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Abstract

We present a denotational semantics based on Banach spaces ; it is inspired
from the familiar coherent semantics of linear logic, the role of coherence being
played by the norm : coherence is rendered by a supremum, whereas incoherence
is rendered by a sum, and cliques are rendered by vectors of norm at most 1. The
basic constructs of linear (and therefore intuitionistic) logic are implemented in
this framework : positive connectives yield `1-like norms and negative connectives
yield `∞-like norms. The problem of non-reflexivity of Banach spaces is handled
by

�
specifying the dual in advance � , whereas the exponential connectives (i.e.

intuitionistic implication) are handled by means of analytical functions on the
open unit ball. The fact that this ball is open (and not closed) explains the
absence of a simple solution to the question of a topological cartesian closed
category : our analytical maps send an open ball into a closed one and therefore
do not compose. However a slight modification of the logical system allowing
to multiply a function by a scalar of modulus < 1 is enough to cope with this
problem. The logical status of the new system should be clarified.

1 Introduction
We shall not discuss the general issue of topology and logic (e.g. logical approach
to topology as in -say- formal topologies), but the restricted question of adding
topological features to logic.
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1.1 Topology in logic

1.1.1 Scott domains
Logic is by nature discrete ; in many situations we would like to connect its rules
with analysis, i.e. with real or complex numbers. Näıve attempts at introducing
some

�
fuzziness � in logic eventually ended in fuzzy. . . methodology and no-

torious parascience. The most important attempt at reconciling continuity and
logic amounts to the works of Dana Scott (and independently Ershov), around
1970, see e.g. [10]. The problem at stake was to give a concrete model of the
Heyting-Kolmogoroff paradigm of

�
proofs as functions � , in which each logical

formula is interpreted by a set, and logical implication A ⇒ B is the set of
functions from A to B. The set-theoretic interpretation is too brutal in view
of the constructive character of this

�
semantics of proofs � : the proposal was

therefore to replace sets with topological spaces and therefore functions with
continuous ones. This was not an easy endeavor, since the function space has
to be given in turn a topology. . . and two major possibilities appear, namely
pointwise and uniform convergence. For instance take A = B = [0, 1] : the
continuous interpretation of A,A ⇒ B − B, i.e. of the functional x, f ; f(x)
requires uniform convergence ; but the interpretation of A − (A ⇒ B) ⇒ B,
i.e. of the functional x ; evx, where evx is the evaluation evx(f) = f(x) is
discontinuous if we equip (A ⇒ B) ⇒ B with uniform convergence. The solu-
tion found by Scott was to avoid the dichotomy

�
pointwise vs. uniform � by

means of a restriction to certain non-uniformizable spaces. The problem is that
these spaces are far astray from standard topology 1 (e.g. R, C) ; indeed they
are not even Hausdorff. By the way Scott domains can be described in terms of
algebraic c.p.o. (complete partial orders) and continuous monotone maps, and
it seems that this alternative presentation corresponds to the true spirit of the
construction. Anyway, in spite of its limited topological aspects, Scott and Er-
shov initiated denotational semantics, which is the model-theory of proofs, and
more recently of computations.

1.1.2 Compactly generated spaces
The problem solved by Scott was the construction of a closed cartesian category
made of topological spaces, a problem independently addressed by category-
theorists, namely the construction of a cartesian closed category : in such a
category, one can construct products and function spaces so as to get a canonical
isomorphism Mor(X × Y , Z) 'Mor(X,ZY ). There is indeed another topology
on the function space, the compact-open topology, which works for a special kind
of Hausdorff spaces, namely compactly generated spaces invented by Kelley in
1955 ; unfortunately these spaces are not naturally closed under products and
function spaces, and the product and compact-open topologies must be modified
(
�

Kelleyfied � , see [9]) in order to get the right objects. The weak point of this
approach is that the categorical product is not the topological product ; this
is perhaps why the only living tradition of continuous semantics is the one of

1. In Scott domains separate continuity implies continuity, which sounds rather strange from
the topological standpoint.
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Scott-Ershov.

1.1.3 Quantitative and qualitative domains
My first work in denotational semantics [5] (1984) was based on the a priori that
Scott semantics had nothing or little to do with topology. The idea was to revisit
the order-theoretic approach in the light of category-theory : if an order relation
is seen as a (degenerated) category, then a monotone map is a functor and
continuity is preservation of direct limits ; furthermore this viewpoint suggests
additional preservations, with no

�
topological � counterparts, such as pull-backs

or kernels. The result of these investigations was a pair of semantics :

I Quantitative semantics was based on the idea of counting basic data with
multiplicities, i.e. to work with multisets of basic tokens ; functions were
indeed definable by means of formal power series, with —in the good cases—
integer coefficients ; no real topology was involved, since in

�
bad � cases

these coefficients could become infinite. . .

I Qualitative semantics was a simplification of quantitative semantics, neglect-
ing multiplicities, but replacing it with a notion of compatibility between
tokens ; however something of the multiplicities was still present, in terms of
stability : a∪b @ X ⇒ F (a∩b) = F (a)∩F (b), which is a pull-back condition.

Quantitative semantics had a very marginal publicity, but was responsible for
the discovery of linearity (i.e. the case when the power series is of degree 1).
Linearity was eventually developed in the the framework of coherent spaces, a
simplification of qualitative domains, with binary compatibility .

1.1.4 Coherent spaces
A coherent space (see e.g. [7]) is a graph X (i.e. a set and a coherence relation),
and we are interested in the cliques a @ X ofX , i.e. in sets of pairwise compatible
points of our graph. A linear map from X to Y is just a map from cliques to
cliques which preserves arbitrary sums of cliques : by sum I mean a union of
disjoint cliques, provided it is still a clique. We see that this definition (which
is the ultimate simplification of Scott’s definition) has very little topology in it
(infinite unions), and is slightly more algebraic, although the impossibility of
forming something like −a (the opposite of a clique a) is a severe limitation.
Nevertheless, linear logic was built around this basic semantics, with three layers
of connectives, multiplicatives (tensor product and cotensor product), additives
(direct sum and product) and exponentials (comonoid and co-comonoid), with
the same brute expressive power as the usual (intuitionistic) logic modelized by
Scott, but more subtlety, in particular the presence of an involutive negation
X⊥, which is basically the complementary graph.

1.1.5 Vector spaces
Linear negation is clearly analogous to the formation of the dual space in algebra.
Indeed if we leave aside the exponential connectives, the rules of linear logic can
be modelized in finite dimensional vector spaces. . . maybe too easily, since the
tensor and the cotensor are identified, and sum and product as well. In infinite
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dimension the two multiplicatives are distinct, but the spaces are no longer equal
to their second dual ; this is why Blute and Philip Scott in their paper [2] used
an old trick of Lefschetz to cope with infinite dimension, namely to introduce
a topology to cut the size of the dual, so as to preserve involutivity. Again
this topological trick belongs more to the spirit of algebra than to the spirit of
topology.
The paper [2] basically deals with multiplicatives ; in order to separate the two
additives the authors realized (work in progress, see the forthcoming [3]) that
normed spaces can do it, e.g. using the distinction `∞/`1, which is consistent
with the very contents of our paper.

1.2 Coherent Banach Spaces

1.2.1 About the norm
The idea is to give a continuous version of coherent spaces ; the experience
of linear logic tells us that we must seek a vector space. A topological space
must therefore be considered, and among such spaces, Banach Spaces are the
most natural ones. More precisely normed space are the simplest examples of
topological vector spaces ; the completeness of the space is clearly needed in
order to mimic infinite sums of cliques. . . finally these spaces will turn out to be
complex ones, in order to apply the machinery of complex analysis. The norm
defines a topology, but it makes sense in itself : in finite dimension all norms
are equivalent, but we must distinguish between two spaces of the same finite
dimension. OK, but then what is the actual meaning of the norm ? In coherent
spaces we had points and sets, some of these sets being cliques ; here we have only
vectors. Our claim is that the norm serves to distinguish between

�
cliques �

and
�

non-cliques � . Concretely the statement ‖x‖ 6 1 is the analogue of
�
a

is a clique � . The idea works wonderfully : in coherent spaces the two additive
connectives differ because a clique in X & Y is the disjoint sum of a clique in
X and a clique in Y , whereas a clique in X ⊕ Y is either a clique in X or a
clique in Y . Here we can equip the direct sum of Banach spaces E,F with
two norms, the supremum (`∞-norm), and the sum (`1-norm) : in the first case
e ⊕ f will receive the norm sup(‖e‖, ‖f‖), and a direct sum of

�
cliques � will

remain a
�

clique � , whereas in the second case, the norm ‖e‖+ ‖f‖ induces an
incompatibility between

�
cliques � , which might go as far as mutual exclusion,

e.g. if ‖e‖ = 1, with the additional possibility to pass continuously from one
side to another.

1.2.2 About negation
Linear negation is involutive, whereas Banach spaces are in general not reflexive.
For instance c′0 = `1, `1

′
= `∞, `∞′ ) `1 etc. shows that not only a space may

be distinct from a second dual, but that a dual can be distinct from a third
dual. Of course certain very good spaces are reflexive, typically the Hilbert
space `2 ; but `∞/`1-norms fit so well the additive case. . . that we must quit the
Hilbertian paradise. There is a solution, namely to give the dual in advance 2.

2. A tradition amounting to Mackey, Barr, Chu. . . see for instance [1].
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This means that we are given a pair of spaces E,E⊥, each of them being a
subspace of the dual of the other. This can be said in a more abstract way,
by introducing a bilinear form between the two spaces and requiring a certain
adequation between the norms and the bilinear form. The resulting objects are
called Coherent Banach Spaces, or CBS.

1.2.3 About Multiplicatives
The first thing is to get a decent tensor and a decent cotensor. Modulo dual-
ization, this can be extracted from an appropriate notion of morphism between
CBS E and F : a morphism will be a bounded linear map ϕ from E to F ,
which induces (as usual) an adjoint map ϕ′ from F ′ to E′ ; now remember that
E⊥ ⊂ E′, F⊥ ⊂ F ′ : we require that ϕ′ actually maps F⊥ into E⊥. In order to
state the properties of the tensor product a (straightforward) multilinear variant
of the same notion has to be introduced. Observe that the norm of the cotensor
is of the style `∞ (a supremum), whereas the norm of the tensor is of style `1.
In general the positive operations (⊗,⊕, !) involve `1-norms, whereas negative
ones (

&

,&, ?) involve `∞-norms.

1.2.4 Exponentials
Much more delicate is the case of exponentials. These connectives arise from
the need to cope with the want of linearity, in analogy to the symmetric tensor
algebra. The experience on quantitative semantics suggests to take analytical
functions defined by power series ; the coefficients lay in some symmetrical coten-
sor power of the space. Typically the space ?E⊥ consists of functions ϕ defined
on E by means of power series ϕ(e) =

∑
ϕn(⊗ne). The only delicate question

is the choice of the domain D of definition of ϕ. Here we have to remember the
essential isomorphism that exponentials must satisfy, namely !(E&F ) '!E⊗!F ,
i.e. that ! transforms the additive conjunction into the multiplicative conjunc-
tion, and which is nothing but a simplified form of the basic isomorphism of
cartesian closed categories Mor(X × Y , Z) ' Mor(X,ZY ). In terms of func-
tions, this means that an analytical function defined on E &F can be identified
with an analytical function sending an element of E to an analytical function
defined on F . . . & involves a `∞-norm, hence the only possible norm for an-
alytical functions is also a `∞-norm (our isomorphism must be isometric), i.e.
‖ϕ‖ = sup{|ϕ(e)| ; e ∈ D}, and by Liouville’s theorem, this supremum is likely
to be infinite if D = E. From this it follows that D is a ball, and only the unit
ball makes sense. Now it remains to check whether or not this ball is open or
closed : but requiring that our function extends continuously to the closed ball
is unmanageable, see below. Our functions are therefore defined on open unit
balls. The usual machinery of analytical functions, Cauchy integral, geometric
series,. . . works as expected : this is why our spaces are complex.
!E is generated by the evaluations !e defined by 〈!e, ϕ〉 = ϕ(e) for ‖e‖ < 1 (and
for instance contains the Cauchy integrals, which are limits of barycenters of
evaluations) ; but when ‖en‖, ‖fn‖ tends to 1, with en 6= fn, the norm of !e−!f
tends to 2 . This shows that there is a problem at the border : if we try to work
with the closed ball, then the points !e would be at pairwise distance 2 when
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‖e‖ = 1, contradicting the expected continuity of the map x ;!x. By the way
we are doing nothing but rediscovering the impossibility of handling evaluation
on the basis of uniform continuity.
A way to synthesize the properties of our exponentials would be to estab-
lish a universal property. We indeed propose two solutions (comonoid, strong
comonoid) but there is always a small mismatch, which by the way corresponds
to the problem we met at the border of the ball. The category-theoretic status
of exponentials is still in want of a clarification.

1.2.5 Coefficients
There is therefore a problem with the interpretation, which is perhaps also its
main quality : the basic logical constructions have norm 1, hence our basic ana-
lytical functions will have norm 1 too, which means that they send an open ball
into a closed ball. . . and therefore composition of analytical maps is impossible !
We spent a long time on this problem, to finally reach the following conclusion :
let us allow in proofs the plugging of complex parameters of modulus < 1 ; then
when an object should be in the open ball, simply slightly shrink it by multi-
plication with an adequate scalar. This induces a modification of the rules of
existing logical systems, but all essential properties are preserved ; this is the
weighted calculus that we present here 3.

1.3 Open questions

1.3.1 Extension to second order
A first question is to determine to which extent our spaces remain

�
small � ,

let us say of the power of the continuum ; remember that Scott semantics, co-
herent spaces etc. remain small enough ; typically all useful coherent spaces are
denumerable, hence have a continuum of cliques. The answer could be in the
building of a separable predual for each of our spaces, but this is not obvious. A
neighboring problem is that of the extension to second-order, i.e. parametricity.
In coherent spaces, every space can be approximated by finite ones, and para-
metricity could be defined via a commutation to these approximations. Here we
meet the problem that our constructions do not obviously commute with ap-
proximations (which is connected to smallness) and the fact that Banach spaces
cannot be approximated by finite dimensional ones.

1.3.2 Proof-nets
If coefficients and the corresponding rules actually make sense, then it will be
necessary to develop a clean syntax. So what about proof-nets in this enlarged
context ?

1.3.3 So what ?
As far as continuous semantics is concerned, it is obvious that our solution is
clean and satisfactory, even if we are still in want of an extension to second-order.

3. Rather a first draft : many variants of the same calculus are possible.
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But we are not producing semantics for
�

l’Art pour l’Art � , and there should
be a feedback. I can foresee certain applications :

I The existence of a continuous semantics should be exploited to prove technical
results about usual (finite) syntax.

I The complex parameters that occur in the rule
�

scalar � are surely not
mere technicalities ; what do they mean, how can they be used ? Can we
connect this with some probabilistic intuitions concerning non-determinism ?
This has to be related with completeness issues, i.e. to which extent can
we formulate a denotational completeness theorem w.r.t. our semantics :
our recent paper [8] presents a general framework which yields completeness
(i.e. the statement that only logical operations can be implemented, which
requires some restriction on the shape of implementations), essentially by
replacing spaces by

�
free modules over a comonoid � , and this should adapt,

mutatis mutandis to our new framework. . . but keep in mind that what is
important in a completeness theorem is that the restrictions on the shape of
implementations should be non-contrived.

I One of the immediate outputs of coherent spaces was to individuate new
connectives ; something similar happens here, typically at the additive level,
where `p/`q can be used instead of `∞/`1. This induces new

�
connectives � ,

which are not linked to any existing logical practice —unlike the linear con-
nectives which legalized underground operations—. The question of giving a
sense to these connectives might be of great interest. However our attempts
at giving a sequent calculus for these connectives (e.g. the self-dual connec-
tive corresponding to `2) are not convincing enough : not enough

�
nice �

properties are preserved. Of course they might satisfy alternative properties,
but not enough practice has been accumulated to find which ones should be
considered. . . anyway these

�
connectives � are tantalizing.

1.4 Acknowledgements

The paper uses Paul Taylor’s proof-trees and commutative diagrams, pt@doc.ic.ac.uk.
The genesis of this work owes much to stimulating discussions with Bernard Host
(on Banach spaces) and Thomas Ehrhard (on denotational semantics, who also
checked in details the first draft of this paper). It was first presented at the
Linear Logic Meeting held in Keio University in April 1996.

2 Multiplicative and Additive constructions

2.1 Coherent Banach Spaces

Definition 1
A Coherent Banach Space (CBS) consists of the following data :
i) complex Banach spaces E,E⊥
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ii) a bilinear form 〈., .〉 from E,E⊥ to C enjoying

∀x ∈ E ‖x‖ = sup {|〈x, y〉|; y ∈ E⊥, ‖y‖ 6 1} (1)

∀y ∈ E⊥ ‖y‖ = sup {|〈x, y〉|;x ∈ E, ‖x‖ 6 1} (2)

In other terms, each of the two spaces E,E⊥ can be identified with a subspace
of the dual of the other :

E ↪→ E⊥′ E⊥ ↪→ E′

The typical example of a CBS is (E,E′, 〈., .〉) with 〈e, e′〉 = e′(e) ; condition
(CBS2) is nothing but the definition of the norm of E′ whereas (CBS1) follows
from the Hahn-Banach theorem. A typical abuse of notation will be to refer to
a CBS by naming it E, thus considering that E⊥ and 〈., .〉 are clear from the
context. In fact the basic example that we can keep in mind is that of the pair
(linfty, `1, 〈., .〉), which is the analogue of the flat coherent space : i _̂ j for
i, j ∈ N.

Definition 2
The linear negation of (E,E⊥, 〈., .〉) is defined as (E⊥, E, 〈̃., .〉), with

〈̃e′, e〉 = 〈e, e′〉.

Linear negation is clearly involutive.

2.2 CBS as a multicategory

Definition 3
A coherent multilinear form µ on E1, . . . , En is a bounded multilinear form
on E1, . . . , En such that, for i = 1, . . . , n :

∀e1 ∈ E1 . . . ̂∀ei ∈ Ei . . . ∀en ∈ En ∃e′i ∈ Ei
⊥∀ei ∈ Ei µ(e1, . . . , en) = 〈ei, e

′
i〉

As usual ̂∀ei ∈ Ei stands for a missing item.

In other terms for i 6 n we require that the canonical map µi from
E1 × . . .× Êi × . . .× En into E′

i induced by µ is actually into Ei
⊥.

Definition 4
A coherent n-morphism ϕ ∈ Homn(E1, . . . , En;F ) is a multilinear map
such that µ(e1, . . . , en, f

′) = 〈ϕ(e1, . . . , en), f ′〉 defines a coherent form on
E1, . . . , En, F

⊥.

A coherent n-morphism is therefore nothing but one of the n+1 maps µi associ-
ated with a coherent n+1-morphism. A coherent n-morphism can be attributed
the norm ‖ϕ‖ = sup{|ϕ(e1, . . . , en)|; ‖e1‖, . . . , ‖en‖ 6 1}, which is the same (if
ϕ = µn+1) as ‖µ‖ = sup{|µ(e1, . . . , en, f

′)|; ‖e1‖, . . . , ‖en‖, ‖f
′‖ 6 1}.

Particular cases :
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I If n = 0, a 0-morphism ϕ ∈ Hom0(;F ) is nothing but a point of F .

I The crucial case is n = 1 ; a 1-morphism (simply : morphism) from E to F
(notation : ϕ ∈Mor(E,F )) is a bounded linear map from E into F such that
there is a map ϕ⊥ from F⊥ into E⊥ such that

∀e ∈ E ∀f ′ ∈ F⊥ 〈ϕ(e), f ′〉 = 〈e, ϕ⊥(e′)〉

Coherent n-morphisms can be composed in an obvious way :
if ϕ ∈ Homn(E1, . . . , En;Fm+1) and ψ ∈ Homm+1(F1, . . . , Fm+1;G) then one
can define a n + m-morphism ι = ψϕ ∈ Homn+m(E1, . . . , En, F1, . . . , Fm;G)
by ι(e1, . . . , en, f1, . . . , fm) = ψ(f1, ..., fm, ϕ(e1, . . . , en)). Composition is asso-
ciative, and the identity maps idE ∈ Mor(E,E) are neutral. Moreover the
multicategory is symmetrical (and this is why we didn’t bother with defining
composition of ϕ, ψ when the target of ϕ is any of the Fi) : given a permutation
σ of {1, . . . , n} and ϕ ∈ Homn(E1, . . . , En;F ), we can define
σ(ϕ) ∈ Homn(Eσ(1), . . . , Eσ(n);F ), by σ(ϕ)(e1, . . . , en) = ϕ(eσ(1), . . . , eσ(n)).

2.3 Multiplicatives

A multicategory is the right place where a tensor product might be defined ;
indeed the tensor product is the solution to a universal problem, namely :

Theorem 1
Given E,F , one can find a CBS E ⊗ F together with a 2-morphism
ϕ ∈ Hom2(E,F ;E ⊗ F ) inducing a bijection betweenHomn+2(Γ, E, F ;G)
and Homn+1(Γ, E ⊗ F ;G) for any sequence Γ, G of CBS.

Proof. — The proof basically consists of the following definition :

Definition 5
The CBS

(E ⊗ F,E⊥ &

F⊥, 〈., .〉)

is defined as follows

I E⊥ &

F⊥ consists of all coherent bilinear forms b on E,F , equipped
with the obvious norm :

‖b‖ = sup {|b(x, y)| ; ‖x‖, ‖y‖ 6 1}

I Consider the algebraic tensor product E�F ; any b ∈ E⊥ &

F⊥ induces
a linear map from E � F to C and we can therefore equip E � F with
the semi-norm (indeed a norm by standard algebra)

‖a‖ = sup {|b(a)| ; b ∈ E∗ &

F ∗, ‖b‖ 6 1}

We define E ⊗ F to be the completion of E � F .
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I The bilinear form 〈., .〉 is obtained by extending the map b, a ; b(a) to
a continuous bilinear map from E ⊗ F,E⊥ &

F⊥ to C.

E ⊗ F is clearly defined as a subspace of (E⊥ &

F⊥)′, which accounts for
(CBS1). If e′ ∈ E⊥, f ′ ∈ F⊥, then (e′

&

f ′)(e, f) = e′(e).f ′(f) defines an
element of E⊥ &

F⊥ and ‖e′

&

f ′‖ = ‖e′‖.‖f ′‖ ; from this ‖e⊗ f‖ = ‖e‖.‖f‖
for e ∈ E, f ∈ F and (CBS2) easily follows. We define the bilinear map ϕ
by ϕ(e, f) = e ⊗ f , and it is immediate that ϕ ∈ Hom2(E,F ;E ⊗ F ). The
verification of the universal property is more or less trivial. 2

By the way observe that, simultaneously to the tensor product
�

Times � , a
cotensor

�
Par � is defined : with abusive notations E

&

F = (E⊥ ⊗F⊥)⊥. We
introduce the notation −◦ as a shorthand : E −◦ F = E⊥ &

F .
The CBS C, i.e. (C,C, .) is neutral w.r.t. the tensor product ; since C⊥ = C, C
is neutral w.r.t. the cotensor product as well.

2.4 Additives

A category is the right place where sums and products might be defined ; indeed
the sum is introduced as the solution to a familiar universal problem. Here we
give its multicategorical version which entails the distributivity of ⊗ over ⊕.

Theorem 2
Given E,F , one can find a CBS E ⊕ F together with 1-morphisms
ιl ∈ Mor(E,E ⊕ F ), ιr ∈ Mor(F,E ⊕ F ) inducing a bijection between
Homn+1(Γ, E;G) × Homn+1(Γ, F ;G) and Homn+1(Γ, E ⊕ F ;G) for any
sequence Γ, G of CBS.

Proof. — The proof basically consists of the following definition :

Definition 6
The CBS

(E ⊕ F,E⊥ & F⊥, 〈, 〉)

is defined as follows

I E ⊕ F is the direct sum of E,F , equipped with the `1-norm :

‖e⊕ f‖ = ‖e‖ + ‖f‖

I E⊥ & F⊥ is the direct sum of E⊥, F⊥, equipped with the `∞-norm :

‖e′ & f ′‖ = sup(‖e′‖, ‖f ′‖)

I 〈e⊕ f, e′ & f ′〉 = 〈e, e′〉 + 〈f, f ′〉

The familiar duality `1/`∞ is used to check (CBS1) and (CBS2). All verifica-
tions are trivial. 2

Besides the categorical sum
�

Plus � , we simultaneously defined, using the abu-
sive formula E & F = (E⊥ ⊕ F⊥)⊥, a categorical product

�
With � , with dual
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properties, e.g.

&

distributes over &.
The CBS 0 consisting of the null space (which is therefore self-dual) is neutral
w.r.t. sum and product.

3 Exponential constructions

3.1 Scherzo : symmetric tensor powers

The n-ary tensor powers ⊗nE and

&nE⊥ are naturally equipped with an action
of the symmetric group. Let T nE and SnE⊥ be the respective symmetric sub-
spaces. The projections t, s from the full spaces to their respective symmetric
subspaces are both defined as a barycenter 1

n!

∑
σ(x), and have therefore norm

6 1 ; since 〈e, s(e′)〉 = 〈t(e), e′〉 it follows that (T nE,SnE⊥, 〈., .〉), with induced
norm and bilinear form is still a CBS. But SnE⊥ bears another norm, namely

‖| y |‖ = sup({|〈⊗ne, y〉| ; e ∈ E, ‖e‖ 6 1})

and clearly ‖| y |‖ 6 ‖y‖. Conversely let ζ be a primitive nth root of the unity ;
for e1, . . . , en ∈ E such that ‖e1‖ = . . . = ‖en‖ and y ∈ SnE⊥, the algebraic
identity

〈e1⊗. . .⊗en, y〉 = (
1

n!
)2

∑

σ

(〈⊗n(ζσ(1)e1+. . .+ζ
σ(n)en), y〉−〈⊗ne1+. . .+⊗nen, y〉)

shows that ‖| y |‖ 6
nn+n

n! ‖y‖, and the two norms are (badly) equivalent. Using
(CBS1) as a definition, ‖| . |‖ induces in turn another norm ‖| . |‖ on T nE and
for x ∈ T nE ‖x‖ 6 ‖| x |‖ 6

nn+n
n! ‖x‖. T nE and SnE equipped with with their

respective norms ‖| . |‖ still form a CBS.

3.2 Exponentials

Definition 7
Let E be a CBS ; we define the CBS !E = (!E, ?E⊥, 〈., .〉) as follows :

I ?E is the set of all bounded analytical maps ϕ from the open unit ball
of E into C, with coefficients in E⊥. By this we mean that one can find
ϕ0 ∈ C (= S0E⊥), ϕ1 ∈ E⊥ (= S1E⊥), . . . , ϕn ∈ SnE⊥, . . . such that
for any e ∈ E with ‖e‖ < 1 we have

ϕ(e) =
∑

n

ϕn(⊗ne)

(we mean that the complex series converges) ; boundedness enables one
to define the `∞-norm

‖ϕ‖ = sup{|ϕ(e)| ; ‖e‖ < 1}
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I !E is defined as the closure in the dual of ?E⊥ of the linear span of the
forms !e, defined for e in the open unit ball of E by :

(!e)(ϕ) = ϕ(e)

I Since !E is defined as a subspace of ?E⊥′, there is a canonical bilinear
form from !E, ?E⊥ into C.

Condition (CBS1) is satisfied by definition. Conversely, observe that ‖!e‖ = 1
for any e in the unit ball of E, from which (CBS2) is easily obtained.
The standard way to cope with analytical functions is to reduce to the familiar
complex case : typically if e, x ∈ E, x 6= 0, ‖e‖ < 1, the function

ψ(z) = ϕ(e + x.z) is defined for |z| < 1−‖e‖
‖x‖ and analytical in the usual sense,

and we can apply the familiar methods, essentially the Cauchy integral. For
instance, let e = 0, ‖x‖ < 1 ; the Cauchy estimates (see also prop. 2) yield
|ϕn(⊗nx)| 6 ‖ϕ‖, hence ‖| ϕn |‖ 6 ‖ϕ‖, which shows that the monomials ϕn,
seen as elements of ?E⊥ have a smaller norm than ϕ.

Proposition 1
Let ϕ ∈?E⊥ and e ∈ E, ‖e‖ < 1 ; then ϕ has a derivative ϕ′

e ∈ E⊥, and

‖ϕ′
e‖ 6

‖ϕ‖
1−‖e‖ .

Proof. — Let us first assume that ϕ is a monomial ϕn, then it is clearly
derivable : ϕ′

e(x) = n.ϕn(⊗n−1e⊗x) = 1
n

∑
ζiϕn(ζi.e+ x), and we get a bound

(‖e‖ + ‖x‖)n.‖ϕ‖ on the norm of the derivative ϕ′
e(x). In the general case, a

candidate for the derivative of ϕ at point e is the series
ϕ′

e(x) =
∑
n.ϕn(⊗n−1e ⊗ x) ; the term n.ϕn(⊗n−1e ⊗ x) is the derivative of a

monomial whose norm does not exceed that of ϕ, hence is bounded in norm by
(‖e‖ + ‖x‖)n.‖ϕ‖, and since our series is linear in x we can decide to choose x
small enough so that our series is majorized by a geometrical series. This proves
the existence of the derivative and that ϕ′

e ∈ E⊥, as a limit of elements of E⊥.
We can also estimate the norm of ϕ′

e(x) by means of the Cauchy integral : let
0 < ε < 1 − ‖e‖ and let x ∈ E, ‖x‖ = 1, then

ϕ′
e(x) =

1

2πε

∫ 2π

0

ϕ(e+ x.ε.eit).e−itdt

hence ‖ϕ′
e(x)‖ 6

‖ϕ‖
ε

, which proves the last claim. 2

Proposition 2
Let us fix m ∈ N, f ∈ E with 0 6 ‖f‖ < 1 ; then there is a point !mf ∈!E
such that, for any ϕ ∈?E⊥ with coefficients ϕn the following holds :

ϕm(f) = 〈!mf, ϕ〉
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Proof. — The Cauchy integral

ϕm(f) =
1

2π

∫ 2π

0

ϕ(f.eit).e−imtdt

is indeed a Riemann integral, which exploits the uniform continuity of the func-
tion h(t) = 1

2π
ϕ(f.eit).e−imt. A Riemann integral is obtained as the limit of

finite barycenters an = 2−n
∑

k h(t.k.2
−n). A consequence of

prop. 1 is that |h(t) − h(t′)| 6
1
2π

‖ϕ‖( 1
1−‖f‖ +m)|t− t′|, and from this

|an − an′ | 6 2−n‖ϕ‖( 1
1−‖f‖ + m) for n′ > n, and ϕ(f) is the limit of the

Cauchy sequence (an). Now define An = 1
2π

2−n
∑

k e
−imk2−n

!(f.eik2−n

), so
that an = 〈An, ϕ〉. We have indeed proven that (An) is a Cauchy sequence in
!E and we can define !mf as its limit. 2

Our first goal is to give a direct description of intuitionistic implication, which
is defined as usual by : E ⇒ F = !E −◦ F = ?E⊥ &

F .

Theorem 3
E ⇒ F consists (in fact : is isomorphic to the set) of all bounded analytical
functions from the unit ball of E to F defined by a power series

ϕ(e) =
∑

ϕn(e)

with
�

coefficients � ϕn in T nE −◦F ; furthermore, the norm of E ⇒ F is
the `∞-norm

‖ϕ‖ = sup{‖ϕ(e) ; ‖e‖ < 1‖}

Proof. —

I Let ϕ be defined by such a series ; if f ′ ∈ F⊥, then 〈ϕ(e), f ′〉 =
∑

〈ϕn(e), f ′〉
defines a function ϕf ′

which clearly belongs to ?E⊥, hence ϕ induces a map
from F⊥ to ?E⊥ ; this map is bounded, since ‖ϕf ′

‖ 6 ‖ϕ‖.‖f ′‖. When x
is a linear combination of vectors !ei then we can find y = Tϕ(x) ∈ F such
that 〈y, f ′〉 = ϕf ′

(x) for all f ′ ∈ F⊥ ; but |ϕf ′

(x)| 6 ‖ϕ‖.‖f ′‖.‖x‖. Therefore
‖Tϕ(x)‖ 6 ‖ϕ‖.‖x‖ and the function Tϕ extends into a map from !E into F .
We have therefore shown that ϕ can be seen as an element of E ⇒ F , with a
smaller norm. Indeed the two norms are easily shown to be equal.

I Conversely, take a function ϕ ∈ E ⇒ F . Given f ′ ∈ F⊥, consider
ϕ⊥(f ′) ∈?E⊥ ; this function is defined by means of a series

∑
ϕf ′

n (e), and it
is immediate (from the unicity of the expansion which follows from —say—
prop. 2) that the coefficient ϕf ′

n is a linear function of f ′ ; moreover, it is
bounded, in virtue of the Cauchy majorization which yields, for ‖e‖ < 1 :
‖ϕf ′

n (e)‖ 6 ‖ϕf ′

‖ 6 ‖ϕ‖.‖f ′‖, i.e. one can write ϕf ′

n = ϕn(f ′) for an appropri-
ate bounded map ϕn. It remains to show that this map belongs to T nE−◦F ,
and the only non-trivial thing to check is that ϕn(e) ∈ F when e ∈ E, ‖e‖ 6 1 ;
but by prop. 2 ϕf ′

n (e) = 〈!ne, ϕ
f ′

〉, which entails ϕn(e) = ϕ(!ne) and we are
done.
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2

The next theorem is the most important feature of our construction, and justifies
the name

�
exponential � given to !

�
Of course � and ?

�
Why not � :

! transforms & (additive conjunction) into ⊗ (multiplicative conjunction).

Theorem 4

!(E & F ) '!E⊗!F

Proof. — We shall prove the dual form

?(E⊥ ⊕ F⊥) '?E⊥ &

?F⊥

Observe that this is a particular case of the more general

(E & F ) ⇒ G ' E ⇒ (F −◦G)

(take G = C), which in turn reduces to the theorem. The isomorphism is the
expected one : a function ϕ defined on the unit ball of E & F can be seen as a
function Φ sending the unit ball of E into a function defined on the unit ball of
F , and conversely. The correspondence is expressed by the formula

Φ(e)(f) = ϕ(e& f)

What is obvious about this transformation is that it is norm-preserving : this is
because both & and ⇒ are handled in terms of `∞-norms

sup{sup{|Φ(e)(f)|; ‖f‖ < 1}; ‖e‖ < 1} = sup{|ϕ(e& f)|; ‖e& f‖ < 1}

The operations are clearly reciprocal, but one must show that they range into
the right spaces. Going to the essential, one is reduced to showing an equality
of power series ∑

nm

ϕnm(e, f) =
∑

p

∑

n+m=p

ϕnm(e, f)

The equality holds because we are in an open ball : choose λ > 1 with
λ‖e& f‖ < 1 and let anm = ϕnm(e, f) ; we must show the equality

∑

nm

anm =
∑

p

∑

n+m=p

anm

in two cases :

I Under the hypothesis of the convergence of
∑

nm

λn+manm

I Under the hypothesis of the convergence of
∑

p

λp
∑

n+m=p

anm

Both sides follow from standard manipulations on geometric series. 2

In the same spirit, observe that !0 ' C.
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3.3 Comonoids

Definition 8
A (cocommutative) comonoid consists of the following data

I A CBS C

I A morphism w ∈ C −◦ C, with ‖w‖ 6 1 (counit, or weakening)

I A morphism c ∈ C−◦C⊗C, with ‖c‖ 6 1 (comultiplication or contrac-
tion)

which enable one to define ci ∈ C −◦ ⊗nC by c0 = w, c1 = Id, c2 =
c, cn+1 = (c⊗ cn)c. We require that the cn satisfy a coherence property :
(cn⊗cm)c = cn+m, which is a dualized form of neutrality and associativity.
Furthermore σcn = cn, for any permutation σ : this is cocommutativity.

Co-(neutrality, associativity, commutativity) can be summarized by means of
the diagrams :

C
c - C ⊗ C

@
@
@
w @

@
@R 	�

�
� C ⊗ w

�
�
�

C

C
c - C ⊗ C

c

? ?

C ⊗ c

C ⊗ C
c ⊗ C

- C ⊗ C ⊗ C

and

C
c - C ⊗ C

@
@
@
c @

@
@R 	�

�
� σ

�
�
�

C ⊗ C

where σ stands for the
�

flip � between two copies of C and C stands for the
identity map of C ; we neglected the fact that ⊗ is not literally associative.
!E is naturally endowed with a structure of (cocommutative) comonoid :

I We can define a map w ∈!E −◦ C, corresponding to the analytical function
constantly equal to 1.
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I There is a unique map c ∈!E−◦!E⊗!E such that c(!e) =!e⊗!e ; in fact one can
see c⊥ as the map taking a binary analytical function ϕ(e, f) into the unary
function ϕ(e, e). From this ‖c‖ 6 1.

The map cn ∈!E −◦ ⊗n!E is uniquely defined by cn(!e) = ⊗n!e. From this,
co-associativity,neutrality,commutativity are immediate.

Definition 9
Let C,D be comonoids ; a morphism ϕ ∈ C −◦D is said to be a morphism
of comonoids when the following hold :

I wϕ = w (preservation of counit)

I cϕ = (ϕ⊗ ϕ)c (preservation of comultiplication)

i.e. the commutation of the diagrams :

C
ϕ

- D

cn

? ?

cn

⊗nC
⊗nϕ

- ⊗nD

There is an important map connected with !E, namely d ∈!E−◦E (dereliction),
the only map such that d(!e) = e ; dually d⊥ takes a vector e′ ∈ E⊥ into
the corresponding analytical map e ; 〈e, e′〉. The importance of dereliction is
stressed by the

Theorem 5
Let C be a comonoid let E be a CBS and let ϕ ∈ C −◦ E, with ‖ϕ‖ < 1

e
;

then there exists a unique morphism of comonoids !ϕ ∈ C−◦!E such that
ϕ = d!ϕ :

C
!ϕ

- !E

@
@
@
ϕ @

@
@R 	�

�
� d

�
�
�

E

Proof. — If x ∈ C, define !ϕ(x) =
∑

n(⊗nϕ)(cn(x)) ; the nth term of the series
officially belongs to ⊗nE, but an immediate inspection shows that it is indeed
in its symmetrical part T nE which (when equipped with the norm ‖| . |‖) is a
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subspace of !E. Everything is almost trivial, but convergence.
Let un = ‖| (⊗nϕ)(cn(x)) |‖. Then

un 6
nn + n

n!
‖(⊗nϕ)(cn(x))‖ 6

nn + n

n!
‖ϕ‖n.‖cn(x)‖ 6

nn + n

n!
‖ϕ‖n.‖x‖

The result follows from the Stirling formula ; slightly more directly, with
vn = nn+n

n! ‖ϕ‖n.‖x‖, of the estimate of the limit of vn+1

vn

:
vn+1

vn

∼ ‖ϕ‖.(1 + 1
n
)n tends to ‖ϕ‖.e < 1. 2

The theorem does not quite establish !E as the solution of a universal problem,
due to this restriction on the norm of the input ϕ. So let us change the definition
of a comonoid : due to co-commutativity, the map cn actually ranges into T nC,
hence we can consider the norm ‖| cn |‖ = sup{‖| cn(c) |‖; ‖c‖ 6 1}.

Definition 10
A strong comonoid is defined as in definition 8, except that we now require :

‖| cn |‖ 6 1

Proposition 3
!E is a strong comonoid ; furthermore (!E,d) is the solution to the problem
of theorem 5, but with the more liberal hypothesis ‖ϕ‖ < 1.

Proof. — First !E is a strong comonoid : this is because cn is indeed an ana-
lytical map from E to T n!E defined by cn(e) = ⊗n!e, and its norm is therefore
1. The second half of the statement follows from an inspection of the proof of
theorem 5 :

un 6 ‖ϕ‖n.‖| cn(x) |‖ 6 ‖ϕ‖n.‖| cn |‖.‖x‖ 6 ‖ϕ‖n.‖x‖

2

With respect to strong comonoids, !E is
�

almost � the solution to a universal
problem ; there is a small mismatch, namely that ‖d‖ = 1, whereas the ϕ to
which the property applies cannot reach the norm 1.

4 Implementation of first order linear logic
In the sequel we ignore quantification : the first-order case can basically be
handled on the model of ⊕ and &, whereas the more essential second-order case
is out of reach for the moment.

4.1 Formulas and sequents

In order to present the calculus, we shall adopt the following notational simplifi-
cation : formulas are written from literals p, q, r, p⊥, q⊥, r⊥, etc., and constants
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1, ⊥, >, 0 by means of the connectives ⊗,

&

, &, ⊕ (binary), !, ? (unary). Nega-
tion is defined by De Morgan equations, and linear implication is also a defined
connective :

1⊥ := ⊥

>⊥ := 0

(p)⊥ := p⊥

(A⊗B)⊥ := A⊥ &

B⊥

(A&B)⊥ := A⊥ ⊕B⊥

(!A)⊥ := ?A⊥

⊥⊥ := 1

0⊥ := >

(p⊥)⊥ := p

(A

&

B)⊥ := A⊥ ⊗B⊥

(A⊕B)⊥ := A⊥ &B⊥

(?A)⊥ := !A⊥

A−◦B := A⊥ &

B

The connectives ⊗,

&

, −◦, together with the neutral elements 1 (w.r.t. ⊗) and
⊥ (w.r.t.

&

) are called multiplicatives ; the connectives & and ⊕, together with
the neutral elements > (w.r.t. &) and 0 (w.r.t ⊕) are called additives ; the con-
nectives ! and ? are called exponentials. The notation has been chosen for its
mnemonic virtues : we can remember from the notation that ⊗ is multiplicative
and conjunctive, with neutral 1, ⊕ is additive and disjunctive, with neutral 0,
that

&

is disjunctive with neutral ⊥, and that & is conjunctive with neutral > ;
the distributivity of ⊗ over ⊕ is also suggested by our notation.

4.2 Sequents

Sequent calculus is the traditional tool of proof-theory ; we are basically using
a variant of this calculus that we introduced in the paper [6] and which induces
a great syntactical flexibility.

Definition 11
I A discharged formula is an expression [A], where A is a formula ;

I A sequent is an expression − A1, . . . ,An, where A1, . . . ,An are either
discharged formulas or formulas.

Remark. — Formulas will be implemented by CBS, following the definitions of the
previous sections ; then sequents will be also implemented by CBS, since commas and
[.] are just another way to speak of

�
par � and

�
why not � :

I A discharged formula [A] is hypocrisy for ?A ;

I If A1, . . . ,An are hypocrisy for formulas B1, . . . , Bn, then the sequent− A1, . . . ,An

is hypocrisy for the formula B1

&

. . .

&

Bn.

In sequent calculus we shall (see below) prove sequents, and each proof of − Γ will
indeed be implemented as a vector γ of the corresponding CBS.
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4.3 Weighted sequent calculus

Identity / Negation

(identity)
−1 A,A

⊥

−λ Γ, A −µ A
⊥,∆

(cut)
−λµ Γ,∆

−1−0 [Γ], A −λ [A⊥],∆
([cut ])

−λ [Γ],∆

Structure

−λ Γ
(exchange)

−λ σ(Γ)

−λ Γ
(weakening)

−λ Γ, [A]

−λ Γ, A
(dereliction)

−λ Γ, [A]

−λ Γ, [A], [A]
(contraction)

−λ Γ, [A]

−λ Γ
(scalar : µ 6= 0)

−λ.|µ| Γ

−λ Γ, A,B
(open)

−λ−0 Γ, A,B

−λ Γ
(waste : λ′ > λ)

−λ′ Γ

Logic

(one : λ > 1)
−1 1

(true)
−λ Γ,>

−λ Γ
(false)

−λ Γ,⊥

−λ Γ, A −µ B,∆
(times)

−λµ Γ, A⊗B,∆

−λ Γ, A,B
(par)

−λ+0 Γ, A

&

B

−λ Γ, A −λ Γ, B
(with)

−λ Γ, A&B

−λ Γ, A
(left plus)

−λ Γ, A⊕B

−λ Γ, B
(right plus)

−λ Γ, A⊕B

−1−0 [Γ], A
(of course)

−1 [Γ], !A

−λ Γ, [A]
(why not)

−λ Γ, ?A

This formulation of linear sequent calculus uses indices (weights) λ, µ that we
shall soon explain. If we just ignore them, we are left with three useless rules :



20 Jean-Yves Girard

�
scalar � ,

�
open � and

�
waste � .

4.4 Weighted sequents

Definition 12
A weight is an interval [0, α] (notation : α − 0) or an interval [0, α[ (no-
tation : α) ; in both cases the real α is strictly positive. Operations on
intervals are symbolized as follows :

I We extend usual product by : α(β − 0) = (α− 0)β = (α − 0)(β − 0) =
αβ − 0 ; this operation represents the pointwise product of intervals.

I We extend
�
−0 � by (α− 0)− 0 = α− 0 ; this operation represents the

interior of an interval.

I We define α+0 = (α−0)+0 = α ; this operation represents the closure
of an interval.

I We extend the order relation by : α− 0 < β ⇔ α 6 β
α − 0 < β − 0 ⇔ α < β − 0 ⇔ α < β ; this relation represents strict
inclusion of intervals.

Definition 13
A weighted sequent is an expression −λ Γ, where λ is a weight.

Weighted sequent calculus has already been written above. We must now explain
the precise meaning of the weights. A proof of −λ Γ will be implemented by a
vector γ in the appropriate CBS and λ will be a comment about the

�
size � of

γ. More precisely :

I If λ = α+ 0, i.e. if λ denotes a closed interval, we just mean ‖γ‖ 6 α ;

I If λ = α− 0, the condition means the following : select any element A (resp.
[A]) of Γ, and let ∆, [∆′] be the remaining elements of Γ (implemented as
spaces). Then γ induces an analytical function ϕ defined on the open unit
ball of the

�
with � of ∆⊥,∆′⊥ (ϕ is multilinear w.r.t. ∆⊥, hence analytical

on its
�

with �), with values in A (resp. ?A) ; we require that ϕ ranges
into the open ball of radius α. When Γ contains at least two non-discharged
formulas, the condition collapses to ‖γ‖ 6 α ; when Γ has only one element,
the condition collapses to ‖γ‖ < α.

The rules are just (but for the new
�

scalar � ,
�

open � and
�

waste � rules)
decorations of the familiar rules for sequents. If we try to decorate usual sequent
calculus proofs with scalars λ, then the obvious candidate is λ = 1 ; but one
of the rules is problematic, namely

�
of course � , since it requires a premise

of weight 1 − 0 to produce a conclusion of weight 1. This is why we added
�

scalar � which enables one to change (usually : lower) the weight ; but this
is not as stupid as you may think, since this rule will be interpreted by a scalar
multiplication by µ.

�
Waste � is a convenient minor rule which enables one to

get some flexibility ; it is by no means the converse of
�

scalar � , since it is just
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another estimate on the weight of the same vector. Finally
�

open � is just the
remark that, in presence of two undischarged formulas, the distinction between
α and α− 0 vanishes.

4.5 Implementation of proofs

Assume that the atoms p, q, r, . . . are implemented by CBS P,Q,R, . . . ; then ev-
ery formula is immediately implemented as a CBS. (Both multiplicative neutrals
1,⊥ are implemented by C, and both additive neutrals >,0 are implemented
by 0). A discharged formula [A] is interpreted as the

�
why not � of A, and a

sequent Γ is implemented as the
�

par � of its elements.
It remains to implement a proof of −λ Γ by a vector of the space interpreting
Γ and check that the weight constraints explained in the previous section are
satisfied. This is more or less obvious since our system is nothing but a compli-
cated way to speak of the basic constructions of sections 2 and 3. For instance
the Identity axiom is the bilinear form, the two cut-rules are composition with
a linear or with an analytical map, and our requirements on λ ensure that the
domains/codomains match. Exchange is permutation, weakening and contrac-
tion are fake dependency and diagonalization, both in the analytical case, and
dereliction is the observation that a linear map is analytical. Scalar is scalar
multiplication, whereas waste does not affect the vector. Multiplicative rules
basically state the universal property of the tensor product ; additive rules are
another way to state the universal property of the direct sum. The most im-
portant rule is

�
of course � , which can be described as follows : take a n-ary

analytical function ϕ from the unit ball of the
�

with � of Γ⊥ into the open
unit ball of A, and get an analytical function with values into !A. It is enough
to define (!ϕ)(γ) =!(ϕ(γ)). The existence of the solution cannot be justified
by theorem 5 or proposition 3, whose hypotheses are too drastic. But one can
explicitly write the power series expansion of ϕ and that’s it by theorem 3. An-
other way to see the rule is composition of analytical maps ψϕ, corresponding
to the rule [cut] : when ψ ∈?A⊥, then ψ is indeed an analytical function from
the unit ball of A into C, hence 〈!ϕ(γ), ψ〉 = ψ(ϕ(γ)).
A subtle points : the

�
par � rule changes α−0 into α : this is necessary in case

Γ is fully discharged, typically when Γ is empty ; when Γ is not fully discharged,
an additional use of

�
open � enables one keep the weight α− 0.

Sequent calculus is organized around the cut-rule, and its main property is cut-
elimination : a proof using the cut-rule can be mechanically transformed into a
normal proof, without cuts. The main property of our interpretation is that it
is invariant under cut-elimination.

Theorem 6
If a proof Π of −λ Γ normalizes into Π′, then Π and Π′ are implemented
by the same vector.

Proof. — The proof is trivial and very long ; it resembles one hundred of
similar results, and we content ourselves with side comments.
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I One needs to define the cut-elimination algorithm ; this is straightforward,
but very long. The new rules, like

�
scalar � are not problematic at all,

provided one keeps in mind their intuitive meaning.

I Then one must check the invariance of the interpretation under each cut-
elimination step. The essential ingredients are to be found in our previous
theorems : for instance the main cut-elimination step corresponding to a
cut on a multiplicative formula A ⊗ B is handled by means of the universal
property of the tensor, or if one prefers, the present theorem is just another
way to state this universal property.

2

In fact the best solution would be to develop proof-nets for this modified calculus.
Let us just observe that if we take cut-free (i.e. normal) proofs of sequents which
do not use the connectives &, !, then they can be (up to some shuffling of rules)
written in the following order

1. A usual sequent calculus proof, with all weights set to 1 : this is always
possible in the absence of !.

2. A single use of
�

scalar � .

3. At most a single use of
�

waste � or
�

open � .

In simpler terms : normal proofs in the weighted calculus are scalar multiples of
normal proofs in the standard calculus. The property fails in the presence of &
(several scalars are used) and ! (too badly non-linear).

APPENDIX

A.1 The Gustave function

The Gustave function (invented by Berry) is a typical example of non-sequential
algorithm. We give here a version adapted to linear logic. Let A,B,C,A′, B′, C′,
A”, B”, C” be equal (we name them differently for convenience), and consider
X = (A & (B ⊕ C)) ⊗ (A′ & (B′ ⊕ C′)) ⊗ (A” & (B” ⊕ C”)) ; then we define a
function pointwise from X into A ⊗ A ⊗ A (with obvious notations : b′ stands
for an element of B′, etc.)

γ(a⊗ b′ ⊗ c”) = a⊗ b′ ⊗ c”

γ(b⊗ c′ ⊗ a”) = b⊗ c′ ⊗ a”

γ(c⊗ a′ ⊗ b”) = c⊗ a′ ⊗ b”

γ(b⊗ b′ ⊗ b”) = b⊗ b′ ⊗ b”

γ(c⊗ c′ ⊗ c”) = c⊗ c′ ⊗ c”

Usual denotational semantics, including coherent spaces accept this function ;
however Ehrhard [4] has been able to introduce hypercoherences, a beautiful



Coherent Banach Spaces 23

generalization of coherent spaces, in which Gustave is not accepted as a clique.
The question is therefore whether or not CBS accept this function. In other
terms, let us implement A,B, . . . , by a non-zero space E and let us compute
‖γ‖. Since γ is defined on a ternary tensor product, the norm of γ is equal to
its norm as a trilinear map, i.e.

‖γ‖ = sup{‖γ((a& (b⊕ c)) ⊗ ((a′ & (b′ ⊕ c′)) ⊗ ((a” & (b” ⊕ c”))‖}

the supremum being taken over those a, b, c . . . such that :
‖(a& (b ⊕ c)‖, ‖(a′ & (b′ ⊕ c′)‖, ‖(a” & (b” ⊕ c”)‖ 6 1.
Let α = ‖a‖, α′ = ‖a′‖, . . . then ‖a& (b⊕ c)‖ = max(α, β + γ), etc. We are led
to majorize αβ′γ” + βγ′α” + γα′β” + ββ′β” + γγ′γ” ; we can assume w.l.o.g.
that α = β + γ = 1 etc., and then our expression is shown to equal 1, which
proves that ‖γ‖ = 1.
Unfortunately the answer is positive, which shows that certain important fea-
tures of denotational semantics have not been caught by CBS. Does this mean
that the notion must be refined ?
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Applied Logic, 77:101–142, 1996.

[3] R. Blute and P. Scott. The Shuffle Hopf Algebra and Noncommuta-
tive Full Completeness. submitted to JSL, 1996.

[4] T. Ehrhard. Hypercoherences : a strongly stable model of linear
logic. In Girard, Lafont, and Regnier, editors, Advances in Linear Logic,
pages 83–108, Cambridge, 1995. Cambridge University Press.

[5] J.-Y. Girard. Normal functors, power series and λ-calculus. Annals
of Pure and Applied logic, 37:129–177, 1988.

[6] J.-Y. Girard. On the unity of logic. Annals of Pure and Applied Logic,
59:201–217, 1993.

[7] J.-Y. Girard. Linear logic, its syntax and semantics. In Girard, La-
font, and Regnier, editors, Advances in Linear Logic. Cambridge University
Press, 1995.

[8] J.-Y. Girard. On denotational completeness. Theoretical Computer
Science, 1997,à parâıtre.
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