

2 — L'USINE, A.K.A. PROOF-NETS

- Main novelty of linear logic: *factory* tests.
 Cut-free: cut seen as special conclusion [A ⊗ ~ A].
 Testing anticipated by Herbrand: ∀ = f(∃).
 Non compositional: dinaturals. Opposite to BHK (*usage*).
- Upper *answer*, solution vs. lower *question*, problem.
 Independent: e.g., η-expansion.
 Upper: analytic, type-free, meaningless objects.
 Analytic normalisation by plugging identity links.
 Lower: deals with logic, type, meaning.
 Synthetic normalisation replaces cuts with simpler ones.
- Sequentialisation not needed: logical soundness suffices.
 Non sequential ¶ := {{1,2}, {3,4}} + {{2,3}, {4,1}}.
 Adequation usine/usage (deductive use).
 Factory tests preserved by synthetic normalisation.

3 — ANALYTICS: DETERMINISTIC CASE

- Meaningless, untyped, self-contained: *beyond discussion*.
 Constat finite result (normal): *incremental*.
 Performance program, self-executed: *destructive*.
 Colours: constats black, performance = colour-elimination.
- Stars [[t₁,...,t_n]]; *rays* with same variables (needed for η).
 Constellation: finite set of stars.
 Determinism: rays of constellation not matchable.
- Dendrites (= analytic cut): plugging rays of comp. colours.
 Strong normalisation: no dendrite of size > N.
 Normal form: dendrites with black rays, seen as stars.
- Correctness: uses links like $[\![p_{A\otimes B}(x), p_A(x), p_B(x)]\!]$. Normal form should be $[\![p_{\Gamma}(x)]\!]$. Multiplicatives: preserved by synthetic normalisation.

Bologna, 1er Février 2016

4 — ANALYTICS: NON DETERMINISTIC CASE

- Additives: boxes and weights excluded, not self-contained.
 Matchable rays: Alzheimer non-determinism.
 Coherence between rays; ensures non-matchability.
- Not enough for correctness; *Simulacron 3*, *The matrix*. Choice A & B possibly biased (slicing). Coh. star: $[p_{A\&B}(x), p_A(x), p_B(x)]$, with $p_A(x) \sim p_B(x)$.
- *Canvas* (= analytic cut): like a dendrite, but not tree-like.
 Select anticlique for each star; result should be a dendrite.
 Dendrites of a canvas: parallel executions, slices.
- Correctness: normal form with dendrites [p_Γ(x)].
 Preserved by synthetic normalisation.
 Sequentialisation: impossible with usual sequents.
 Suggests series/parallel ⅔/⊕ sequents with canvas-cut.

Bologna, 1er Février 2016

5 — EXPONENTIALS

- Basic idea of ?A: normal form [p_Γ(x) \ p_{?Γ}(x)]].
 Problem: no way to recover, since location lost.
 Independence proof/test not preserved.
 Proof-nets for exponentials (and 1, ⊥) thus impossible.
- But $A \otimes B = !A \otimes B$ and $A \ltimes B = ?A ?? B$ tractable. One-sided version of disjunction (Mogbil) can be used.
- *Problem:* quid of synthetic normalisation? Duplicated switchings should be independent. Solution unique switching (with obvious coherence) $[p_{A^{\gamma}B}(x), p_A(x), p_B(x)] + p_A(x) + p_B(x).$
- Intuitionistic disjunction !A ⊕ !B does not survive.
 Untractable linearity; comm. conversions not analytic.
 However ∨, !, ?, 1, ⊥ possible at second order.

7 — PREDICATE CALCULUS IS WRONG

- System ℙ: propositions are (roughly) enough.
 Forgetful functor: keeps computational (analytic) contents.
 Realisability: awkward reduction predicate → proposition.
- Predicate calculus: xIXth century legacy.
 Axiomatics: cannot avoid « Barbari » ∀xA ⊢ ∃xA.
 Semantics: models non-empty; example of selfie.
- Dubious principle: besides *eigen* variables, used for ⊢ ∀
 Junk variables: dedicated to the sole *Barbari*.
- Intrusion of reality through *external* domain.
 Variables, functions: proceed from the Sky.
 Equality: mistreated through axiomatics.
- *Replace* ethereal individuals with concrete *connectives*.
 Equality: becomes equivalence.

8 — INDIVIDUALS AS MULTIPLICATIVES

- Individual = proposition forbidden by realistic prejudice. Classical: $t \equiv u \lor u \equiv v \lor v \equiv t$. Only two individuals. Intuitionistic: $\neg \neg (t \equiv u \lor u \equiv v \lor v \equiv t)$. Not more than 2. Linear: with $(t \multimap u) \& (u \multimap t)$ as equivalence, OK.
- *n*-ary multiplicative: set of partitions of {1,...,n}.
 Duality: C⊥D iff their incidence graph is a tree (n ≠ 0).
 Multiplicative: non-trivial set of partitions equal to bidual.
 Example: ⊗ := {{1,2}} vs. 𝔅 := {{1}, {2}}.
 Series/parallel: ¶ := {{1,2}, {3,4}} + {{2,3}, {4,1}}.
 Not sequential: ¶ admits proof-nets, no sequent calculus.

9 — FUNCTIONS AND PREDICATES

- Functional *terms* come from same multiplicative matrix:
 Positive multiplicatives with possible repetitions.
 Example: x ⅔ (x ⊗ y). No constant, no *Barbari*, no regrets.
 Pairing: ensured by (x ⅔ y) ⊗ (x ⅔ x ⅔ y).
- *Predicate* variables *P*, *Q*, ... as variable *connectives*.

Pt handled by unknown binary connective *K*. Usage: all possible uses $Kt\tilde{t}$ of individual *t* and negation \tilde{t} . Usine: enough to test with $K = \otimes$ and $K = \Im$. Equality principle: $t = u \Rightarrow (Pt \multimap Pu)$ OK'ed by l'usine. Refused: $t = u \Rightarrow (Pt \multimap Qu)$ and $t = u \multimap (Pt \multimap Pu)$.

- Equality handled by: $(\tilde{t} \Re u) \& (t \Re \tilde{u})$.
- First-order quantification: restriction of « full » case.
 Existential witnesses: among multiplicative connectives.

10 — THE ARITHMETIC CHALLENGE

- Desaxiomatisation: integers are logical.
- Dedekind:

 $t \in \mathrm{nat} := \forall X (\forall x (Xx \multimap X(Sx)) \Rightarrow (X0 \multimap Xt))$

- Third and fourth Peano axioms should become *theorems*.
 - **3** $Sx \neq 0$
 - 4 $Sx = Sy \Rightarrow x = y$.

Anti-classicism: propositions [3] and [4] classically false.

• Search for *classically false* linear theorems.