

CSL PARIS 2001

1-THE ROLE OF NEGATION

- ► Logic from mathematics vs. logic from computer science.
- Renegociate the Holy Trinity.

- ► Logic from mathematics vs. logic from computer science.
- Renegociate the Holy Trinity.
- Evidence : operational semantics...

- ► Logic from mathematics vs. logic from computer science.
- **Renegociate the Holy Trinity.**
- Evidence : operational semantics...
- Meaning as use : Formulas not explained by truth but by their use, i.e., their consequences.

 $\frac{\vdash \mathbf{A} \quad \mathbf{A} \vdash \mathbf{B}}{\vdash \mathbf{B}} \operatorname{Cut}$

- ► Logic from mathematics vs. logic from computer science.
- **Renegociate the Holy Trinity.**
- Evidence : operational semantics...
- Meaning as use : Formulas not explained by truth but by their use, i.e., their consequences.

 $\begin{array}{c|c} \vdash \mathbf{A} & \mathbf{A} \vdash \mathbf{B} \\ \hline & & \\ \hline & & \\ \vdash \mathbf{B} \end{array} \mathbf{Cut} \end{array}$

- ► Logic from mathematics vs. logic from computer science.
- **Renegociate the Holy Trinity.**
- Evidence : operational semantics...
- Meaning as use : Formulas not explained by truth but by their use, i.e., their consequences.

$$\frac{\vdash \mathbf{A} \quad \mathbf{A} \vdash}{\vdash} \mathbf{Cut}$$

- ► Logic from mathematics vs. logic from computer science.
- **Renegociate the Holy Trinity.**
- Evidence : operational semantics...
- Meaning as use : Formulas not explained by truth but by their use, i.e., their consequences.

$$\frac{\vdash \mathbf{A} \quad \mathbf{A} \vdash}{\vdash} \mathbf{Cut}$$

Duality proofs of A vs. proofs of $\neg A$.

- ► Logic from mathematics vs. logic from computer science.
- **Renegociate the Holy Trinity.**
- Evidence : operational semantics...
- Meaning as use : Formulas not explained by truth but by their use, i.e., their consequences.

$$\frac{\vdash \mathbf{A} \quad \mathbf{A} \vdash}{\vdash} \mathbf{Cut}$$

• Duality proofs of A vs. proofs of A^{\perp} .

- ► Logic from mathematics vs. logic from computer science.
- Renegociate the Holy Trinity.
- Evidence : operational semantics...
- Meaning as use : Formulas not explained by truth but by their use, i.e., their consequences.

 $\begin{array}{c|c}
\vdash \mathbf{A} \quad \mathbf{A} \vdash \\
\hline \\
\vdash \\ \\
\hline \\
\vdash \\ \\
\begin{array}{c}
\mathbf{Cut} \\
\mathbf{Cut} \\
\end{array}$

- Duality proofs of A vs. proofs of A^{\perp} .
- Compare with : proofs of A vs. models of $\neg A$.

2-PROOFS OF THE ABSURDITY

- ▶ Hilbert : no such proof ~→ consistency.
- A provable iff $\neg A$ not provable ?

Non monotonic logics nonsense.

Closed world assumption nonsense.

- Stumbles on halting problem.
- The non-proof : faith Ω

2

CSL PARIS 2001

2-PROOFS OF THE ABSURDITY

- ▶ Hilbert : no such proof ~→ consistency.
- A provable iff $\neg A$ not provable ?

Non monotonic logics nonsense.

Closed world assumption nonsense.

- Stumbles on halting problem.
- **The non-proof** : faith Ω

X

► The complement of a « closed » artifact is not closed.

- **Loci** : finite sequence of biases, e.g., $\langle 1, 0, 4 \rangle$.
- Correspond to locations of subformulas, i.e. to the future.
- Andreoli : focusing, distinguishes between two polarities.

- **Loci** : finite sequence of biases, e.g., $\langle 1, 0, 4 \rangle$.
- Correspond to locations of subformulas, i.e. to the future.
- Andreoli : focusing, distinguishes between two polarities.

Negative invertible, $\&, ??, \forall$.

- **Loci** : finite sequence of biases, e.g., $\langle 1, 0, 4 \rangle$.
- Correspond to locations of subformulas, i.e. to the future.
- Andreoli : focusing, distinguishes between two polarities.

Negative invertible, $\&, \Im, \forall$.

Positive synchronous, \oplus , \otimes , \exists .

- **Loci** : finite sequence of biases, e.g., $\langle 1, 0, 4 \rangle$.
- Correspond to locations of subformulas, i.e. to the future.
- Andreoli : focusing, distinguishes between two polarities.

Negative invertible, $\&, ?, \forall$.

Positive synchronous, \oplus , \otimes , \exists .

Logical time as alternation positive/negative.

5-DESIGNS (CONT^d)

- ▶ Positive rule : a Plus of Tensors $A = \bigoplus_{I \in \mathcal{N}} \bigotimes_{i \in I} A_{Ii}$.
- Active (positive) step : choose a finite set of biases $I \in \mathcal{N}$, and disintegrate locus ξ of A into $\xi * i_1, \ldots, \xi * i_k$.

5-DESIGNS (CONT d)

- ▶ Positive rule : a Plus of Tensors $A = \bigoplus_{I \in \mathcal{N}} \bigotimes_{i \in I} A_{Ii}$.
- Active (positive) step : choose a finite set of biases I ∈ N, and disintegrate locus ξ of A into ξ * i₁,..., ξ * i_k.
- **Type-free version** : same, but do not mention \mathcal{N} .
- ▶ Positive rule : a Plus of Tensors $A = \bigoplus_{I \in \mathcal{N}} \bigotimes_{i \in I} A_{Ii}$.
- Active (positive) step : choose a finite set of biases I ∈ N, and disintegrate locus ξ of A into ξ * i₁,..., ξ * i_k.
- **Type-free version** : same, but do not mention \mathcal{N} .
- ► Three possibilities : $\Omega \preceq (+1, \xi, I) \preceq H$.

- ▶ Positive rule : a Plus of Tensors $A = \bigoplus_{I \in \mathcal{N}} \bigotimes_{i \in I} A_{Ii}$.
- Active (positive) step : choose a finite set of biases I ∈ N, and disintegrate locus ξ of A into ξ * i₁,..., ξ * i_k.
- **Type-free version** : same, but do not mention \mathcal{N} .
- ► Three possibilities : $\Omega \preceq (+1, \xi, I) \preceq H$.
- ▶ Negative rule : a With of Pars $A = \&_{I \in \mathcal{N}} \ \Re_{i \in I} \ A_{Ii}$.

- ▶ Positive rule : a Plus of Tensors $A = \bigoplus_{I \in \mathcal{N}} \bigotimes_{i \in I} A_{Ii}$.
- Active (positive) step : choose a finite set of biases I ∈ N, and disintegrate locus ξ of A into ξ * i₁,..., ξ * i_k.
- **Type-free version** : same, but do not mention \mathcal{N} .
- ► Three possibilities : $\Omega \preceq (+1, \xi, I) \preceq \clubsuit$.
- ▶ Negative rule : a With of Pars $A = \&_{I \in \mathcal{N}} \ \Re_{i \in I} \ A_{Ii}$.
- ▶ Passive (negative) step : one premise for each $I \in \mathcal{N}$, $(-1, \xi, \mathcal{N})$.

- ▶ Positive rule : a Plus of Tensors $A = \bigoplus_{I \in \mathcal{N}} \bigotimes_{i \in I} A_{Ii}$.
- Active (positive) step : choose a finite set of biases I ∈ N, and disintegrate locus ξ of A into ξ * i₁,..., ξ * i_k.
- **Type-free version** : same, but do not mention \mathcal{N} .
- ► Three possibilities : $\Omega \preceq (+1, \xi, I) \preceq H$.
- ▶ Negative rule : a With of Pars $A = \&_{I \in \mathcal{N}} \ \Re_{i \in I} \ A_{Ii}$.
- ▶ Passive (negative) step : one premise for each $I \in \mathcal{N}$, $(-1, \xi, \mathcal{N})$.
- **Type-free version :** no control on \mathcal{N} .

Designs as sequent calculus on locations. Sequents are pitchforks, made of disjoint loci.

Designs as sequent calculus on locations. Sequents are pitchforks, made of disjoint loci.

Negative $\xi \vdash \Upsilon$. Waits for information through the handle ξ .

Designs as sequent calculus on locations. Sequents are pitchforks, made of disjoint loci.

Negative $\xi \vdash \Upsilon$. Waits for information through the handle ξ .

Positive $\vdash \Upsilon$. No handle, should yield information, i.e., first positive rule.

Designs as sequent calculus on locations. Sequents are pitchforks, made of disjoint loci.

Negative $\xi \vdash \Upsilon$. Waits for information through the handle ξ .

Positive $\vdash \Upsilon$. Only tines, should yield information, i.e., first positive rule.

Cut-net : coincidence handle/tine between two designs.

Designs as sequent calculus on locations. Sequents are pitchforks, made of disjoint loci.

Negative $\xi \vdash \Upsilon$. Waits for information through the handle ξ .

Positive $\vdash \Upsilon$. Only tines, should yield information, i.e., first positive rule.

- Cut-net : coincidence handle/tine between two designs.
- Deterministic streamlike normalisation.

Designs as sequent calculus on locations. Sequents are pitchforks, made of disjoint loci.

Negative $\xi \vdash \Upsilon$. Waits for information through the handle ξ .

Positive $\vdash \Upsilon$. Only tines, should yield information, i.e., first positive rule.

- Cut-net : coincidence handle/tine between two designs.
- Deterministic streamlike normalisation.

Separation Böhm's theorem.

Designs as sequent calculus on locations. Sequents are pitchforks, made of disjoint loci.

Negative $\xi \vdash \Upsilon$. Waits for information through the handle ξ .

Positive $\vdash \Upsilon$. Only tines, should yield information, i.e., first positive rule.

- Cut-net : coincidence handle/tine between two designs.
- Deterministic streamlike normalisation.

Separation Böhm's theorem.

Associativity Church-Rosser property.

Designs as sequent calculus on locations. Sequents are pitchforks, made of disjoint loci.

Negative $\xi \vdash \Upsilon$. Waits for information through the handle ξ .

Positive $\vdash \Upsilon$. Only tines, should yield information, i.e., first positive rule.

- Cut-net : coincidence handle/tine between two designs.
- Deterministic streamlike normalisation.

Separation Böhm's theorem.

Associativity Church-Rosser property.

Stability commutation to reasonable intersections.

1-THE ROLE OF NEGATION

- ► Logic from mathematics vs. logic from computer science.
- Renegociate the Holy Trinity.
- Evidence : operational semantics...
- Meaning as use : Formulas not explained by truth but by their use, i.e., their consequences.

 $\begin{array}{c|c}
\vdash \mathbf{A} \quad \mathbf{A} \vdash \\
\hline \\
\vdash \\ \\
\hline \\
\vdash \\ \\
\begin{array}{c}
\mathbf{Cut} \\
\mathbf{Cut} \\
\end{array}$

- Duality proofs of A vs. proofs of A^{\perp} .
- Compare with : proofs of A vs. models of $\neg A$.

- Set of designs of a given base equal to its biorthogonal.
- ▶ If $\mathfrak{D}, \mathfrak{E}$ of bases $\vdash \xi$ and $\xi \vdash$, then the net $\{\mathfrak{D}, \mathfrak{E}\}$ converges or diverges, depending on its normal form \mathfrak{A}, Ω .

- ▶ Set of designs of a given base equal to its biorthogonal.
- ▶ If $\mathfrak{D}, \mathfrak{E}$ of bases $\vdash \xi$ and $\xi \vdash$, then the net $\{\mathfrak{D}, \mathfrak{E}\}$ converges or diverges, depending on its normal form \mathfrak{A}, Ω .
- Notion of a game by consensus. The dispute between {D, &} eventually ends.

- ▶ Set of designs of a given base equal to its biorthogonal.
- ▶ If $\mathfrak{D}, \mathfrak{E}$ of bases $\vdash \xi$ and $\xi \vdash$, then the net $\{\mathfrak{D}, \mathfrak{E}\}$ converges or diverges, depending on its normal form \mathfrak{A}, Ω .
- Notion of a game by consensus. The dispute between {D, &} eventually ends.
- **•** Role of the dogs. Negative design $\mathfrak{Dir}_{\mathcal{N}}$

- Set of designs of a given base equal to its biorthogonal.
- ▶ If $\mathfrak{D}, \mathfrak{E}$ of bases $\vdash \xi$ and $\xi \vdash$, then the net $\{\mathfrak{D}, \mathfrak{E}\}$ converges or diverges, depending on its normal form \maltese, Ω .
- Notion of a game by consensus. The dispute between {D, &} eventually ends.
- **•** Role of the dogs. Negative design $\mathfrak{E} = \mathfrak{Dir}_{\mathcal{N}}$

- Set of designs of a given base equal to its biorthogonal.
- ▶ If $\mathfrak{D}, \mathfrak{E}$ of bases $\vdash \xi$ and $\xi \vdash$, then the net $\{\mathfrak{D}, \mathfrak{E}\}$ converges or diverges, depending on its normal form \mathfrak{A}, Ω .
- Notion of a game by consensus. The dispute between {D, E} eventually ends.
- **•** Role of the dogs. Negative design $\mathfrak{E} = \mathfrak{Dir}_{\mathcal{N}}$

$$\frac{\overbrace{\vdash \boldsymbol{\xi} * I}}{\boldsymbol{\xi} \vdash} \dots \qquad (\boldsymbol{\xi}, \mathcal{N})$$

▶ $\mathfrak{D} \perp \mathfrak{E}$ iff $\mathfrak{D} = \mathfrak{H}$ or \mathfrak{D} starts with $(+1, \xi, \mathbf{I})$, $I \in \mathcal{N}$.

- ▶ Set of designs of a given base equal to its biorthogonal.
- ▶ If $\mathfrak{D}, \mathfrak{E}$ of bases $\vdash \xi$ and $\xi \vdash$, then the net $\{\mathfrak{D}, \mathfrak{E}\}$ converges or diverges, depending on its normal form \mathfrak{A}, Ω .
- Notion of a game by consensus. The dispute between {D, &} eventually ends.
- ▶ Role of the dogs. Negative design $\mathfrak{E} = \mathfrak{S}\mathfrak{k}\mathfrak{u}\mathfrak{n}\mathfrak{k}$

- Set of designs of a given base equal to its biorthogonal.
- ▶ If $\mathfrak{D}, \mathfrak{E}$ of bases $\vdash \xi$ and $\xi \vdash$, then the net $\{\mathfrak{D}, \mathfrak{E}\}$ converges or diverges, depending on its normal form \maltese, Ω .
- Notion of a game by consensus. The dispute between {D, &} eventually ends.
- **Fole of the dogs. Negative design** $\mathfrak{E} = \mathfrak{Stunt}$

 $\frac{1}{\boldsymbol{\xi} \vdash} (\boldsymbol{\xi}, \boldsymbol{\emptyset})$

- ▶ Set of designs of a given base equal to its biorthogonal.
- ▶ If $\mathfrak{D}, \mathfrak{E}$ of bases $\vdash \xi$ and $\xi \vdash$, then the net $\{\mathfrak{D}, \mathfrak{E}\}$ converges or diverges, depending on its normal form \maltese, Ω .
- Notion of a game by consensus. The dispute between {D, &} eventually ends.
- ▶ Role of the dogs. Negative design $\mathfrak{E} = \mathfrak{S}\mathfrak{k}\mathfrak{u}\mathfrak{n}\mathfrak{k}$

 $\frac{1}{\xi \vdash} (\xi, \emptyset)$

•
$$\mathfrak{D} \perp \mathfrak{E}$$
 iff $\mathfrak{D} = \mathfrak{H}$.

- ▶ No way to force a design to be small. If $\mathfrak{D} \in G$ and $\mathfrak{D} \subset \mathfrak{E}$ then $\mathfrak{E} \in G$.
- ▶ Incarnation $|\mathfrak{D}|_{G}$: smallest $\mathfrak{D}' \subset \mathfrak{D}$ still in G.
- Subtyping as plain inclusion of behaviours. Incarnation contravariant : if $G \subset H$, then $|\mathfrak{D}|_H \subset |\mathfrak{D}|_G$.

- ▶ No way to force a design to be small. If $\mathfrak{D} \in G$ and $\mathfrak{D} \subset \mathfrak{E}$ then $\mathfrak{E} \in G$.
- ▶ Incarnation $|\mathfrak{D}|_{G}$: smallest $\mathfrak{D}' \subset \mathfrak{D}$ still in G.
- Subtyping as plain inclusion of behaviours. Incarnation contravariant : if $G \subset H$, then $|\mathfrak{D}|_H \subset |\mathfrak{D}|_G$.
- ▶ Intersection types : $|\mathfrak{D}|_{G\cap H} = |\mathfrak{D}|_G \cup |\mathfrak{D}|_H$.

- ▶ No way to force a design to be small. If $\mathfrak{D} \in G$ and $\mathfrak{D} \subset \mathfrak{E}$ then $\mathfrak{E} \in G$.
- ▶ Incarnation $|\mathfrak{D}|_{G}$: smallest $\mathfrak{D}' \subset \mathfrak{D}$ still in G.
- Subtyping as plain inclusion of behaviours. Incarnation contravariant : if $G \subset H$, then $|\mathfrak{D}|_H \subset |\mathfrak{D}|_G$.
- ▶ Intersection types : $|\mathfrak{D}|_{G\cap H} = |\mathfrak{D}|_G \cup |\mathfrak{D}|_H$.
- Under reasonable locative hypotheses, the union is disjoint.

 $|\mathbf{G} \And \mathbf{H}| := |\mathbf{G} \cap \mathbf{H}| = |\mathbf{G}| \times |\mathbf{H}|$

- ▶ No way to force a design to be small. If $\mathfrak{D} \in G$ and $\mathfrak{D} \subset \mathfrak{E}$ then $\mathfrak{E} \in G$.
- ▶ Incarnation $|\mathfrak{D}|_{G}$: smallest $\mathfrak{D}' \subset \mathfrak{D}$ still in G.
- Subtyping as plain inclusion of behaviours. Incarnation contravariant : if $G \subset H$, then $|\mathfrak{D}|_H \subset |\mathfrak{D}|_G$.
- ▶ Intersection types : $|\mathfrak{D}|_{G\cap H} = |\mathfrak{D}|_G \cup |\mathfrak{D}|_{H}$.
- Under reasonable locative hypotheses, the union is disjoint.

 $|\mathbf{G} \And \mathbf{H}| := |\mathbf{G} \cap \mathbf{H}| = |\mathbf{G}| \times |\mathbf{H}|$

Connection to records...

Syntax mimicked by an ethics E, i.e. an arbitrary set of designs of a given base.

- Syntax mimicked by an ethics E, i.e. an arbitrary set of designs of a given base.
- **Semantics mimicked by** E^{\perp} .

- Syntax mimicked by an ethics E, i.e. an arbitrary set of designs of a given base.
- **Semantics mimicked by** E^{\perp} .
- $E^{\perp\perp}$ corresponds to what is validated by semantics. Completeness of E is therefore $E^{\perp\perp} = E$, up to incarnation.

- Syntax mimicked by an ethics E, i.e. an arbitrary set of designs of a given base.
- **Semantics mimicked by** E^{\perp} .
- $E^{\perp\perp}$ corresponds to what is validated by semantics. Completeness of E is therefore $E^{\perp\perp} = E$, up to incarnation.
- Essential in proving external (full) completeness.

- Syntax mimicked by an ethics E, i.e. an arbitrary set of designs of a given base.
- **Semantics mimicked by** E^{\perp} .
- $E^{\perp\perp}$ corresponds to what is validated by semantics. Completeness of E is therefore $E^{\perp\perp} = E$, up to incarnation.
- Essential in proving external (full) completeness.
- ▶ Internal completeness of disjunction : if $G \cap H = \in \emptyset$ then $G \oplus H := (G \cup H)^{\perp \perp} = G \cup H$.

- Syntax mimicked by an ethics E, i.e. an arbitrary set of designs of a given base.
- **Semantics mimicked by** E^{\perp} .
- $E^{\perp\perp}$ corresponds to what is validated by semantics. Completeness of E is therefore $E^{\perp\perp} = E$, up to incarnation.
- Essential in proving external (full) completeness.
- ▶ Internal completeness of disjunction : if $G \cap H = \in \emptyset$ then $G \oplus H := (G \cup H)^{\perp \perp} = G \cup H.$
- ► A.k.a. disjunction property.

CSL PARIS 2001

10-GREAT EXPECTATIONS

- ▶ Define locative type theories.
- ▶ New types, e.g., projections.

- ▶ Define locative type theories.
- ▶ New types, e.g., projections.
- ▶ Prenex forms. $\exists X \forall Y AX \Rightarrow AY$. $\forall X(AX \lor BX) \Rightarrow \forall XAX \lor \forall XBX$.

- ▶ Define locative type theories.
- ▶ New types, e.g., projections.
- ▶ Prenex forms. $\exists X \forall Y AX \Rightarrow AY$. $\forall X(AX \lor BX) \Rightarrow \forall XAX \lor \forall XBX$.
- Extend to exponentials.

CSL PARIS 2001

- Define locative type theories.
- ▶ New types, e.g., projections.
- ▶ Prenex forms. $\exists X \forall Y AX \Rightarrow AY$. $\forall X(AX \lor BX) \Rightarrow \forall XAX \lor \forall XBX$.
- Extend to exponentials.
- Low complexity integers ?

CSL PARIS 2001

- ▶ Define locative type theories.
- ▶ New types, e.g., projections.
- ▶ Prenex forms. $\exists X \forall Y AX \Rightarrow AY$. $\forall X(AX \lor BX) \Rightarrow \forall XAX \lor \forall XBX$.
- Extend to exponentials.
- Low complexity integers ?
- Can we get rid of the ambiant classical logic ?