot be used for want of dereliction, and the immediate substitute for it,
∀X.!(X −◦X)−◦!(X −◦X) cannot be used either, since the principle
!(A −◦ A); !(A −◦ A) −!(A −◦ A) is not part of LLL. Observe that addition
can be given the type int; int − int and multiplication can be given the type
int; !int − §int. In fact any polynomial P in n variables can be given 4 a type
int ⊗ . . . ⊗ int −◦ §kint, where k is an integer depending on the degree of P .
Typically, x2 can be given the type int−◦ §§int.
Binary integers (lists of 0 and 1) can be given the type
bint = ∀X.!(X−◦X)⊗ !(X−◦X)−◦§(X−◦X). There is a canonical map which
consists in replacing a binary list with a unary one, i.e.](x) is the length of x
in tally representation. The type of this map is bint−◦ int.

1.2.2 Turing machines
Let us fix the alphabet and the set of states of our Turing machines. In order to
represent our machines, all we now have to do is to find a type Tur (see 2.5.4),
in such a way that configurations (tape + state) of such a machine are exactly
the objects of type Tur. Tur must also be such that the instructions of a Turing
machine induce objects of type Tur −◦ Tur. Several possibilities are at hand,
but the simplest is for sure to use the fixpoint facility coming from the naive
comprehension axiom. (The fixpoint of the operator Φ[p] is obviously t ∈ t, with
t = {x | Φ[x ∈ x]}).

1.2.3 Polytime functions
Let us now take a polytime program from binary integers to binary integers, with
runtime P . We can consider the function of type bint−◦ §Tur which yields the

4. Up to minor details

6 Jean-Yves Girard

input configuration of the machine, as well as the function of type bint−◦(§)kint
which yields the number of steps ; if our program is represented by ϕ of type
Tur −◦Tur, then we eventually get an object of type bint−◦ (§)k+2Tur which
yields, in function of the binary input, the output tape.
This representation has no pretension to elegance : its only virtue is to show
the expressive power of LLL. Since LLL is a real logical system in which it is
impossible to be worse than polytime, smarter representations must be found.

1.3 Cut-elimination

The sequent calculus naturally associated with LLL is a double-layer version,
i.e. with additive and multiplicative disjunctions. This is not very friendly 5,
but after all sequent calculus is not the only proof-theoretic syntax, and one
can use more sophisticated technologies, typically proof-nets. The proof-net
technology has made essential progress in the recent years, and it is now possible
to represent the full sequent calculus, in terms of proof-nets with boxes. Boxes
are only needed for exponentials : the promotion rule [III] induces a box as well
as the dereliction (or rather its weaker version) (combination of [VIII],[IX],[X]).
The main parameters of a proof are

I its depth, which is the nesting number of the exponential boxes ;

I its size which counts the number of links ;

I its partial sizes, i.e. the size of the part of the net which is at a certain depth.

Cut-elimination works as follows : it is a lazy one, i.e. no cut is eliminated
�

inside a &-box � 6, which is performed layer after layer, first starting with
depth 0. After eliminating the cuts of depth 0, the sizes (which were s0, s1, s2, . . .)
become at most s0, s0s1, s0s2, . . . From this it is immediate that after eliminating

all cuts, the final size is roughly s2d , where s, d are the original size and depth.
What makes the argument work is that the light rules are of constant depth, i.e.
that no change (increase or decrease) may happen during cut-elimination. By
the way, these bounds are the simplest refutation for additional principles such
as [XI] : §(A⊕B) − §A⊕§B : a polytime boolean function can be given a type
bint − §k(1⊕ 1), and by [XI] the type bint − §k1⊕ §k1 ; but in that case the
output is given by the ⊕-rule used (left or right), and since ⊕ is not nested, we
get this rule after a purely external normalization whose runtime is linear.

With proof-nets, it is easy to see that the bound immediately yields a s2d+2

time
bound for usual I/O, like binary strings. Moreover a binary string is represented
by a proof-net of depth 1, hence the application f(s) of a given function f of
type bint−◦ (§)kTur to a binary string s will have the same depth as f , i.e. the
computation will run in a time which is polynomial in the size of s.

5. The proof of cut-elimination with the polynomial bounds is not manageable with sequent
calculus.
6. Technically this is the notion of ready cut coming from [4]. . . strictly speaking there are
no longer additive boxes.

Light Linear Logic 7

1.4 Added in print

Three years later (October 1997), the paper seems to be essentially the in-
dividuation of two weird proof-theoretical worlds, corresponding to LLL and
the sketched ELL : we now know how to logically control complexity of cut-
elimination. On the other hand neither exist as logical worlds, for want of definite
interpretations ; in particular, certain principles which are proof-theoretically ad-
missible (i.e. which are compatible with our complexity-theoretic constraints)
can be accepted or refused depending on personal taste : typically § will have
a tendency to lose its self-duality, promotion with empty context can be added
to LLL with immediate simplifications. . . one must also mention Asperti’s [1]
variant of intuitionistic affine LLL, with immediate simplifications too. In other
terms LLL is a theme with possible variations, and not a well-defined logical
system ; this unpleasant situation will only be fixed when a convincing seman-
tics will be produced ; in this respect, the recent work of Kanovich, Okada and
Scedrov [8] is a partial fulfilment of this goal (by the way, it concludes to a non
self-dual §).

2 THE SYNTAX OF LLL
Constructive logic is basically propositional ; this is why we focus on (second-
order) propositional LLL. However the system is quite flexible and accepts quan-
tifiers of any order, including set-quantifiers.

2.1 The formulas of LLL

LLL has the same connectives as usual linear logic but for the exponentials :
there is an extra (self-dual) modality, § (neutral) is added 7.

Definition 1
Literals (T) and formulas (F) are defined as follows

T = α, β, γ . . . , α⊥, β⊥, γ⊥ . . .

F = T, 1,⊥, 0,>, !F, §F, ?F, F ⊗ F, F &

F, F & F, F ⊕ F, ∀αF, ∃αF

Definition 2
(Linear) negation is a defined connective :

I (α)⊥ = α⊥, (α⊥)⊥ = α

I 1⊥ = ⊥,⊥⊥ = 1

I 0⊥ = >,>⊥ = 0

I (!A)⊥ = ?A⊥, (§A)⊥ = §A⊥, (?A)⊥ = !A⊥

I (A⊗B)⊥ = A⊥

&

B⊥, (A

&

B)⊥ = A⊥ ⊗B⊥
I (A&B)⊥ = A⊥ ⊕B⊥, (A⊕B)⊥ = A⊥ &B⊥

7. We have been tempted to replace !, §, ? by the musical symbols], \, [

8 Jean-Yves Girard

I (∀αA)⊥ = ∃αA⊥, (∃αA)⊥ = ∀αA⊥

Linear implication is a defined connective :
A−◦B = A⊥

&

B

2.2 The sequents of LLL

Definition 3
I A discharged formula is an expression [A], where A is a formula ;

I A block A is a sequence A1, . . . , An of formulas, or a single discharged
formula [A] ; the standard case is that of a block of length 1, for which
we use the notation A or [A] ;

I A sequent is an expression− A1; . . . ; An, where A1, . . . ,An are blocks.
The standard case is that of a sequence of (undischarged) formulas ;
even more standard is the case when the sequence consists of exactly
one formula.

Remark. —

I A block A1, . . . , An is hypocrisy for the formula A1 ⊕ . . .⊕An ;

I A discharged formula [A] is hypocrisy for ?A ;

I If A1,. . . , An are hypocrisy for formulasA1, . . . , An, then the sequent− A1; . . . ; An
is hypocrisy for the formula A1

&

. . .

&

An.

2.3 The sequent calculus of LLL

Identity / Negation

(identity)
− A;A⊥

− Γ;A − A⊥; ∆
(cut)

− Γ; ∆

Structure

− Γ; A; B; ∆
(M-exchange)

− Γ; B; A; ∆

− Γ; A, C,D,B
(A-exchange)

− Γ; A, D,C,B

− Γ
(M-weakening)

− Γ; [A]

− Γ; A
(A-weakening)

− Γ; A, B

− Γ; [A]; [A]
(M-contraction)

− Γ; [A]

− Γ; A, B,B
(A-contraction)

− Γ; A, B

Logic

(one)
− 1

− Γ
(false)

− Γ;⊥

Light Linear Logic 9

− Γ;A − B; ∆
(times)

− Γ;A⊗B; ∆

− Γ;A;B
(par)

− Γ;A

&

B

(true)
− Γ;> (no rule for zero)

− Γ;A − Γ;B
(with)

− Γ;A&B

− Γ;A
(left plus)

− Γ;A⊕B
− Γ;B

(right plus)
− Γ;A⊕B

− B1, . . . , Bn;A
(of course)

− [B1]; . . . ; [Bn]; !A

− Γ; [A]
(why not)

− Γ; ?A

− B1 | . . . | Bn;A1; . . . ;Am
(neutral : B1, . . . , Bn
are formulas separated by
commas or semicolons)

− [B1]; . . . ; [Bn]; §A1; . . . ; §Am

− Γ;A
(for all : α is not
free in Γ)− Γ; ∀αA

− Γ;A[B/α]
(there is)

− Γ; ∃αA

2.4 Comments on the system

2.4.1 Discharging
Little attention should paid to discharged formulas ; [A] may be replaced with
?A with practically no difference. The interest of this pedantism appears in
the proof of cut-elimination through the translation into proof-nets : there the
distinction between discharge and ? actually matters.

2.4.2 Additive blocks
The main idea behind LLL is to restrict promotion to a unary context, i.e.
to [III] : from − A;B derive −?A; !B. But this is not enough to get [II],
e.g. −?A⊥; ?B⊥; !(A&B), and this is why additive blocks are introduced, with
permission to treat them as a unique formula : −?A⊥; ?B⊥; !(A & B) can be
obtained from − A⊥, B⊥;A & B. In other terms, the LLL-promotion rule is
exactly [II] + [III]. A particular case is promotion with one empty block (a
block may be empty), i.e. from −;A derive −!A, a rule difficult to apply, since
−;A has the same meaning as − 0;A, i.e. >−◦A. This should not be confused
with the (illegal) promotion without context

�
from − A derive −!A � 8.

8. By the way the adoption of this rule (i.e. promotion with at most one block in the context)
would simplify many minor details in encoding polytime, and moreover this rule would not
destroy the polytime complexity of cut-elimination : one more possible

�
fine tuning � of

rules.

10 Jean-Yves Girard

We eventually stumble on this double-layer sequents, with two series of struc-
tural rules, M-rules and A-rules (M for multiplicative, A for additive). Promotion
replaces commas with semi-colons, with is the intended meaning of exponenti-
ation, i.e. the replacement of additives (“,”) with multiplicatives (“;”). By the
way, some people would prefer to keep “,” for the multiplicative comma. . . the
problem being that “;” looks “stronger” than “,”. . . I don’t know.

2.4.3 Neutral
The rule contains

�
neo-dereliction � , i.e. the principle !A−◦ §A, as well as the

principle §A ⊗ §B −◦ §(A ⊗ B). Observe that the punctuation between the Ai
in our rule is a semi-colon, and it cannot be replaced with a comma without
damaging the full architecture. The rule also expresses the fact that !A −◦ ?A.
But what is problematic is the self-duality of §, which is compatible with our
results, but seems to be logically wrong ; a non self-dual § would have a rule like

− B1 | . . . | Bn;A1; . . . ;Am;A

− [B1]; . . . ; [Bn]; §⊥A1; . . . ; §⊥Am; §A

2.5 The expressive power of LLL

Our goal here is to prove that polytime functions can be represented in LLL.
This can be established by various means. We adopt the simplest (maybe not
the most elegant) solution, namely to encode polytime Turing machines in an
intuitionistic version of LLL, ILLL. There will be a forgetful function of ILLL
into system F (with conjunction), hence the ultimate interpretation will be in
system F, in which the representation of data, algorithms, is quite familiar. . .

2.5.1 The system ILLL
The language of ILLL is based on the connectives ⊗,&,−◦, !, §, and second-order
quantification. The sequents of ILLL are of the form A1; . . . ; An − B, where
A1,. . . ;An are blocks, and B is a formula. The formulas 1k =!k1 are allowed
in the blocks, although they are not part of the language of ILLL 9. The rules
of ILLL are those that remain correct when we translate A1; . . . ; An − B as
− A1

⊥; . . . ; An
⊥;B.

The forgetful functor (erasure) from ILLL into LL (second-order propositional
intuitionistic linear logic, based on implication, conjunction and universal quan-
tification) is defined as follows :

I To a formula A of ILLL we associate A−, a formula of LL, as follows : ! and
§ are erased, ⊗ and & are replaced with ∧, −◦ is replaced with ⇒, variables
and quantifiers are unchanged ;

I To a sequent S of ILLL we associate a sequent S− of LL :

– In S remove all discharges [·] ;

9. This is due to the technical restrictions on the !-rule ; should ILLL be developed for its
own sake, these special formulas should be replaced with markers. . .

Light Linear Logic 11

– In S replace all semicolons by commas ;

– In S replace all formulas of LLL by their erasure ;

– In S remove all formulas 1k.

Typically the erasure of A,B, !!1; [1]; [C];D,E − F will be interpreted as
A−, B−, C−, D−, E− − F−.

I To a proof Π of S we associate a proof Π− of S−; since LL-sequent-calculus
can be interpreted in natural deduction, i.e. system Fv, we eventually get a
term of system F. Typically a proof of A,B, !!1; [1]; [C];D,E − F will induce
a term t, depending on variables v, w, x, y, z :

v : A−, w : B−, x : C−, y : D−, z : E− − t : F−

The interpretation is straightforward ; observe that the erasure of 1k is un-
problematic, since 1k indeed deals with weakening, i.e. dummy variables.

The basic idea behind the erasure is that (intuitionistic) linear logic (light or
not) can be viewed as a more refined way to speak of implication, conjunction,
erasing reuse. These refinements are not taken into account in intuitionistic
logic, and the forgetful functor collapses the two conjunctions, ignores exponen-
tials (and therefore destroys 1k, a very subtle handling of weakening). This is
reflected in the translation of the formulas and also of the sequents, where the
additive, multiplicative and exponential layers (represented by “, ”, “; ”, [· · ·] are
collapsed into a comma. When we shall represent data and algorithms in ILLL,
we shall implicitly refer to their forgetful image in F. It goes without saying that
the notion of reduction to be defined in LLL is compatible with the notion of
reduction in second-order intuitionistic sequent calculus, and therefore (through
the translation from sequent calculus to natural deduction) in system F, so that
the only consideration of the forgetful images matters. In what follows the most
important functions are represented in details ; we assume that the reader is
most familiar with system F, the Curry-Howard isomorphism which identifies
natural deduction with typed λ-terms, and therefore that he has no problem
to synthesize the λ-term associated with a proof in second-order intuitionistic
sequent calculus.

2.5.2 Representation of tally integers
Integers We define the type int of tally integers by

int = ∀α. !(α−◦ α)−◦ §(α−◦ α)

12 Jean-Yves Girard

The tally integer n is obtained as follows :

α − α α − α
α−◦ α;α − α α − α
α−◦ α;α−◦ α;α − α····

α−◦ α; . . . ;α−◦ α;α − α
α−◦ α; . . . ;α−◦ α − α−◦ α

[α−◦ α]; . . . ; [α−◦ α] − §(α−◦ α)
==========================

[α−◦ α] − §(α−◦ α)

!(α−◦ α) − §(α−◦ α)

−!(α−◦ α)−◦ §(α−◦ α)

− ∀α. !(α−◦ α)−◦ §(α−◦ α)

It is immediate that int− = ∀α. (α⇒ α)⇒ (α⇒ α), and that
(n)− = Λα.λxα⇒α.λyα.x(x . . . (x(y)) . . .) .

Addition
Addition is the proof + of int; int − int obtained as follows :

α − α α − α
α−◦ α;α − α α − α
α−◦ α;α−◦ α;α − α
α−◦ α;α−◦ α − α−◦ α

§(α−◦ α); §(α−◦ α) − §(α−◦ α)

α−◦ α − α−◦ α
[α−◦ α] −!(α−◦ α)

intα; §(α−◦ α); [α−◦ α] − §(α−◦ α)

α−◦ α − α−◦ α
[α−◦ α] −!(α−◦ α)

intα; intα; [α−◦ α]; [α−◦ α] − §(α−◦ α)

intα; intα; [α−◦ α] − §(α−◦ α)

intα; intα − intα

int; intα − intα

int; int − intα

int; int − int

with intα =!(α−◦ α)−◦ §(α −◦ α). It is immediate that the erasure of + is the
usual representation of addition in F.

Light Linear Logic 13

Multiplication
Multiplication is a proof × of !int; int − §int :

int − int

···· 0
− int

int−◦ int − int

§(int−◦ int) − §int

···· +
int; int − int

int − int−◦ int

[int] −!(int−◦ int)

[int]; intint − §int

[int]; int − §int

!int; int − §int

It is immediate that the erasure of × is the usual representation of multiplication
in F.

Iteration
The principle of iteration is derivable : if Γ is a block and not discharged,
then from a proof of Γ − A −◦ A and a proof of ∆ − §A, one can derive
[Γ]; ∆; int − §A :

Γ − A−◦A
[Γ] −!(A−◦A)

∆ − §A

A − A A − A
A;A−◦A − A

§A; §(A−◦A) − §A
∆; §(A−◦A) − §A

[Γ]; ∆; intA − §A
[Γ]; ∆; int − §A

It is immediate that the erasure of iteration is the usual representation of itera-
tion in F ; however, very few actual iterations of F can be obtained this way.

The types listk, to be defined below, have similar primitives, including a notion
of iteration.

Coercions
Observe that any sequent 1k1 ; . . . ; 1kp ; Γ − A can be replaced with 1k; Γ − A,
provided k > k1, . . . , kp. We shall content ourselves with a weaker typing of
integers, namely 1p − §qint (in general p = q, but we do not mind about the
actual value of p. A n-ary function from integers to integers will be given a type
1p; int; . . . ; int − §qint.
The successor function is naturally typed int − int, which can be replaced with
!kint −!kint, and therefore by 1 −!kint−◦!kint. The integer 0 can be given the
type 1 − int, hence the type 1k −!kint, and also the type
1k+1 − §!kint. We are in position to apply iteration and we get a function which

14 Jean-Yves Girard

is typed [1]; 1k+1; int − §!kint, which can be replaced with 1k+1; int − §!kint.
This function is essentially the identity on integers, but it changes the type, and
we call it a coercion.
In a similar way, we can define coercions of type 1p+q; int − §p!qint, when p 6= 0.
An immediate consequence is that the multiplication can be given a more even
type : replace !int; int − §int with §!int; §int − §2int, and compose with the
coercions 12; int − §!int and !1; int − §int, in order to get
12; !1; int; int − §2int, which can be simplified into 12; int; int − §2int.
It is then easy to see that, if f(x1, . . . , xn) and g(y, y1, . . . , ym) have been at-
tributed types 1p; int; . . . ; int − §pint and 1q; int; . . . ; int − §qint, then the
function g(f(x1, . . . , xn), y1, . . . , ym) can be given a similar type, namely
1p+q; int; . . . ; int − §p+qint. In other terms, all polynomials in which each vari-
able occurs exactly once can be typed.

Weakening and contraction
In order to get all polynomials, we must be able to represent dummy dependen-
cies, and repetition of variables, i.e. weakening and contraction for int.
Weakening can be defined as a sum with a function which is identically 0 :

α−◦ α − α−◦ α
§(α−◦ α) − §(α−◦ α)

=========================
§(α−◦ α); !(α−◦ α) − §(α−◦ α)

α − α
− α−◦ α

===========
[1] −!(α−◦ α)

[1]; intα; !(α−◦ α) − §(α−◦ α)

[1]; intα − intα

etc.
Contraction is obtained by composition with a diagonal map, i.e. the function
diag(n) =< n, n >. For this observe that the successor induces a map of type
int⊗ int − int⊗ int (corresponding to the function
f(< n, n >) =< n + 1, n + 1 >) which can be retyped 1; int⊗ int − int ⊗ int,
and 0 induces an object of type int ⊗ int. By iteration, we get a function of
type [1]; int − §int ⊗ int, corresponding to the map f(n) =< n, n >. Now, if
we compose with the diagonal map, it is clear that we can identify variables (in
general the integer k will increase).
So all polynomials can be given a type 1k; int; . . . ; int − §kint, and we can even
fix the value of k when the degree is known.

Similar weakening and contraction maps are available for the types listk to be
defined below, in particular for bint.

The predecessor
Last, but not least, we must type the predecessor, i.e. the function pred such

Light Linear Logic 15

that pred(0) = 0, pred(n+ 1) = n. The predecessor gets the type !1; int − int :

α − α
&1 −

α† − α
α − α α − α

α − α†

α† −◦ α†;α − α
α† −◦ α† − α−◦ α

§(α† −◦ α†) − §(α−◦ α)

α − α
1;α − α

============= &2 −
1, α−◦ α;α† − α

α − α α − α
α−◦ α;α − α

============= &2 −
1, α−◦ α;α† − α

1, α−◦ α;α† − α†

1, α−◦ α − α† −◦ α†

[1]; [α−◦ α] −!(α† −◦ α†)
===================
!1; !(α−◦ α) −!(α† −◦ α†)

!1; intα† ; !(α−◦ α) − §(α−◦ α)

!1; intα† − intα

etc., with α† = α & α. The basic idea is to iterate, instead of f of type α −◦ α,
the function f ′ in α† − α† such that f ′(x) =< x, f(x) > 10. Eventually the first

projection of the result is kept. Similar functions for listk can be defined.

2.5.3 Some data types
Familiar data types as well as the basic operations on them can be represented
in LLL. We shall only need a type with n elements booln and the type of lists
of tokens taken among m tokens, listm.

Booleans
The type boolk is defined as ∀α. §(α & . . . α −◦ α) ; there are k occurrences
of α to the left, and we agree on some (irrelevant) bracketing convention. In

particular, bool2 (written more simply bool) is ∀α. §(α& α−◦ α). Its erasure
∀α. α ∧ α⇒ α is one of the standard representations of booleans in F. We can
define proofs b1,. . . ,bk of bool, by starting with one of the k canonical proofs
of α & . . . α − α, and ending with −◦, § and ∀-rules. Typically the boolean

�
false � , b2 is :

α − α
&2 −

α& α − α
− α& α−◦ α
− §(α& α−◦ α)

− bool

whose erasure is the standard term Λα λxα&α π2(x), which represents
�

false �
in F.

If then else
We can give a type 11; boolk;A; . . . ;A − A to the k-ary version of

�
if. . . then

10. f ′ is not quite linear in f , which is reflected by the 1 in the sequent 1, α−◦ α − α† −◦ α†

16 Jean-Yves Girard

. . . else . . . � , when A is a data type (it works when A is a boolean type or
a type of lists). We give an example when A is int and k = 2, i.e. we try to
“type” the function f(true, n,m) = n, f(false, n,m) = m.

α − α

α − α α − α
α;α−◦ α − α
α;α−◦ α; 1 − α

α − α α − α
α;α−◦ α − α
α; 1;α−◦ α − α

==========================
α; 1, α−◦ α; 1, α−◦ α − α& α

α& α; 1, α−◦ α; 1, α−◦ α;α − α
α& α; 1, α−◦ α; 1, α−◦ α − α−◦ α

==================================
[1]; boolα; §(α−◦ α); §(α−◦ α) − §(α−◦ α)

α−◦ α − α−◦ α
[α−◦ α] −!(α−◦ α)

[1]; boolα; intα; §(α−◦ α); [α−◦ α] − §(α−◦ α)

α−◦ α − α−◦ α
[α−◦ α] −!(α−◦ α)

===
[1]; boolα; intα; intα; [α−◦ α] − §(α−◦ α)

[1]; boolα; intα; intα; !(α−◦ α) − §(α−◦ α)

[1]; boolα; intα; intα − intα

etc., with boolα = §(α& α−◦ α). Weakening and contraction on boolk can be
defined in terms of generalized

�
if. . . then . . . else . . . � .

Lists
We define listk to be ∀α. (!(α−◦α)−◦ (. . .−◦!(α−◦α) . . .))−◦ §(α−◦α), with k

occurrences of !(α−◦α) to the left. So list1 is just int, and list2 is abbreviated
into bint (binary integers).

We discuss the type bint, but our discussion applies to any type listk. First
we observe that the empty list emptylist and more generally any finite list of
digits 0 and 1 can be encoded by a proof of bint. This is more or less obvious,
since bint− is the usual F-translation of binary lists. Concatenation of lists,
_, can be represented by a proof of bint; bint − bint, which is basically a
binary version of +, and that we therefore skip. In particular the two successor
functions ·_ 0 and ·_ 1 can both be given the type bint − bint.

An important function is the
�

kind of list � , of type !1; bint − bool3. On the
empty list it yields the value b1, on a list ending with 0, it yields the value b2,
and on a list ending with 1, it yields the value b3 : let α∗ = (α & α) & α, and
introduce three proofs Πf , Πg and Πh of α∗ − α∗ respectively corresponding to
the functions f(x) =<< π1(π1(x)), π1(π1(x)) >, π1(π1(x)) >,
g(x) =<< π2(π1(x)), π2(π1(x)) >, π2(π1(x)) >,

Light Linear Logic 17

h(x) =<< π2(x), π2(x) >, π2(x) >.

α − α

···· Πf

α∗ − α∗.
α∗ −◦ α − α∗ −◦ α

§(α∗ −◦ α∗) − §(α∗ −◦ α)

···· Πh

α∗ − α∗.
============
[1] −!(α∗ −◦ α∗)

[1]; !(α∗ −◦ α∗)−◦ §(α∗ −◦ α∗) − §(α∗ −◦ α)

···· Πg

α∗ − α∗.
============
[1] −!(α∗ −◦ α∗)

[1]; bintα∗ − §(α∗ −◦ α)
==================

!1; bint − §(α∗ −◦ α)

!1; bint − bool

with bintα =!(α−◦ α)−◦ (!(α−◦ α)−◦ §(α−◦ α)).

Among the functions connected with listk are all the functions listf , of type

listk − listk
′
, induced by a map f from {1, . . . , k} to {1, . . . , k′}. They are

easily defined, mainly by structural manipulations. Three important examples :

I The (unique) function listf from bint to int identifies the two digits, and
produces a tally integer : it will be used for the length of the input of a
Turing machine ;

I When k > 2, the function from bint to listk that identifies a binary integer
with a k-list : it will be used for the input tape of a Turing machine ;

I When k > 2, the function from listk to bint that replaces any digit distinct
from 0, 1 with 0 : it will be used for the output of a Turing machine.

2.5.4 Polytime functions
Turing machines
Consider a (deterministic) Turing machine using p symbols and with q states.
The current configuration can be represented by three data :

I a list dealing with the leftmost part of the tape (up to the position of the
head)

I a list dealing with the right part of the tape, in reverse order

I the current state

The type Turp,q = listp ⊗ listp ⊗ boolq can therefore be used to represent
any configuration of the machine. The instructions of the machine depend on
reading the last symbol of one list, (including testing whether or not a list
is empty), and also depend on the current state. From what precedes, it is
possible (by eventually adding new instructions so that the machine can never
stop), to represent a Turing machine by a proof of !1; Turp,q − Turp,q : just
use successors, predecessors,

�
kind of list � , and generalized

�
if . . . then . . .

else. . . � .

18 Jean-Yves Girard

Inputs and outputs
We assume that our inputs are binary integers, i.e. that the digits 0 and 1
belong to the p legal symbols of the tape. The input (initial configuration) can
therefore be expressed by means of a map of type bint − Turp,q which maps
a binary list s into the 3-tuple < s, emptylist, σ >, where σ is the initial state.
When the expected runtime of the machine is over, we may also decide to read
off the output, i.e. we need to represent the map f(< s, t, τ >) = s′, where s′ is
obtained from s by replacing any symbol distinct from 0, 1 by 0. Such a function

is easily obtained by means of a function listf and of the weakening facilities on
our data types.

Run of a Turing machine
Assume that we are given a time θ (represented by a tally integer of type int),
an initial input s of type bint, and a Turing machine of type
!1; Turp,q − Turp,q. Then running the machine for θ steps from the initial
input, can be represented by means of an iteration. As a function of θ, s it may
receive the type 12; int; §bint − §Turp,q and therefore (using the coercion map
!1; bint − §bint) also the type 12; int; bint − §Turp,q. The result at time θ (if
we stop the machine after θ steps) can be written as a function of θ, s of type
12; int; bint − §bint.

Polytime machines
A polytime machine is a machine with a polynomial clock, which stops after
P (](s)) steps, where](s) is the size of the input, and P is a given polynomial ;
when P (](s)) steps have been executed, then we print out the result. Now
observe that P can be given a type 1k; int − §kint, and using the (unique)

map listf from bint into int, the function P ′(s) = P (](s)) can be given the
type 1k; bint − §kint. By composition with the runtime function, we get the
type 1k+2; bint; §kbint − §k+1bint to represent the function ϕ(s, s′) which is
the result of the computation after P ′(](s)) steps with the input s′. Using the
contraction facility on bint we can make s = s′ and replace this type with
1k+3; bint − §k+2bint. If we insist on having the same integer on both sides,
we can, using the coercion of type 1k+3; §k+2bint − §k+3bint, replace this type
with 1k+3; bint − §k+3bint.

2.5.5 The representation theorem
Theorem 1

Any polytime function from binary lists to binary lists can be represented
in LLL as a proof of a formula 1k; bint − §kbint

Proof. — This is obvious from what precedes. The algorithm can be executed
in F, but also as a proof-net, in which case the output is a proof-net with conclu-
sions §kbint;⊥k, and the ⊥k, which eventually comes from 0-ary ⊥-links, can
be ignored. 2

Light Linear Logic 19

2.5.6 The user’s viewpoint
Let us admit that this works, without being especially friendly. Since this paper
is concerned with showing that LLL is intrinsically polytime, this subsection
was concerned with a rather marginal question : to show that it was strictly
polytime, i.e. that any polytime function could be typed inside the system.
So we didn’t care much about the potential users of such a system. Surely
this practical aspect should be developed, under the form of a typed λ-calculus,
analogous to system F. The best would be a system of pure λ-calculus with
typing declarations in ILLL.
But this is not the only possibility : a less conservative option would be to exploit
the classical symmetries of LLL, which have a lot of interesting consequences
(for instance, using the fact that α−◦α is isomorphic to α⊥−◦α⊥, which induces
an isomorphism between bintα⊥ and bintα, we get the proof :

bintα⊥ − bintα

bint − bintα

bint − bint

whose action is to reverse a list).

3 PROOF-NETS FOR LLL
Cut-elimination in sequent calculus is unmanageable -especially in presence of
additive features- : too many permutations of rules occur, and the counting of
these permutations blurs the actual complexity of the process. This is why we
choose to use proof-nets to prove the main theorem of this paper. Our basic
reference will be [4] where the proof-net technology is expounded. We shall
therefore content ourselves with modifying the definitions of [4] so as to take
care of the specificities of LLL. We adopt the definitions and conventions of this
paper, in particular we shall very often speak of formulas to mean “occurrences
of formulas”. We shall ignore the additive constants > and 0 on the double
grounds that they play little role and that they can be handled anyway by
means of second-order definitions in case we badly insist to keep them. This will
save a lot of inessential details.

3.1 Proof-nets with multiplicative/additive conclusions

We first liberalize the condition about the weights of conclusions in definition
3 of [4]. Let Γ = [∆]; A1; . . . ; An be a sequent. Then a proof-structure will
be declared to have the conclusion Γ when its conclusions are the formulas
(discharged or not) listed in Γ and furthermore, for each Ai the sum of the
weights of the formulas of Ai is equal to 1. This is equivalent to saying that,
after applying ad hoc ⊕-links to the formulas of Ai, then we obtain a proof-
structure in the sense of section 3 of [4].
We consider the following exponentials links :

20 Jean-Yves Girard

I The ?-link, with n unordered premises, which are all occurrences of the same
discharged formula [A], and with conclusion ?A ;

I The !-box, which is a generalized axiom whose (unordered) conclusions are
[A1], . . . ; [An]; !B. This link is called a box because in order to use it, one has
to give a proof-net Θ whose conclusions are A1, . . . , An;B ; our conventions
about proof-structures imply that n is nonzero. A pictural representation of a
box is precisely a. . . box whose contents is Θ and below which the conclusions
of the link are written ;

I The §-box, which is a generalized axiom whose (unordered) conclusions are
[A1]; . . . ; [An]; §An+1; . . . ; §An+m. This link is called a box because in order
to use it, one has to give a proof-net Θ whose conclusion is a sequent Γ; ∆
without discharged formulas, and such that the formulas occurring in Γ are
exactly A1, . . . , An, and ∆ is An+1; . . . ;An+m. A typical example is that of a
proof-net with conclusions A,B;C;D,E, F ;G;H, which can be used to form
a §-box with conclusions [A]; [B]; [C]; [D]; [E]; [F]; §G; §H, but also a
§-box with conclusions [A]; [B]; §C; [D]; [E]; [F]; §G; §H.

Weights are subject to the usual conditions ; moreover

I A discharged formula is the conclusion of exactly one link, i.e. one box ;

I If L is a ?-link with premises [A1], . . . , [An] (occurrences of the same dis-
charged formula), then w(L) > w([Ai]) for i = 1, . . . , n ; remember that a
default jump, i.e. a formula B such that w(B) > w(L) must be provided with
the link.

The condition for being a proof-net is defined in the obvious way : once a valu-
ation ψ has been selected, one builds a graph whose vertices are those formulas
A such that ψ(w(A)) = 1. The edges are selected as in [4] ; moreover

I For any ?-link, one draws an edge between the conclusion of the link and any
premise of the link which a vertex of the graph, or with the default jump B
(this is crucial in case no premise of the link is a vertex of the graph) ;

I For any box with conclusions A1, . . . , An, one draws an edge between A1

and A2, A2 and A3,. . . An−1 and An. The choice of edges depends on an
ordering of the conclusions of the box, but any other ordering would produce
an equivalent graph.

Observe that since boxes are built from proof-nets, our condition indeed means
that a proof-structure is a proof-net iff it is a proof-net when we consider its
boxes as proper axioms, and if the contents of its boxes are in turn proof-nets,
etc.

3.2 Sequentialization for LLL

We must first define what it means for a proof in sequent calculus to be a
sequentialization of a proof-net. This is done without problem, following the

Light Linear Logic 21

lines of [4]. We only need to be careful about the structural maintenance :
typically certain formulas of − Γ are not present in the proof-net, because they
would receive the weight 0. This is the case inside blocks, and for discharged
formulas. We can state the :

Theorem 2
Proof-nets are sequentializable, i.e. every proof-net is the sequentialization
of at least one sequent calculus proof.

Proof. — By induction on the depth, i.e. the maximum nesting of boxes. If
we assume that the inside of all boxes is sequentializable, since the rules for the
formation of boxes are the same as the rules for ! and §, then we are left with
the problem of sequentializing a usual proof-net with boxes, a question solved
in [4], section 3. 2

3.3 Cut-elimination for LLL

Since this proof is rather delicate, we suggest to first understand it in the case
without additives. Hence there is no notion of weight, the !-boxes have exactly
two conclusions, all cuts are ready, and all exponential cuts are special. Moreover
the notion of proof-net in this case is akin to the more familiar multiplicative
case.

3.3.1 The size and depth of a proof-net
Definition 4

The size](L) of a link L is defined by :

I if L is an identity link,](L) = 2 ;

I if L is a cut-link,](L) = 0 ;

I if L is an exponential box constructed from a proof-net with conclusion
Γ, then](L) = 1 + s, where s is the number of semi-colons in Γ ;

I otherwise](L) = 1.

The size](Θ) of a proof-net Θ is the sum of the sizes of the links occurring
in it, including what (hereditarily) occurs inside the boxes.

Definition 5
The depth ∂(Θ) of a proof-net Θ is the maximum nesting number of boxes
in Θ. The depth of a formula A (denoted ∂A or ∂A/Θ) is the number of
boxes containing it : typically, if Θ consists of a sole box B made from a
proof-net Θ′, then the conclusions of B have depth 0, whereas the depth of
a formula A of Θ′ is given by ∂A/Θ = ∂A/Θ′+1. One similarly defines the
notion of depth of a link : typically in the case just considered, the box gets
the depth 0, whereas ∂L/Θ = ∂L/Θ′+ 1 for all links L occurring inside B.
Finally we define the partial size, also called d-size,]d(Θ) to be the sum
of the sizes of links of depth d in Θ, so that](Θ) =]1(Θ) + . . . +]n(Θ),
where n is the depth of Θ.

22 Jean-Yves Girard

These definitions have been chosen because of their relevance to cut-elimination.
But what about the relevance of our size w.r.t. the actual size of a proof-net ?

I The size of a link is almost the number of its conclusions. In Θ, define
a function f as follows : if A is not discharged, letf(A) be any link with
conclusion A, if [A] is discharged, then it is the conclusion of a box, and A
occurs (undischarged) inside the box, and we set f([A]) = f(A). It is easy
to see that L occurs in the range of f at most twice the size of L, hence the
number of formulas in Θ is bounded by 2](L).

I Cut-links do not contribute to the size ; however if A is the premise of such
a link, then A is the conclusion of another link, and it is easy to see that the
number of cuts cannot exceed the size.

I The actual size of a net as a graph is therefore linear in the official size,
Good News ! However we are not done since the net also involves the boolean
weights. But, as observed in [4], these weight can be replaced with a structure
of a coherent space between the links and therefore the size of the missing
structure is quadratic in the official size of the net.

I Finally the size does not take into account the actual sizes of formulas. Here
very little can be done, especially in presence of quantifiers. The most natural
viewpoint is to see the formulas as comments, which are erased at runtime, in
the same way that the actual execution of a typed λ-term is the execution of
its erasure, i.e. of the underlying pure λ-term. In other terms, we work with
a kind of interaction net à la Lafont, see [9].

This should be enough to convince one that the polynomial bounds obtained
below actually induce a polytime algorithm. Concretely, as explained in [4], the
substitutions occurring during the additive steps are delayed and those occurring
during the quantifier steps are not performed (they can be stored in some auxil-
iary memory). If the final result should be without additives, then the additive
substitutions can be done at the end, producing a cleansing of the graph (all
weights become 0 or 1). If the final result is also free from any kind of existential
quantifiers, then the formulas can be synthesized in an obvious way, and we have
no use for our stack of substitutions.

3.3.2 Cut-elimination : the general pattern
We shall define a lazy cut-elimination which terminates in polytime. The result
of the procedure (which is Church-Rosser) is cut-free only in certain cases, but
this is enough for us.
Let us call a cut exponential when the cut-formulas begin with exponentials and
both premises are conclusions of exponential links. For non-exponential ready
links, the paper [4] defines a linear time cut-elimination procedure : each step of
this basic procedure strictly shrinks the size of the proof-net (and this remains
true with our specific measurement of size).The pattern is as follows :

Light Linear Logic 23

I In a preliminary round we apply the basic procedure at depth 0, which induces
a shrinking of the proof-net at depth 0, the other sizes staying the same ; then
the real things begin

I In a first round we work at depths 0 and 1 ; at depth 1 only the basic
procedure is allowed, whereas only certain exponential cuts are removed at
depth 0. If the original partial sizes were s0, . . . , sd, then the new sizes after
completing the procedure, will not exceed s0, s0s1, . . . , s0sd (and the depth
does not increase).

I In a second round we apply a similar procedure at depths 1 and 2 ; this
procedure fires no new reduction at depth 0, so that after completing this
second round, our partial sizes will not exceed s0, s0s1, s

2
0s1s2, . . . , s

2
0s1sd,

and the depth still not increases.

I The dth round occurs at depths d − 1 and d. When it is completed, noth-
ing more can be done (in the lazy case, we shall be cut-free). The depth
of the proof-net is still at most d (it can diminish in the very unlikely sit-
uation of erasure of a deeply nested box), and the sizes are now at most

s0, s0s1, s
2
0s1s2, s

4
0s

2
1s2s3, . . . , s

2d

0 s
2d−1

1 . . . s2
d−2sd−1sd. The final size is there-

fore bounded by s2d .

It will be easy to see that s2d actually counts the number of steps, if s is the
size and d is the depth : we are therefore polystep in s (when d is fixed, which
corresponds to practice). Since the steps are not too big, the actual runtime is
polynomial in the number of steps, and the complexity of cut-elimination, for a
given depth d will therefore be polytime.

3.3.3 Elimination of exponential cuts
Definition 6

The actual weight of a discharged formula [A] is the weight of the conclu-
sion A of the proof-net inside the box. An exponential cut is special if it is a
ready one and in case one of the premises of the cut is the conclusion of a ?-
link, then this link is either 0-ary or one of its premises has actual weight 1.

We now explain how to eliminate special cuts : this is the special procedure

I §-reduction : take a ready cut between §A and §A⊥, both A and A⊥ are con-
clusions of §-boxes whose contents are proof-nets with respective conclusions
Γ;A and A⊥; ∆ : in this case we first perform a cut on A between the two
proof-nets, yielding a proof-net with conclusion Γ; ∆, then we form a §-box
with this proof-net.

I Weakening reduction : take a special cut between !A and ?A⊥, where ?A⊥ is
the conclusion of a 0-ary link : in this case we remove the box with conclusion
!A. This involves the destruction of the conclusions [Bi] of this box, but this
only amounts to reducing the arity of some ?-links.

24 Jean-Yves Girard

I Contraction reduction : take a special cut between !A and ?A⊥, where ?A⊥ is
the conclusion of a ?-link with a premise [Ai

⊥] of actual weight 1. Then [Ai
⊥]

is in turn the conclusion of a box B. B is made from a proof-net Ξ whose
conclusions are Ai

⊥; ∆, whereas the box A with !A among its conclusions
is made from a proof-net Θ whose conclusions are Γ;A. By means of a cut
between A and Ai

⊥, we can produce a new proof-net Π. Π can be used to
produce a new box C whose conclusions are the same as those of B, except
that [Ai

⊥] is replaced with [Γ]. In this case we replace B with C. Observe
that new occurrences of [Γ] are created, hence the arity of some ?-link will
increase.

What about the size during this procedure ? Let us assume that our special cut
is of depth 0, and that our original sizes are s0, s1, . . . , sd ;

I §-reduction : the size obviously decreases by 2, since three links (two boxes
and a cut) counting for 1 + n + 1 + m are replaced with two links (one box
and a cut), counting for 1 + (n − 1) + (m − 1) + 1. A new estimate for the
partial sizes is s0 − 2, s1, . . . , sd ;

I Weakening reduction : the size strictly shrinks, and s0−1, s1, . . . , sd is a very
pessimistic majorization of the size of the result ;

I Contraction reduction : at depth 0 the size stays the same, since C has the
same size as B (this is because there is no semicolon in Γ, so that Γ; ∆ has the
same number of semi-colons as Ai

⊥; ∆). But otherwise it increases : more
precisely, if the partial sizes of the proof-net Θ are t0, t1, . . . , td−1, then the
partial sizes of our new proof-net are exactly s0, s1 + t0, s2 + t1, . . . , sd + td−1.

In the first round we systematically perform the basic procedure at depth 1
together with the special procedure at depth 0. The point of the basic proce-
dure is that it induces changes of weights inside the boxes, and therefore some
conclusions of the proof-nets inside a box receive a new weight 0, in which case
some conclusion [A] of the box disappears. This does not affect the size of the
box (the number of semicolons stays the same) and since such a conclusion was
the premise of some ?-link, this only induces a change of arity of the ?-link. Of
course some conclusion of box may get the actual weight 1, which can fire a con-
traction reduction, etc. By the way no basic reduction at depth 0 can be fired
during the first round, and this is why we may assume that they have been done
during a preliminary round. Later on, in the second round, no basic reduction
at depth 0 or 1 will occur etc.

3.3.4 Bounding the sizes
Bounding the size essentially amounts to considering the first round. We there-
fore assume that the basic procedure has been completed at depth 0. We also
make a simplifying hypothesis, namely that no non-trivial weight remains at
depth 0 : this will be the case when we normalize proofs of lazy sequents, see
below 11.

11. If non-trivial weights appear at depth 0, we can apply the constructions of this subsection
to the part of the proof-net which is of size 1

Light Linear Logic 25

We introduce a precedence relation between discharged formulas : [A] <1 [B]
when [B] is conclusion of a !-box B and the other conclusion of the box !A⊥ is
the premise of an exponential cut whose other premise ?A is the conclusion of a
?-link, with [A] among its premises. By the correctness criterion, the transitive
closure < of precedence is a partial order. We can therefore consider the forest
F of finite sequences ([A0], . . . , [An]) of discharged formulas, such that [A0] is
minimal w.r.t. < and ([A0] <1 . . . <1 [An]). A discharged block is a set of
discharged formulas [A] which occur among the conclusion of some exponen-
tial box of depth 0, made from a proof-net with conclusion Γ, and such that
[A] is a block of Γ. A coherent subforest in F is a subforest µ of F such that
whenever two sequences [S], [A], [S ′] and [S], [B], [S′′] belong to µ, then either
[A] and [B] are the same or they belong to distinct discharged blocks. Given
µ, we can define the multiplicators µ(B) for any box B with discharged con-
clusions to be the number of sequences in µ such that the last element of the
sequence is a conclusion of B ; if B is a §-box whose conclusions are all of the
form §A, let µ(B) = 1. The potential sizes of Θ are defined as follows : for each
depth i 6= 0, we can write si =

∑
sBi , where B varies through boxes of depth

0 (sBi is just the contribution of the proof-net inside B to ith size). We define
Sµ0 = s0, S

µ
1 =

∑
µ(B)sB1 , . . . , S

µ
d =

∑
µ(B)sBd .

Proposition 1
Assume that Θ reduces to Π during the first round. Then the potential
sizes of Π are not greater than the potential sizes of Θ.

Proof. — We already know that the size does not increase at depth 0 ; let
us check the property at any other depth, typically depth 1, and in the only
problematic case, namely the contraction reduction. We start with boxes A
and B in Θ to produce a box C which replaces B. If a1, b1 are the respective
contributions of A and B to the 1-size of Θ, then then contribute as
µΘ(A)a1 + µΘ(B)b1 to the potential 1-size of Θ, whereas in Π the boxes A and
B contribute to the potential size as νΠ(A)a1 + νΠ(C)(a1 + b1). But since C is
obtained by merging B with a copy of A, it is easy to construct, given ν a µ
such that µ(B) = ν(C) and µ(A) = ν(C) + ν(A). This proves the claim. 2

By the way observe that any maximal µ will yield µ(A) > 1, hence the potential
sizes easily exceeds the sizes ; on the other hand observe that coherent subforests
are not too big, since they cannot branch at all : this is due to the peculiarities of
the ! boxes. Moreover, thanks to acyclicity, the same discharged formula cannot
occur twice in the same branch : in other terms µ(A) cannot exceed the number
of roots of µ 12, which is bounded by the number of discharged blocks, and this
number is in turn bounded by s0. This is why the first round yields the bounds
s0, s0s1, . . . , s0sd.

3.3.5 Bounding the runtime
We show below that the runtime is of degree 3 in the size, which will yield
polytime complexity of degree 2d+2 for our algorithm. It suffices to compute the

12. This is the only point where ELL diverges from LLL : in ELL coherent subforests do
branch !

26 Jean-Yves Girard

complexity of the first round :

I The number s0 dominates both the number of steps of the preliminary round
and the number of special steps which are not contraction reductions ; the
number s0s1 dominates the number of basic steps in the first round. The
number of contraction reductions performed during the first round is smaller
than the maximum size of a coherent subforest of F, and is therefore less than
b20, where b0 is the number of discharged blocks of depth 0, which is turn is
bounded by s2

0. The number of steps during the first round is therefore easily
bounded by (s0 + s1)2 ;

I However, the number of steps is not the runtime : some steps, typically
contraction reductions involve a duplication of the structure, which means
that each step can cost at most the actual size of the proof-net. We already
observed that the actual size is quadratic in the size (which is bounded by
s0s) hence we arrive at a total of (s0s)

2s2 for the first round.

Without being very cautious, we can bound the total runtime by something like

3s2d , which is enough for our purpose.
This does not mean that the algorithm cannot be improved. The decomposition
in rounds is rather artificial etc. But we are not looking for efficient imple-
mentation, just for a proof-system which is intrinsically polytime, and that’s
it.

3.3.6 Lazy sequents
A formula is said to be lazy when it contains neither the symbol & nor higher
order existential quantification. A sequent is said to be lazy when all the formulas
occurring in it are lazy.

Proposition 2
Let Θ be a proof-net without non-exponential ready cut of depth 0, and
assume that Θ has a ready cut at depth 0. Then one of the conclusions of
Θ is a non-lazy formula of weight 1.

Proof. — since eigenweights can only be used at a given depth, some eigen-
weight is used at depth 0, and we can look for a &-link L such that the empire of
its conclusion is maximal w.r.t. any valuation. Then the downmost conclusion
below this link cannot be the premise of a cut (in which case we can show, as in
[4], that the cut would be ready), hence it must be a conclusion, and its weight
is bigger that the weight of L, so it is equal to 1. 2

As a corollary, after the preliminary round, a proof-net whose conclusion is lazy
has no non-trivial weight at depth 0.

Proposition 3
After the first round, the proof of a lazy sequent has no cut of depth 0.

Proof. — assume that the first round is completed, and consider the forest
F ; if there is still a cut of depth 0, then there is a sequence ([A0], [A1]) in F,

Light Linear Logic 27

and [A0] is the conclusion of a box B. Since a conclusion of B is the hereditary
premise of an exponential cut and the contraction reduction does not apply, then
this conclusion must have a non-trivial weight. Now the proof-net Π, which is
in B has a conclusion with a non-trivial weight, and since the basic procedure
has been completed for Π, there is a conclusion C of Π which is non-lazy and of
weight 1. This conclusion yields a conclusion of B and :

I either the conclusion is a formula §C ; since this formula is non-lazy, it must
be the premise of a cut. . .But the §-reduction would apply, a contradiction ;

I or this conclusion is a formula !C, which must also be the premise of a cut.
In this case, observe that C <1 A0, a contradiction ;

I or this conclusion is the premise [C] of a ?-link, which must in turn be the
premise of a cut ; in this case [C] is of actual weight 1, and the contraction
elimination does apply, a contradiction.

Therefore F is trivial and Θ is cut-free at depth 0. 2

Theorem 3
Cut-elimination converges to a (unique) normal form for proofs of lazy
sequents ; furthermore, for bounded depth, the runtime is polynomial in
the size of the net.

Proof. — more or less obvious from what precedes. 2

Observe that application of a function of type 1k; bint − §kbint to an argument
falls into this case : a (cut-free) argument is of depth 1, hence the global depth
is the depth of the proof representing the function. Observe that, unlike other
approaches, like [10, 6], there is still a complexity bound for arbitrary functionals,
something like n2n , since the size clearly exceeds the depth by 2.

28 Jean-Yves Girard

A APPENDIX

A.1 Naive Set-Theory and LLL

We have so far only considered second order propositional LLL. But this is not
the only possibility :

I We can consider first-order LLL, which is straightforward.

I We can also consider LLL with first and second order quantifications ; this
system would be a natural candidate for a light second order arithmetic. By
the way a light first order arithmetic could easily be extracted, but one would
have to think twice in front of the difficulties inherent to equality, especially
in terms of proof-nets (e.g. certain formulas like 0 6= 1 will be equivalent to
>, hence the case of > has first to be fixed) ;

I We can also consider quantifications of any order. . .

I And last but not least, we can consider Naive Set Theory, which encompasses
all kinds of quantification.

In fact, Naive Set Theory has been the starting point of LLL : I was looking
for a system in which the complexity could be expressed independently of the
complexity of the cut-formulas. In particular it would also work for naive set-
theory, since there is a well-known (non-terminating, for obvious reasons) cut-
elimination procedure for it ; by the way, it had been observed long ago by
Grishin [5] that, in the absence of contraction, cut-elimination works 13. So I
decided to translate Russell’s paradox into linear logic with exponentials. Using
fixpoint facilities (see below) one can produce a new constant A, which has the
rules (unary links in terms of proof-nets) : from ?A deduce A⊥, from !A⊥ deduce
A.

I There is a first possibility for deriving a paradox (here a proof-net with no
conclusion), which is based on dereliction : the proof-net has depth 1, but the
process of cut-elimination does not converge at depth 0, since the normaliza-
tion of a cut with dereliction between ?A and !A⊥ involves an “opening” of
the box with conclusion !A⊥ : the contents of this box is “poured” into depth
0, so that the size s0 no longer shrinks ;

I There is another possibility which does not use dereliction, but the principle
??A−◦?A ; in this case, the first round is easily completed, but the handling
of the exponential cuts involves the creation of a deeper box, i.e. the size
increases.

This is why we restricted to rules whose normalization involves no change of
depth.

13. This is not very helpful, since the system without exponentials is awfully inexpressive in
terms of computational power

Light Linear Logic 29

A.1.1 Expressive power of LLLs
Light Naive Set-Theory LLLs is defined exactly as LLL, but for the quantifiers
and the terms :

Definition 7
Terms (T) and formulas (F) are defined as follows

T = x, y, z, . . . {x | F}
F = T ∈ U, T 6∈ U, 1,⊥, 0,>, !F, §F, ?F, F⊗F, F &

F, F&F, F⊕F, ∀xF, ∃xF

Negation is defined as expected ; in particular, (T ∈ U)⊥ = T 6∈ U and
(T 6∈ U)⊥ = T ∈ U .
The logical rules are modified as follows :

− Γ;A
(for all : α is not
free in Γ)− Γ; ∀xA

− Γ;A[T/x]
(there is)

− Γ; ∃xA

− Γ;A[T/x]
(∈)

− Γ;T ∈ {x | A}
− Γ;A[T/x]⊥

(6∈)
− Γ;T 6∈ {x | A}

The representation in terms of proof-nets is straightforward : the ∈-rules induce
two unary links, one with premise A[T/x] and conclusion T ∈ {x | A}, the other
with premise (A[T/x])⊥ and conclusion T 6∈ {x | A}.

A.1.2 Equality
Definition 8

The Leibniz equality t = u is defined by ∀x(t ∈ x−◦ u ∈ x) ; t 6= u is short
for t = u−◦ 0, a strong form of negation.

Exercise. — Prove the following sequents :

I t = u;A[t/x] − A[u/x]

I t = u − u = t

I t = u − (u = v −◦ t = v)

I t = u − 1

I t = u − t = u⊗ t = u

Definition 9
The singleton {t} is defined as {x | x = t} ; the pair {t, u} is defined as
{x | x = t⊕ x = u} ; the ordered pair < t, u > is defined as {{t}, {t, u}}.

Exercise. — Prove the following sequents

I {t} = {t′} − t = t′

I {t, u} = {t′, u′} − (t = t′ ⊕ t = u′)⊗ (u = t′ ⊕ u = u′)

30 Jean-Yves Girard

I {t, u} = {t′, u′} − (t = t′ ⊗ u = u′)⊕ (t = u′ ⊗ u = t′)⊕ t = u

I {t, u} = {t′, u′} − (t = t′ ⊗ u = u′)⊕ (t = u′ ⊗ u = t′)

I {t} = {t′, u′} − t = t′ ⊗ t = u′

I < t, u >=< t′, u′ >− t = t′ ⊗ u = u′

Exercise. — Prove the formula {x | 0} 6= {t} ; conclude that we can find terms
t0, . . . , tn, . . . such that ti 6= tj is provable for i 6= j.

As a consequence of the exercise, it is possible to represent certain features of
the usual equalitarian predicate calculus :

I we can represent a n-ary function letter f by assigning to it a specific term
ai coming from the previous exercise ; ft1 . . . tn will be represented as
< ai, t1, . . . , tn >, using a n + 1-ary pairing function. It follows from the
previous exercises that usual equality axioms are satisfied together with
ft1 . . . tn 6= gu1 . . . um (when f, g are distinct) and
ft1 . . . tn = gu1 . . . un −◦ t1 = u1 ⊗ . . .⊗ tn = un

I we can also represent predicates by means of fixed variables (generic con-
stants) and by means of the pairing function : pt1 . . . tn becomes
(t1, . . . , tn) ∈ x, where x is a variable assigned to p

I as a consequence, we have access to a representation of binary strings : for
this we only need a constant ε and two unary successors S0, S1. Equality
axioms, as well as inequalities S0t 6= S1u, S0t 6= ε, S1t 6= ε are provable, as
well as Sit = Siu−◦ t = u for i = 1, 2.

A.1.3 Fixpoints
In order to formulate the fixpoint property, we introduce the following nota-
tion : the substitution of an abstraction term λx1 . . . xn.B for a n-ary predicate
symbol P in the formula A consists in replacing any atom Pt1 . . . tn of A by
B[t1/x1, . . . , tn/xn].

Proposition 4
Let A be a formula in the language of LLLs augmented by means of a
n-ary predicate P , and let x1, . . . , xn be variables, so that we can write
our formula A[P, x1, . . . , xn] ; then there is a formula B (depending on
x1, . . . , xn) such that the equivalence (i.e. both linear implications) be-
tween A[λx1 . . . xn.B[x1, . . . , xn]] and B is provable.

Proof. — This is a straightforward imitation of Russell’s paradox (already used
in the fixpoint theorem of λ-calculus). For instance, let us assume that n = 1 ;
then we can form t := {z | ∃x∃y.z =< x, y > ⊗A[λw. < w, y >∈ y, x]}. Then
< x, t >∈ t is provably equivalent with A[λw. < w, t >∈ t, x] and we are done.

2

As a consequence we get the possibility of defining various partial recursive func-
tions. Typically, take for instance the exponential function (defined on binary
strings, i.e. in number base 2) then we can get a two variable formula B such
that B[s, t] expresses that t = 2s.

Light Linear Logic 31

This is enough to convince one that LLLs bears all the features of a light arith-
metic. In particular all numerical functions implicit in proofs made in this system
will be polytime computable.

A.2 Elementary Linear Logic

Elementary Linear Logic arises as the alternative solution to the complexity
problem at stake. It syntax does not contain § (or rather does not need it). The
rule for ! is liberalized into :

− B1 | . . . | Bn;A
(of course)

− [B1]; . . . ; [Bn]; !A

where the symbols B1, . . . , Bn are separated by commas or semicolons.
As a consequence, the sequent !A; !(A−◦B) −!B becomes provable (equivalently
!A; !B −!(A ⊗ B) is provable). Integers can now be represented by the type
∀α. !(α −◦ α)−◦!(α −◦ α) : the tally integers can be given this type, which was
not the case for LLL. The representation results of LLL persist (replace § by !
everywhere). We can also get rid of the irritating markers 1k in the representa-
tion theorem, since the rule for ! is now valid with an empty context. But new
functions arise, namely exponentials. This is due the fact that multiplication
can now be given the type int; int − int. If we feed the first argument with the
integer 2, we can type duplication with int − int, and as soon as duplication can
be given a type A − A, then we can iterate it, yielding a representation of the
exponential function. The exponential can therefore be typed with int −!int,
and towers of exponentials with the type int −!kint. The same holds for other
data types, and therefore we conclude that all elementary functions (i.e. func-
tions whose runtime is bounded by a tower of exponentials) can be typed in
ELL.
Is this optimal ? The proof of lazy normalization still works 14, but for the fact
that coherent subforests are not so simple, since they may branch. The multipli-
cation factor involved in the first round is no longer s0 but depends exponentially
on s0, something like ss00 . Completing the process will therefore cost a tower of
exponentials, the height of the tower depending on the depth of the proof-net.
Hence normalization is elementary in the size of the input, when the depth is
given. This is analogous to the familiar bounds for predicate calculus/simply
typed λ-calculus, but here the height of the tower does not depend on the cut-
formula, but on more hidden parameter, the depth.
It is also possible to build a naive set-theory ELLs. Its expressive power is
considerably bigger than before, since the exponential function plays a decisive
role in mathematics. This induces a strange system which can both formalize a
bunch of mathematics, and which admits definition by fixpoint. Such a system
seems to be the optimal candidate for formalization of AI.

14. However, as observed by Kanovich [7] the system must be modified in order to accomodate
full (i.e. non-lazy) cut-elimination. Observe that the complexity of the full process is still
elementary, since normalizing non-ready cuts increases the size by an exponential factor.

32 Jean-Yves Girard

A.3 Questions

Semantics
What is the natural semantics for LLL ? The recent work of Kanovich, Okada
and Scedrov [8] proposes a phase semantics for LLL ; unfortunately this does
not address the question of a denotational semantics (i.e. some sort of coherent
spaces) specific of LLL which is presumably the deepest problem connected
with our new system : for the first time polynomial time appears as the result of
the free application of logical principles which are in no means contrived, hence
a denotational semantics of LLL would be a general semantics of polytime.
This might be very rewarding : remember that polytime has been characterized
in many ways, but always through presentations

�
A function is polytime iff

it can be obtained by means of. . . � , and nobody knows how to deal with a
presentation. On the other hand a semantic characterization would insist on
something like preservation properties etc. that a mathematician can more easily
reason about.

The connective
� § �

This strange connective has been introduced to compensate two things, namely
the want of dereliction, but also the failure of the principle [V] : !A⊗!B −!(A⊗B),
which is essential in the representation of data types. Surely §A⊗§B − §(A⊗B)
holds and §(A⊕B) − §A⊕ §B fails, but there are principles (typically the self-
duality of the connective) that have been added on the sole grounds of their
simplifying character. Later investigations (in particular semantical ones) could
help to clarify this question 15. In a similar way, the fact that !1 is not provable
is backed by good taste (!1 looks like the 0-ary case of [V]), but by no deep
intuition.

Completeness
In some sense LLL and ELL are complete, since the complexity bounds are
here once for all. This is even more conspicuous with their naive set-theoretic
extensions : what could be more powerful than unrestricted comprehension ? In
some sense the theorems, the algorithms coming from these systems should be
absolute. Is it possible to make sense of this informal remark ?

Execution
In our systems, the runtime is known in advance, depending only on the depth
and size. We could seek an untyped calculus, with a notion of depth, and for
each depth d a function rd(.) with the following property : after rd(](t)) steps,
then we reach either a normal form or a deadlock. There should be two solutions,
corresponding to polytime and elementarity.

15. The recent phase semantics [8] concludes to a non self-dual connective.

Light Linear Logic 33

BIBLIOGRAPHY
[1] A. Asperti. Special light linear logic. Manuscript,

http://hypatia.dcs.qmw.ac.uk/authors/A/AspertiA/SLLL.ps.gz, 1997.

[2] avec A. Scedrov et P. Scott. Bounded linear logic : a modular ap-
proach to polynomial time computability : extended abstract.
In Buss and Scott, editors, Feasible mathematics, pages 195–209, Boston,
1990. Birkhäuser.

[3] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[4] J.-Y. Girard. Proof-nets : the parallel syntax for proof-theory. In
Ursini and Agliano, editors, Logic and Algebra, New York, 1996. Marcel
Dekker.

[5] V.N. Grishin. Predicate and set-theoretic calculi based on logics
without contractions. Math. USSR Izvestiya, 18:41–59, 1982.

[6] G.G. Hillebrand, P.C. Kanellakis, and H.G. Mairson. Database query
languages embedded in the typed lambda calculus. In Proc. 8-th
Annual IEEE Symposium on Logic in Computer Science, Montreal, pages
332–343, June 1993.

[7] M. Kanovich and Y. Lafont. On Elementary Linear Logic. in prepara-
tion. 1997.

[8] M. Kanovich, M. Okada, and A. Scedrov. Phase semantics for
light linear logic. Electronic Notes in Theoretical Computer Sci-
ence, Proceedings of the Thirteenth Conference on the Mathematical
Foundations of Programming Semantics, Pittsburgh, Pennsylvania, USA,
1997:http://www1.elsevier.nl/mcs/tcs/pc/Menu.html, 1997.

[9] Y. Lafont. From proof-nets to interaction nets. In Girard, Lafont, and
Regnier, editors, Advances in Linear Logic, Cambridge, 1995. Cambridge
University Press.

[10] D. Leivant. A foundational delineation of poly-time. Information
and Computation, 110:391–420, 1994. (Special issue of selected papers
from LICS’91, edited by G. Kahn.).

[11] D. Leivant and J.-Y. Marion. Lambda calculus characterizations of
poly-time. Fundamenta Informaticae, 19:167–184, 1993. (Special Issue:
Lambda Calculus and Type Theory, edited by J. Tiuryn.).

