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Ludics [1] is a novel approach to logic —especially proof-theory. The present
introduction emphasises foundational issues.

1 All Quiet on the Western Front

For ages, not a single disturbing idea in the area of « foundations » : the
discussion is sort of ossified —as if everything had been said, as if all notions
had taken their definite place, in a big cemetery of ideas. One can still refresh
the flowers or regild the stone, e.g., prove technicalities, sometimes non-trivial ;
but the real debate is still : this paper begins with an autopsy, the autopsy of
the foundational project.

1.1 Realism

Up to say 1900, the realist/dualist approach to science was dominant ; during
the last century some domains like physics evolved so as to become completely
anti-realist ; but this evolution hardly concerned logic.

1.1.1 Hilbert’s legacy

By the turn of the XX century mathematics was jeopardised by paradoxes,
the most famous of them being due to Russell. Hilbert’s reaction was to
focus on consistency. But the reduction of paradoxes —and therefore of
foundations— to solely the antinomies is highly questionable! : indeed, the

156€a : dogma, opinion, intuition. .. : a paradoz need not be a formal contradiction.
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typical paradoxical artifacts are secret sharers, objects satisfying the formal
definitions but far astray from the intended meaning, typically the Peano
« curve » which contradicts our perception of dimension. Fortunately, topology
has been able to show that dimension m is not the same as dimension n...
but just for a second, forget this and imagine consistent mathematics in which
balls in any dimension are homeomorphic : what a disaster ! This exclusive fo-
cus on consistency —not to speak of the strategic failure of the Programme—
should explain why logic, especially foundations lost contact with other sci-
ences during last century.

Indeed Hilbert’s Programme is not quite realistic, it is procedural, see 1.3 be-
low : Hilbert tried to avoid as much as possible the external reality. This was
wise ; but he made several mistakes, both technical and methodological :

» We shall see that Hilbert’s Programme relies on a duality between proofs
of A and proofs of = A. But the dualising object, the pivot of this duality
—the proofs of the absurdity— is empty and this leads to a disaster, see
92.1.2, 2.1.3.

» The mere idea of foundations of mathematics inside mathematics is ques-
tionable, there is an obvious conflict of interest, which is not fixed with
the controversial idea of metamathematics®. Indeed these metamathe-
matics are just a part of ordinary mathematics —possibly with a hand
tied in the back : this remark underlies Godel’s incompleteness. What
remains of this is a sort of diabolus in logica : the foundational discourse,
once embedded in mathematics yields artificial formulas, —which rather
look like sophisms : « I am not provable ». Those are still secret sharers,
but more difficult to cope with than their topological ancestors : after
the curve with no derivative, the sentence with no meaning !

» The current formalist ideology says that mathematics is a pure play on
symbols. This underlies notational quarrels : if operation M distributes
over operation A, a formalist may insist on using M = &, A = ® or
something of the like « you know, notations are arbitrary », implicitly
denying any special value to distribution. The mistake might lie in a
subtle shift from pure play to « meaningless » : who told us that a play
on symbols is meaningless, has not its own geometry ? By the way,
Gentzen —Hilbert’s most conspicuous follower— disclosed a structure
(sequent calculus) underlying the « play on symbols »... and sequent
calculus has its own geometrical structure —this is precisely what ludics
is about.

2 i€t means various things, mainly « besides, after », for instance in metaphysics. In
logic the expression conveys —together with « intensional »— a magical connotation : this
irrationalism is the hidden face of positivism.
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The failure of Hilbert’s Programme —a reductionist procedural explanation—
was felt like the total victory of realism. What remains of Hilbert’s spirit in
the « official » approach to foundations is a lurking positivism which underlies
the pregnancy of this strange animal —the meta— which accounts both for
the failure of the programme and the cracks in the realistic building.

1.1.2 Object vs. subject

The current explanation of logic distinguishes between the world (objective)
and its representation (subjective), the object and the subject. Logical realism
relies on an opposition between semantics (the world) and syntaz (its represen-
tation) : this opposition is expressed through soundness and (in)completeness.
The approach is highly problematic :

» It is a bit delicate to say that natural numbers are « the world ». {0, 1,2}
does make a small world, but not {0,1,2,...} : «... »is a pure fantasy,
nobody knowing how to interpret it. The only uncontroversial fact is
that we have efficient ways of manipulating « ... » —typically induc-
tion axioms : integers as satisfying « all » inductions, this is what both
Dedekind and Peano tried to catch, with different technicalities. Natu-
ral numbers and their predicates, the object and the subject, they are
in a egg-and-hen relationship, in particular it is difficult to think of one
independently of the other.

» Nevertheless the « subjective » part receives no status at all : a plain
formal bureaucracy, subject to rather arbitrary choices. For instance
certain authors will insist on minimising the number of connectives or the
number of rules, e.g., do everything with the connective « equivalent ».
The fact that predicate calculus is complete becomes a pure miracle :
why should this bureaucracy correspond to something natural ?

» The same holds when one plugs in incompleteness : not everything is
provable, but there are weaker or stronger systems. The image is that
of a Big Book in which we can eavesdrop : we can see part of it, but
only part of it. Then we can classify the keyholes, think of « reverse
mathematics », of the « ordinal strength » of theories. Again there is
not the slightest explanation for the coexistence of various systems of
arithmetic : simply because the « subjective part » gets no autonomous
status.

» In fact there is a complete absence of explanation. This is obvious if we
look at the Tarskian « definition » of truth « A is true iff A holds ». The
question is not to know whether mathematics accepts such a definition
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but if there is any contents in it... What is disjunction 7 Disjunction is
disjunction... What is the solution to 22 = 3 ? It is the set of numbers
a such that > = 3... The distinction between V and a hypothetical
meta-V is just a way to avoid the problem : you ask for real money but
you are paid with meta-money.

» Classical logic is the logic of reality, the realistic logic. The realist
paradigm, which is criticisable in the classical case, becomes impossi-
ble as soon as we step out of classical logic. An interesting exercise is the
building of a Broccoli logic : it consists in introducing new connectives,
new rules, the worst you can imagine, and then to define everything a
la Tarski. Miracle of miracles, completeness and soundness still hold :
just because the reality has been defined from its representation : typi-
cally the semantics is the syntax in boldface ; but this nonsense gets a
beautiful name, the free Broccolo.

» Moreover there is a basic mistake in the idea of semantics-as-reality. Ev-
erybody has seen a proof, maybe not a formal one, but at least something
that can be transformed into a formal proof by a computer. But nobody
has ever seen the tail of a model, models are ideal (usually infinite) ob-
jects. Moreover, what is the destiny of a proof 7 It is to be combined
with other proofs : theorem A can be used as a lemma to yield B. This
suggests looking for an internal explanation.

1.1.3 The foundational Trinity

Usual « foundations » therefore involve three layers, just like the Christian
Trinity :

Semantics : A first, irreducible, layer is realistic : properties are true or
false, they refer to some absolute external reality, the integers —you
know 0,1,2,... Think of the Father.

Syntax : Due to incompleteness, a second partner appears : there are stronger
and weaker theories, i.e., ways of accessing this absolute truth. This is
the Son (a.k.a. Verb) in the Foundational Trinity.

Meta : Truth is « defined » via a pleonasm, Tarskian semantics (a.k.a. vérité
de La Palice) ; later on, this absolute truth turns into a sort of Animal
Farm where some are truer than others ; even worse, among the truths
some are « predicatively correct », some are not, think of the consistency
of « predicative arithmetic » : in the Library of Truth, these incorrect
truths are relegated to the inferno together with the licentious books of
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Marquis de Sade. Some sort of glue —or smoke, is welcome : this is the
Meta, which is the Holy Ghost (a.k.a. go-between) of the Trinity.

The Trinity fixes the Tarskian pleonasm by allowing the Father to be no more
than the « meta » —the genitor— of the Son, which in turn can be the meta
of somebody else : « Turtles all the way down », each turtle sitting on a
bigger metaturtle. The various layers are related through (in)completeness
and soundness. It is not impossible that this construction eventually collapses
—Ilike the epicycles of Ptolemaeus... or simply like the stack of turtles in
a famous Japanese riddle. By the way, we shall see in 1.3.1 and 3.4.4 that
completeness is better described as an internal property.

1.1.4 The Thief of Baghdad

The ludic programme abolishes the distinction syntax/semantics. At least
at the deepest level : practically speaking the distinction may be seen as a
polarisation : my viewpoint is rather syntax, whereas my opponent’s viewpoint
is perceived (by me) as semantics. As the name suggests, ludics takes its
inspiration in the game-theoretic paradigm :

» Formulas = Games
» Proofs = Winning strategies
» Truth = Existence of a winning strategy

This tends to collapse the first two partners of the Trinity —thus denying any
role to the meta. But this is an obstinate guy : close the door, most likely he
will try the window, here the rule of the game. Who tells you that this move
is legal or not, who determines the winner... For instance Gédel’s Dialectica
interprets A by something like 32°Vy"¢(x,y) = 0. x,y can be seen as sort
of strategies in a game, whose rule is given by . This involves a splitting in
two layers : the players vs. the « referee », i.e., the meta. The same can be
said of all modern « game semantics » who —although more clever than the
antique Dialectica— respect this dichotomy of a rule of the game on top of an
interaction : game semantics admits two layers of semantics, the opponent-as-
semantics, and the rule-as-semantics, the latter being a sort of meta-semantics ;
this schizophrenia is symptomatic of an archaic stage of foundations.

As we shall see in 3.3.3, ludics closes the window too, by allowing the rule to
be part of the game, this is the idea of a game by consensus : the role of the
referee is played by the opponent. This means that the opponent has a lot
of losing strategies —called dog’s play— whose only effect is to control your
moves : if I move in an « incorrect » way, then he is likely to use one of these
dog’s strategies and produce a dissensus, i.e., argue forever ; but if I move
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« correctly », the same strategy will be consensual and nicely lose. This is
symmetrical : I have my own dog’s strategies to control his moves. . .

The door is closed, the window too, but the cellar is open : the thief can still
rely on the myth of the « ambient space ». This is simple, I give an explanation,
but my explanation is done in a language (e.g., classical set-theory) which is my
meta, one cannot escape one’s meta... This argument has been heavily used
against any kind of non-realistic foundations, e.g., against intuitionistic logic.
People will agree on the distinction between Jn and —=—dn, one is effective, the
other not, but this is a matter of eavesdropping : in the « ambient » space, the
distinction vanishes.

1.1.5 The ambient space

So everything is embedded in a classical « ambient space » : this is the ultimate
weapon of the meta. What to say about this sophism 7

A first remark is that alternative foundations cannot be done in alternative
mathematics —think of the unfortunate ultra-intuitionism. On the other hand,
set-theory is flexible enough to harbour various parts of mathematics, for in-
stance operator algebras : but I would not dare to say that set theory is more
basic than operator algebra ! In fact, the use of set-theory is the recognition
of a convenience, by no means of a foundational status.

Let us take a geometrical analogy : in the XIX™ century, non-Euclidian ge-
ometries were introduced, the most basic example being that of a sphere em-
bedded in Euclidian space. Non-classical logic —intuitionistic or linear— can
be likewise eventually reduced, embedded, in classical logic, set-theory... But
« embeddable » is not the same as « embedded », i.e., varieties make sense by
themselves —even if science-fiction finds it convenient to bypass speed limita-
tions by shortcutting through a surrounding Euclidian hyperspace. When we
embed everything in a classical universe, are we doing something necessary,
canonical, meaningful, or are we just using a hygienic convenience ?

Logic is about thought, not about concrete objects. Foundations are impossi-
ble ex nihilo since they would involve a thought located outside the thought.
For similar reasons it is a priori impossible to take a photo of the universe
since one would need a point of view outside space ; but cosmology made a lot
of progress last century, without allowing any room for a « meta-space-time ».
This analogy makes us understand that the so-called « meta » could be nothing
more than the necessary expression of the foundationalist attitude : the very
study of logic generates a strange posture, which perhaps does not make sense
at all.

To sum up, certain paradoxical formulas might have just as much meaning as
the distance to o Centauri via the hyperspace. What we try to express posi-
tively through the main thesis of ludics, locativity : the existence of a « logical
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space » with which one cannot tamper.

1.1.6 Logic vs. Physics

We just alluded to general relativity ; the comparison with Physics is always of
interest. For instance, up to 1900, the dominant physical paradigm was deter-
minism in the style of Laplace, « everything can be computed from the initial
position », which contains in fact two layers, one being about abstract deter-
minism, the other being about our faculty of prediction, semantics and syntax
so to speak. The work of Poincaré —later, the theory of chaos— definitely
ruined the mere idea of prediction, this must be compared to incompleteness.
But the comparison turns short here, for we should imagine a physics surely
chaotic, but still deterministic, to match the present state of logic : in this
physics, future is written in a Big Book —but this book is out of reach. For-
tunately quantum physics left nothing of this frightening fantasy !

1.1.7 Subjective aspects of realism

Of course one cannot destroy realism by an act of will, there is a natural ten-
dency to reify... An example : some people introduced long ago the idea of
potential (vs. actual), and soon afterwards the set of all potentialities. .. with
the result that 99% of the original idea vanished : the potentialities were rei-
fied, i.e., actualised. The task in that case would be to define « potential » in
such a way that the set of all potentialities would not make sense... moreover
the definition should be quite natural, otherwise why shouldn’t nature shun
such a thing ?

This tendency to reify explains why the current interpretation of quantum me-
chanics is not that convincing. Imagine a sort of quantum philosopher arguing
with —say— Descartes : the poor guy would not get a chance. .. but he would
be right whereas Descartes and his realism are wrong. The problem is that the
global structure of realism is much elaborated and deeply rooted in our minds
—especially Western minds.

Coming back to logic, the stronghold of realism is of course natural numbers.
It is clear that any foundational reflection should —sooner or later— cope with
integers, which are so deeply rooted in our (wrong) intuitions and our (wrong,
but efficient) formalisms, that one may question the possibility of achieving
anything in that direction. No doubt that this is a problem, but one can
imagine indirect approaches, typically through the theory of exponentials, see
section 5 below.
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1.1.8 Hands tied in the back

« 100g pasta, 1 litre water, 10g salt. Add salt to boiling water. Add pasta, stir-
ring occastonally. Cook for 10 minutes. Drain pasta keeping part of water. »
This recipe for Penne Rigate is taken from a current brand, Pasta Barilla.
The obvious question is the meaning of the recommendations (interdictions).
First observe that if we follow them, everything works ; but is there a reason to
follow them, what is the reference of these rules 7 For instance it is legitimate
to question the idea of salting the boiling water : could we salt before boiling ?
« NO : the salt must be put after »... at least it is what some people will say
—in relation to the authority of Zia Ermenegilda, a sort of meta-pasta that
you cannot taste but to which you must conform, Tarskian cuisine so to speak.
This attitude is common in foundations, there are too many artificial restric-
tions. By the way, this was one of the major objections of Hilbert to Brouwer :
intuitionism is a sort of mathematics with « a hand tied in the back »*. Nowa-
days, most attempts at foundations keep a hand in the back. Certain principles
—induction, comprehension. .. — are forbidden under a principle ending with
« ism ». There is no doubt that this sort of bondage achieves something, but
another « ism » may do as well, perhaps better. How can we decide 7

If we exclude divine revelations, the only possibility consists in making things
interact with alter egos. In the case of pasta, one alters the recipe and see
whether it tastes the same. Typically, put the salt before boiling, you will
notice no difference ; push the cooking time to 15mn and you get glue.

To sum up, restrictions are not out of a Holy Book, but out of use. And use
is internal, i.e., homogeneous to the object.

1.2 The present state of foundations
1.2.1 The copyright

Realism says that truth makes sense independently of the way we access it.
Accept this and you are bound to compare the « strengths » of various for-
malisms, i.e., the sizes of the metaturtles. However, commonsense should tell
us that nobody has ever seen the class of all integers, not to speak of this
« Book of Truth and Falsehood » supposedly kept by Tarski. All these ab-
stractions, truth, standard integers, are handled through proofs —hence the
« reality » may involve a re-negotiation of the intertwining between proofs and
« truth » —whatever the latter expression means, perhaps nothing at all.

But nothing of the like has been so far done. The compulsory access to « foun-
dations » is through a bleak Trinity Semantics/Syntaz/Meta : this approach

3Hilbert himself was even more drastic as far as his fantasmatic « metamathematics »
was concerned !
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owns the copyright, if you don’t accept this, you are not interested in founda-
tions, period?. The problem with the copyright is that it dispenses one from
addressing the original question : « no new disturbing phenomenon will be dis-
closed, we concentrate on internal problems ». In an area such as foundations,
this attitude should be called scholastics, from the medieval philosophers —or
rather their followers— who kept on transmitting an ossified approach to logic.
Clearly, if this is the only approach to foundations, one should do something
else... by the way this is what the main stream of mathematics realised long
ago.

1.2.2 The input of computer science

Traditional foundations were built as a « logic from mathematics ». By the
end of last century emerged a « logic from computer science » with its pe-
culiarities : the concept of external —ethereal— Truth (the Father) was no
longer pregnant ; on the other hand —since the computer is a badly syntac-
tic, bureaucratic, artifact— the Son (Syntax) became omnipresent. Of course
foundations of computer science difficultly departs from the Trinity —as in
the sportive saying : don’t tamper with a losing team —, but something goes
wrong. The mismatch is conspicuous everywhere, think for instance of « oper-
ational semantics » : the semantics of the language becomes the way you use
it, i.e., is syntactical. For instance lambda-terms are sometimes described as
syntax and the normalisation (rewriting) process as semantics : the idea is far
from being stupid ; but try to present it in Tarskian dressing !

The same can be said of the notorious Closed World Assumption « something
is false when not provable », which corresponds to a procedural view of logic :
negation is applied to the cognitive process itself and not to some « abstract
contents »°.

1.2.3 The input of proof-theory

Traditional proof-theory was versatile enough to be transferred mutatis mu-
tandis from the desertic steppes of consistency proofs to theoretical computer
science. Lambda-calculi, denotational semantics, game-theoretic interpreta-
tions. .. prompted a new universe, reasonably free from foundational anguish,
and mainly dedicated to (abstract) programming languages. It now seems that

4This sort of situation is not exceptional, remember Communism with its copyright on
« Progress ».

5This correct procedural intuition was translated into a commutation of negation with
provability and stumbled on incompleteness, halting problems : « non-monotonicity », « cir-
cumscription »,. . . tried to accommodate some procedurality inside classical logic : to figure
out the disaster, imagine a horse-cart powered by a rocket.
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enough has been gathered to venture a first synthesis —this is ludics— and to
transfuse fresh blood into the anaemic foundational body.

1.2.4 The locative thesis

When I say « fresh blood », this is not rhetoric, I mean completely new ideas ;
really shocking ones, the kind that receives at best only polite reactions. This
is the case for the locative thesis, which says that usual logic is wrong, because
it is « spiritual », i.e., abstracts from the location. What is location ? Location
in logic consists in these apparently irrelevant details known as names of vari-
ables, occurrences ; these details are evacuated in the first page of textbooks
—they are also the favourite topic for the hangover lecture of Sunday morning.
Location is also present in realisability, e.g., through the first bit left /right of
a disjunctive realiser, see equation (26), p. 38. However, realisability leaks so
badly —for instance —A is realisable when A is not realisable —a problem of
empty pivot, see 2.1.3— that one would hesitate to draw any positive conse-
quence from it®.

Locativity induces, among others :

» A clear approach to subtyping, inheritance, intersection types.

» The discovery of locative operations. Usual (spiritual) operations are
obtained from the locative ones by use of delocations, i.e., isomorphic
copies which prevent interferences. The typical example is that of a
conjunction whose locative form is A N B and whose spiritual form is
©(A)N(B) ; compare ANA = A with p(A)NyY(A) ~ Ax A, see 4.1.4
for a precise statement.

» The individuation of second-order quantification as an autonomous op-
eration, not a poor relative of the first order case. In particular second-
order logic validates classically wrong formulas.

All this is the evidence that locativity is a positive feature of logic, and not an
impossible mess.

But we must now unwind the process leading to locativity ; in the beginning
stands the uncommon idea of a procedural logic.

1.3 Procedural logic
1.3.1 The subformula property

The domain of validity of usual completeness corresponds to closed IT' formu-
las (roughly : first order formulas universally quantified over their predicate

61t is fair to say that ludics is mostly about finding the right space of realisers.
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symbols ; this terminology is slightly misleading, since the 3¢ formulas of arith-
metic are IT'). Completeness is the identity between truth and provability for
IT' formulas, whereas incompleteness is the failure of this property for the dual
class ', which contains the IT) formulas. Now if we formulate logic in sequent
calculus, we discover that the subformula property holds for the same class IT',
and fails outside. What does this mean ? If we consider cut-free proofs, then
all possible proofs are already there, there is no way to produce new ones. In
other terms, the calculus is complete —nothing is missing. Observe that this
completeness does not refer to any sort of model, it is an internal property
of syntax. Such a property cannot be an accident, it should be given its real
place, the first :

The subformula property is the actual completeness

In order to make sense of this, syntax has to get its autonomy, to become
the main object of study, with no relation to anything like a preexisting se-
mantics... and, in the absence of any umbilical link to a semantics, it will
eventually lose its character of syntax, it will become a plain mathematical
object.

1.3.2 The disjunction property

The idea of a procedural logic must be ascribed to early intuitionism : an exis-
tence theorem should construct a witness. The most spectacular consequence
is the disjunction property « A proof of AV B induces’ a proof of A or a proof
of B ». Disjunction therefore commutes with provability, i.e., applies to the
cognitive process : to prove AV B is to prove A or to prove B. Intuitionistic
logic is procedural in the sense that it refers to its own rules, in contrast to
classical logic which is realistic, i.e., refers to its own meta.

Procedurality is considered suspicious, since it opens the door to subjectivism,
but this is a superficial impression®. For instance realism interprets V by meta-
V ; depending on the weather, meta-V can be classical, intuitionistic, or enjoy
intermediate properties like =4 V ——=A : there are full handbooks® dedicated
to such logics, all of them sound and complete with respect to their own meta
(the same in boldface). On the other hand, if we try to enrich classical logic
with a connective enjoying the disjunction property, we badly fail : this con-
nective turns out to be the same as classical disjunction.

There are two positive features of procedurality, first it is absolute (it refers

7Only a moron would state AV B if he has obtained A, hence the statement only applies
to cut-free proofs. The word « proof » will therefore be short for « cut-free proof ».

8Some style procedurality as « intensional », others as rubbish : they basically agree !

9Not quite about alternative disjunctions : it is too difficult to tamper with this connec-
tive ; but this is not the case with modalities if you see what I mean.
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to concrete operations on proofs), whereas realism is relative (it refers to our
intuition of the universe, i.e., to what we already have in mind). Second, most
procedural interpretations will be inconsistent : it was a true miracle that a
connective enjoying the disjunction property could be found, and the price
was a drastic modification of logic. Even more difficult was the discovery of an
involutive procedural negation —this was the main achievement of linear logic.
We eventually discover that procedurality is more demanding than realism.

1.3.3 A logic of rules

Procedurality is not intensional rubbish, it is a change of viewpoint, corre-
sponding to the lineaments of a logic of rules. The idea is that disjunction
can be applied to the proofs (prove A or prove B) : it is an operation on the
representation, not on the « world » —if there is anything like the world.

In ludics, the disjunction property appears as the completeness of disjunc-
tion —an internal version of completeness, closely related to the subformula
property, see 4.1.6.

1.4 An example : Barbara
1.4.1 Old scholastics
Barbara is the familiar syllogism :

Vz(Ax = Bx) Vz(Bxz = Cx)
Vz(Az = Cx)

Barbara

Scholastic philosophers were basically concerned with the explanation of syllo-
gisms by mutual reduction ; in particular the acronyms Disamis, Celarent,. . .
contain information as to these reductions. After centuries of repetitive work,
this sort of activity became suspicious —and the expression « scholastics »
derogatory.

1.4.2 New scholastics

By the beginning of last century, Y.ukasiewicz explained Barbara —and all the
other figures— by the transivity of inclusion. The usual reaction to such an
explanation is that of the layman in front of one of the compressed automobiles
of the late César : rubbish!’. With some education, you learn politeness and
eventually find some (well-hidden) virtues in the product. But, education or

10Myself I remember being taught about inclusion ; three increasing potatoes were drawn
on the board, but a comment from the teacher, a sort of Barbara-without-the-name, was
still needed.
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not, this regressive explanation fails at explaining the major point : why is
there a rule, why this one precisely, how do we explain the distinctions between
the various syllogisms —not to speak of their mutual reductions ?

1.4.3 Category theory

A major anti-realistic breakthrough was the introduction of categories in logic.
The climateric work was the Curry-Howard isomorphism of 1969, but there
was something in the air, think of Prawitz’s work on natural deduction (1965),
Scott domains (1969), my own system F (1970), Martin-Lof’s type theory
(1974). With the decisive input of computer science, the Boulder meeting
(1987) was the apex of this « time of categories ».

Category-theory is often styled as nonsense because of the abuse of diagrams :
indeed it is like Japanese cuisine, it does not stand mediocrity ; so let us forget
the fat and proceed to the meat. Category-theory is a remarkable attempt at
revoking this bleak distinction subject/object. In category, we have objects
(objective) and morphisms (subjective)... and they live happily together.
Now look at the categorical version of the same : A, B,C become objects,
proofs become morphisms, i.e., object and subject start to communicate. Even-
tually Barbara is composition of morphisms, something which is definitely not
regressive with respect to Aristotle.

1.4.4 Barbara as a proof-net

Categories induced the first mature re-negotiation of the relation object/subject ;
this eventually gave birth to linear logic. Linear logic yielded in turn a proce-
dural explanation of Barbara rewritten as'!

= =
\/ \/ \/

Cz @ Bz Brt@ Az Azt Cx

Jr(Cz'®Br)  Jz(Br'®Az)  Vr(Az'%Czx)

The syllogism is eventually explained by the topology of this graph-like proof,
called a proof-net.

HImplication is translated as linear implication, not as usual implication... This is not
an abuse, one had to wait for Boole to get the idea of idempotency, i.e., the contraction rule.
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This interpretation is really subtler than the Tarskian one, for which all syllo-
gisms are about transitivity of inclusion, period. In particular Tarskism cannot
make sense of Aristotle’s original taxonomy of syllogisms (first figure, second
figure...). In contrast, proof-nets do : a recent analysis of syllogisms due to
Abrusci shows that the figures of Aristotle correspond to crossing numbers :
e.g., Aristotle « first figure syllogisms » induce planar proof-nets.

2 Hilbert revisited

The basic choice is between Hilbert’s Programme (updated or not) —a sort
of millennium bug— and anti-realism : something more experimental, more
in the style of... 1900, when people were still trying, had not yet learned to
pretend. .. Hilbert was precisely one of these guys, so let us revisit Hilbert.

2.1 On absurdity
2.1.1 Hilbert’s program

Hilbert had to face certain paradoxes like Russell’s. Since paradoxes come
from our intuition of the real world, the idea was to put reality aside and to
emphasise the formal treatment : this leads to another procedural approach to
logic : consistency. We know since 1931 and the incompleteness theorem that
this approach is wrong, but the refutation is rather technical. In what follows,
we try to re-explain Hilbert’s proposal as a duality between proofs of A and
proofs of —A... with an essential flaw, namely that the pivot, the dualising
object, (here : the proofs of absurdity) is empty, and it’s quite impossible to
build an interesting duality on an empty pivot, see below.

2.1.2 Duality in logic

Since meaning by truth is forbidden, let us try meaning as use. The use of
a theorem is through its consequences : A is bound to have corollaries B,
hence one should accept as true (i.e., as a theorem) anything having true
consequences, whatever this means : A is true iff for any B, whenever A = B
is true, then B is true :

A A= B
B

Modus Ponens

This correct characterisation is not yet an explanation, think of B = A : one
should eventually get rid of this unknown B, i.e., « close the system ». This
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prompts one to simplify the previous Modus Ponens into the cut :

FA Ab
l_

Cut

A proof of A is anything which, combined with a proof of —A yields a proof of
the absurdity. But what are the proofs of absurdity ?

2.1.3 Consistency

If we stick to the literal sense of « proof », there can be no proof of the ab-
surdity. Then A is true (provable) if A is not true, i.e., not provable. In
this monist reading, truth becomes the same as consistency. This is the ba-
sis of Hilbert’s Programme, and the idea —the mistake— was rediscovered in
computer science, through non-monotonic logics, closed world assumption. ..
without even the excuse of novelty. Indeed, something in the structure of the
duality should warn us in advance : the cut (Modus Ponens) establishes a
duality between proofs of a formula and proofs of its negation, the output of
the duality being in... the empty set. Transpose this in the Euclidian Space
and think of the duality defined by z Ly := (z | y) € 0, i.e.,  never orthogonal
to y. Then X' is empty when X is non-empty, and @+ = R?, bleak indeed !

The empty pivot is responsible for this familiar drawback of realisability,
namely that if A is not realisable, then —A is realisable, thus destroying any
reasonable hope of a faithful realisability interpretation... Not to speak of

nonsenses like « =A V ——A is realisable, but I cannot name the realiser »,
which are backstrokes of the Thief of Baghdad.

2.1.4 'Wrong proofs

So far so bad... But isn’t it because we used a simple-minded notion of proof
too much linked with a literal interpretation of reasoning, in particular with the
idea that formal reasoning should be correct 7 Why not allow more « proofs »
—maybe dubious— so as to replace the traditional duality :

Proofs of = A / Models of A
with something of the form :

Proofs of = A / Proofs of AF

In this respect the proofs of the negation could be seen as sorts of « coun-
termodels » —but now part of syntax, no longer of « reality ». The only «a
priori objection to such a thing is consistency ; but among proofs some might
be more correct than others, so that consistency would be maintained by the
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exclusion of « wrong » proofs. By the way, if this idea of a wrong proof seems
artificial to you, what would you say about transfinite stacks of metaturtles 7
But where to find these additional wrong proofs ? Our only clue is the cut-
elimination procedure : a proof of - A and a proof of A - put together should
produce, through cut-elimination, a proof of - 2.

2.1.5 Faith

Write naive set theory in natural deduction style, which Prawitz did in 1965.
Russell’s paradox yields a cut between a proof 7 of ma € a and A of a € a -
whose normalisation diverges, what we can note < 7 | A > = 0 ; the symbol
2 —standing for divergence— is reminiscent of the u of recursion theory, or
the AA of lambda-calculus. {2 can be seen as a notational convenience, it can
also be handled as an object, called Faith (i.e., the faith in convergence). But
whatever choice we make, it is not in this way that we shall get a proof of the
absurdity : our way out of Russell’s paradox is not to forbid the cut between 7
and A (which can be performed, this is precisely what Prawitz did), it is just to
deny their orthogonality : if we consider syntax as a way to avoid divergence, 7

and A cannot receive simultaneous specifications - A and A - (with the same
A).

2.1.6 Daimon

We just saw that the basic duality can fail ; this means that it should some-
times succeed, but nothing in the extant proof-theoretic tradition can help us.
Coming back to Euclidian space, Ly := (x | y) = 0 is a beautiful orthogo-
nality relation (the orthogonal of a line is a plane... ) ; absurdity should be
given a proof —something like 0—, but can we seriously allow that 7

What seemed absurd at the time of Hilbert is more reasonable at the time
of proof-search : Logic Programming is organised as the search for cut-free
proofs. Starting with the conclusion, the idea is to guess a last rule, then a
rule above..., up to completion. Most likely the process eventually aborts,
for want of a possible rule to apply, but we anyway did construct a truncated
proof. It turns out that these truncated proofs are formal objects just as good
as usual ones ; in particular one can develop a (straightforward) proof-theory
and normalise cuts involving such proofs..., provided abortion is clearly ac-
knowledged as a new rule, the Daimon Q.

The addition of the daimon to syntax by no way produces an inconsistent
system —provided we don’t play on words. Of course every formula becomes

12Tt is by the way funny to remark that traditional proof-theory is precisely about this
situation —with the frustrating feature that the situation never occurs— : such a work
about the empty set !
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provable with the help of the daimon, but what about daimon-free provable
formulas 7 They are closed under consequence, i.e., cut-elimination : this is
not surprising, before ludics, nobody ever heard about a logical daimon, but
people knew how to normalise ; in other terms, the daimon cannot be created
through normalisation.

Usual proofs therefore appear as daimon-free ones. The new « proofs » us-
ing the daimon occupy a space which is usually devoted to models : instead
of having models of —=A, we shall have proofs of A+'3. The difference is as
follows :

» In the classical paradigm, the notions of proof and models are absolute.
A proof of A proves A beyond discussion, a model of —A refutes A beyond
discussion. To the point that putting together a proof of A and a model
of = A is absurd. We are back to the empty pivot.

» In ludics, proofs —or models— are relative. They try their best to follow
the rules, the truth tables, but nobody is perfect. An imperfect proof of
A can be opposed to an imperfect proof of A+ ; the interaction eventually
yields a daimon —which has been produced by one of the two proofs,
which is therefore incorrect. This does not necessarily make the other
proof correct, since it may be opposed to another « counterproof » against
which it now « fails ».

2.2 From proofs to designs
2.2.1 Geometry of proofs

What remains to be found is an object having the structure of a proof, but free
from syntactical commitments. This object —a design— roughly corresponds
to the geometrical structure underlying a sequent calculus proof. We should
separate two layers, one being « what is actually performed », the other being
useful comments ; useful to us —typically the name of the formula proven— but
of no mathematical significance. A toy model of this is typed lambda-calculus :
in a typed lambda-term the real guy is the pure lambda-term obtained by
erasing the type decorations which can be seen as superfluous comments (they
are useful specifications, but they don’t participate to normalisation).

The process of finding the object has been very complex ; we already mentioned
the invention of the Daimon. But the crucial breakthrough was the discovery
of polarities.

I3Notice the use of linear negation ; this conceptual shift is technically impossible with
usual negation.
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2.2.2 Polarities

Curiously, the notion of polarity existed in logic long before its invention, but
with no status. For instance, the « negative fragment » of intuitionistic logic
regroups V, =, A, namely the connectives which are well-behaved with respect
to natural deduction. The notational gimmick of linear logic individualises
two classes of connectives, one in « logical style », the negative %, &, T, L, ...
one in « algebraic style », the positive ®,®,0,1,... ; in this way it is easy to
memorise remarkable isomorphisms, typically distributivity. It is only around
1990 that this convenient distinction turned into a fundamental of logic.

The first remark is that, for any connective, there is always a side of the
sequent on which contraction is free. Typically, the contraction rule on VxA
is redundant on the right of sequents : we can get it from a contraction on
A ; the same holds for existence, but on the left. This is a first account of
the distinction. The second remark comes from logic programming : negative
connectives are invertible, i.e., they have a deterministic right rule : typically,
proving - A = B is quite the same as proving A - B. The fundamental
remark of Andreoli —known as focalisation— is that the positive connectives
—the non-invertible ones— enjoy a dual property. This property can be stated
as follows : a cluster of operations of the same polarity can be seen as a single
connective. Typically we can write complete rules for the double quantifiers
VzVy or drdy seen as a single operation, but not for the combinations Vx3y
and dxVy. In the first case the two quantifications can be performed as a
single step, in the second case, they must be performed sequentially. Polarity
is therefore about time in logic, about the intrinsic causality between logical
rules.

2.2.3 Polarised proofs

To understand how things work, let us take a concrete example, namely the
positive formula A = ((P+®Q1)®R"'), where P, Q, R are positive. A is treated
as a single ternary connective ®(P+, Q-+, R*) applying to negative subformulas
Pt QY RY,ie, A= ®(PL Q1 RY). We take advantage of the new notion of
polarity and only use positive formulas ; this means that a negative formula is
handled by means of its negation on the other side of the sequent. Our sequent
calculus will therefore consists of sequents I' F A made of positive formulas.
Inspection of the rules shows that it is enough to restrict to the case were I'
has at most one formula!'*. The rules for A are

14This is quite the usual intuitionistic restriction, but left and right have been exchanged. . .
This is because we are using positive formulas, whereas intuitionistic logic is merely con-
cerned with negative formulas.
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P+T RFA
(-A,(P,R))
-FAP.R FAQR FL,A4
(A {P,REAQR})
AFA QFT RFA
(-4.1Q.R))
FT,A, A

The right rules are obtained by combining a right Tensor-rule with one of
the two possible right Plus-rules and negation, yielding two possibilities dis-
tinguished as (F A,{P, R}) and (F A,{Q, R}) ; the left rule is obtained by
combining the Par-rule with the With-rule and negation. The rule is written
(A H {{P,R},{Q, R}}) in order to stress the existence of two premises, one
involving P, R, the other involving @, R.

As already explained, besides these « standard » rules, we need another one,
the Daimon :

—
FA

The daimon is restricted to the case « I' empty » ; the case A - A is indeed
derivable, see the Negative Daimon in 3.2.2.

2.2.4 Normalisation

Proof-theory is organised along cut-elimination. In the previous case, let us
assume that we are given a cut between - ') A, A and AF A :

1. If F T, A, A has been obtained through a rule (- A, { P, R}), replace with
two cuts between HF A, P, R , P-T and R+ A.

2. If - T', A, A has been obtained through a rule (- A, {Q, R}), replace with
two cuts between F A, Q,R , QFT and R+ A.

3. If = T', A, A has been obtained by a daimon, replace with the proof of
F T, A, A consisting of a daimon.

4. Otherwise, apply a commutation of rules.

In the first two cases, the point is that the left rule for A is invertible, hence
we do know that A - A follows from the two premises - A, P, R and - A, Q, R.

3 Designs and behaviours

What follows is a slightly simplified version of ludics.
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3.1 Designs
3.1.1 Locations

It remains to remove logical decorations. However, since a proof is basically a
sequence of formulas, one should be careful not to remove everything. Indeed
we shall keep the location, the locus of the formula. This locus is a very
concrete notion, it is the place where the name of the formula is written : we
shall assume that this space is the usual infinitely branching tree. To come
back to our previous example, if A has been assigned the locus o, then its
immediate subformulas P, @, R will be distinguished by biases 3,4,7 —e.g.,
@ is the subformula of relative location 4 of A— and be respectively located
in 0 x 3,0 %x4,0 %« 7. The logical rules just written will be interpreted by the
disintegration of ¢ into its subloci o * 3,0 % 7 and/or o * 4,0 * 7.

3.1.2 Occurrences

It is time to revisit an old nonsense of logic, so-called « occurrences » : a
given formula A may « occur » at different places. In theology this familiar
property of Saints is known as bilocation but we are in mathematics : two
objects with distinct locations cannot be quite the same. But they can be
isomorphic ; concretely an isomorphism —called a « delocation »— relating
the two « occurrences » is provided. This means that :

1. Our formula A can be located everywhere in our tree of loci. But when
we change the location we are not quite with the same A, we are with
an isomorphic copy.

2. The three subformulas of A have been given the relative locations 3,4, 7 ;
we could have chosen as well 9,6,22. The result would have been defi-
nitely different since for instance 7 # 22, but of course isomorphic.

This distinction between equality and isomorphism is not a gilding of the
lily. It corresponds to the replacement of the dominant spiritual treatment
of logic with a more refined locative approach. It has spectacular positive
consequences, such as the expression of the cartesian product as a delocated
intersection, see 4.1.4.

3.1.3 Pitchforks

A sequent made of loci is called a pitchfork!®. In a negative pitchfork £ - T, &
is called the handle, in a positive pitchfork - T, there is no handle, only tines.

15These loci must be pairwise incomparable with respect to the sublocus relation.
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What has been so far sketched translates into a sort of « pitchfork » calculus,
with the following rules :

Positive rule : I is a ramification, i.e., a non-empty finite set of biases, for
i € I the A; are pairwise disjoint, with A = [JA; : one can apply the
rule (finite, one premise for each i € I)

Exik AL
FAE

(F&1)

Negative rule : N is a set of ramifications, the directory of the rule : one
can apply the rule (perhaps infinite, one premise for each I € N ; as
usual, & x I is short for {€ x4;7 € I})

R AEXT. .
£ A

(€N

Daimon :
—— K
FA
¢ is called the focus of the rules (- &,7) and (£ F,N). The three rules dis-

covered in 2.2.3, are therefore written (£ -, {{3,7},{4,7}}) , (F & {3,7}) and
(F&{4,7}).

3.1.4 Designs

A design is anything built in the pitchfork calculus by means of these three
rules. No assumption of finiteness, well-foundedness, recursivity, is made ;
designs can therefore be badly infinite. However infinite designs can naturally
be written as « unions » of finite designs : any design ® is the directed « union »
of the finite designs obtained by restricting all negative rules of ® to finite
directories, all but a finite number of them being empty, see 3.2.4.

Usual sequent calculus contains a distinguished rule, called « identity axiom ».
In usual syntax, identity axioms can be replaced with n-expansions, but they
are still needed for propositional atoms (variables). In ludics, the 7-expansion
can proceed « beyond the atoms », yielding the Faz, see 4.2.7 ; this is why
ludics has nothing like an identity axiom.

3.2 The analytical theorems
3.2.1 Normalisation revisited

In 2.2.4 we defined —or rather sketched— normalisation. This translates mu-
tatis mutandis to the « pitchfork calculus », provided we avoid some pitfalls :
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1. Cut is no longer a rule, it is a coincidence handle/tine between two
designs. Typically a design of base (conclusion) o 7 and a design of
base I o that share o form a net of base (conclusion) - 7'6.

2. Cases 1,2 of the syntactical process replace a cut on o by two cuts on
o%3,0%7 (or o x4,0 7). But this is a mere accident due to logic : we
have respected the rules of the formula A and the left rule happens to
exactly match the possible right rules. But there is no longer anything
like A —for instance, o does not encode the formula A—, which means
that in case of a cut between a positive rule (- o, ) and a negative rule
(¢ F,N) it may happen that I ¢ N. In that case the normalisation
process diverges, there is no normal form. We can use the symbol € to
denote a diverging output, but this is a convenience, Faith not being a
design.

3. We had in mind a finite normalisation, but designs need not be finite.
In particular what may happen is an infinite sequence of normalisations,
a cut is replaced with several cuts, one of these cuts in turn is replaced
with other cuts... Such process also diverges, i.e., yields the non-design
() as an output.

The value of the concept of design lies in a certain number of remarkable
properties, which are the respective analogues of Bohm’s theorem, Church-
Rosser property, and stability.

3.2.2 Separation

Meaning is use ; if a design is a really meaningful structure, all of it must be
usable, observable. But how do we use a design ® of base - ¢'” ? Simply by
cutting it with a counterdesign € of base o - and normalise. The base of the
resulting net is the empty pitchfork - and there are very few possibilities :

Consensus : the normalisation converges, and the normal form is the only
design of base -, namely »X. In that case, we say that 2, € are orthogonal,
notation L €.

Dissensus : the normalisation diverges, i.e., yields the non-design ).

Given ® one can consider the set D+ of those counterdesigns & which are
consensual with ®. The separation theorem states that designs are determined
by their orthogonal, i.e., their use :

16The notion is easily extended to several cuts : the coincidence graph must be con-
nected/acyclic.
17The discussion applies to any base.
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THEOREM 1 (SEPARATION)
If ® # %' then there exists a counterdesign € which is orthogonal to one of
9,9 but not to the other.

This analogue of Bohm’s theorem has a topological meaning. In the coarsest
topology making normalisation continuous, the closure of the singleton ® is
the biorthogonal ®+1. The separation theorem states that this topology is
7o, i.e., that the preorder ® < ®' & D'+ C D+ is indeed an order. In other
terms, we can form a Scott domain with designs : this is our bridge with first
generation denotational semantics.

The separation theorem has an effective version, which amounts at giving an
explicit description of the relation < : ® <2’ i.e., « ®' is more converging
than ® » if ®" has been obtained from © by means of two operations :

Widen : add more premises to negative rules, i.e., replace N” with N7 D N.

Shorten : replace positive rules (£, I) with daimons —which has the effect of
reducing the depth of branches.

On a positive base, the greatest —most converging element— is the Daimon ;
Faith would be the smallest design —but has been excluded from the « offi-
cial » definition. On a negative base, there is still a greatest design, called the
negative Daimon :

— X
F&ExI, A
EFA
The smallest design is called the Skunk :

(&0rMN\{0})

— (&0)
&

The name will be explained in 3.3.5.

3.2.3 Associativity

Strictly speaking, since normalisation is deterministic, there is no need for a
Church-Rosser property. But besides the narrow technical meaning of Church-
Rosser, there is a deeper one, namely that in the presence of two cuts, the

output of normalisation is the same, whether we normalise them altogether,
or one after the other, something like ABC = (AB)C :

THEOREM 2 (ASSOCIATIVITY)
Normalisation is associative : let {RR,,...,R,} be a net of nets, then

[9,U...UR,] = [[Re], ..., [Ru]] (1)
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Of course [R] is short for the normal form of the net 9R and as in recursion
theory, the equation also applies in case of divergence.

Associativity is often combined with separation to define adjoints, this is the
closure principle « everything reduces to closed nets », where a closed net is
a net whose base is the empty pitchfork. Typically, if O, & are designs of
respective bases £ F A and F &, the normal form [©, €] is the unique design
D' of base - A such that for every § of base A I :

93] =2, ¢ 3] (2)

The normal form of a net G is determined by the normal forms of all comple-
tions of G into a closed net. The principle is very useful, since closed nets do
not need commutative conversions.

3.2.4 Stability

Stability was introduced by Berry in the late seventies and is the distinc-
tive feature of second generation denotational semantics —typically coherent
spaces— which eventually led to linear negation.

Let us go back to separation and the relation © < ®’. The relation means
that, if we replace ® with ®’ in a converging net, then the resulting net still
converges. As we saw it, there are two ways to be « more convergent », one is
to be shorter, which can be summarised by (- &, I) < & ; the intuition is that
if the normalisation process makes use of the positive action (- &, T), then the
process will converge quicker if we replace it with »X : it immediately stops.
The other way is to be wider, i.e., to replace a non-premise of a negative rule,
which can be figured as a premise with nothing —i.e., the non-design —
above it, by the same premise with something —typically (- &, I)— above it.
The two ways are summarised by the equation :

Q=2 (1) 2x (3)

Widening is of different nature since it does not alter converging normalisation
processes (in contrast to shortening, which makes them. .. shorter) : Stability
is about widening, which corresponds to a plain set-theoretic inclusion between
designs'®. Stability says that when ©_L¢&, then there are well-defined —i.e.,
minimum with respect to inclusion— finite ' C 2, & C € which are respon-
sible for this, i.e., such that D' 1 @'. This property is responsible for the major
concept of ludics —incarnation, see 3.3.2.

8Defined as desseins, i.e., sets of chronicles : this is indeed the official definition, the
presentation as a pitchfork calculus being only a (slightly incorrect) convenience.
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3.3 Behaviours
3.3.1 Formulas as specifications

A formula A can be —up to isomorphism— located everywhere, more precisely,
when A is positive (resp. negative) it can receive any location - o (resp.
o ). Say for instance that A is negative and located in o  ; then A will
be identified with a certain set G of designs (representing the « proofs » of
A) of base o . This set is not arbitrary, it corresponds to a specification, a
« how-to », i.e., a certain use of the designs. Remember that we reduced « use »
to normalisation with counterdesigns : the use can therefore be represented by
a set G¥ of counterdesigns and we therefore obtain that G = G*+. One can
get rid of the arbitrary G* by rewriting this as G = G*++. The idea of formula
as specification translates into :

DEFINITION 1
A behaviour is a set G of designs of a given base equal to its biorthogonal.

Observe that G, which is one of the possible choices for G¥, is a behaviour
too.

A behaviour is never empty : it contains the daimon of the right polarity —
this is because "ML ¢ for all . Behaviours are closed under < : ©' <® and
D' e G, then © € G.

3.3.2 Incarnation

As a consequence, if ®' C D and ®’ € G, then ® € G, but for « bad reasons » :
nothing in ® — @’ actually matters with respect to G. Given © € G there
might be several ®’ C © which are still in G ; but among those @', there is a
smallest one, the incarnation |Dg| of © with respect to G. The existence of
the incarnation is just an alternative formulation of stability.

Incarnation is contravariant, i.e.,

GCH= |9 C |?e (4)

Hence the incarnation of ® is maximum when G is the smallest (principal)
behaviour D41 containing D ; in this case |€| = & (easy consequence of the
separation theorem).

3.3.3 Formulas as games

Can we describe ludics as a « game semantics » 7 Surely a design is a sort
of strategy, which, when put against a counter-design, yields a dispute —the
normalisation process, see 3.4.1— which is a play. Moreover, the use of the
daimon in the dispute corresponds to giving up, hence we have a notion of
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winning. But these notions are defined once for all, there is no way to tamper
with them. If we follow the usual game paradigm, little can be added : the first
player can act in such a way that the opponent cannot win —what we called
somewhere the atomic weapon. But wait a minute —the dispute generated
by a design and a counterdesign needs not converge, i.e., yield a winner. We
shall therefore impose the following : the two players do whatever they want,
provided they stay consensual, i.e., that all disputes converge. This is the idea
of a game by consensus.

The rule of the game G can then be specified by a set of counterdesigns G”, the
only requirement being consensus, i.e., ® is an admissible strategy for G iff it
is consensual with any € € G". If ©_L € is short for consensus, this rewrites as
G = G"%, which implies G = G*+ ; moreover there is a complete symmetry
here, since G is the most natural G". Eventually the game is explained by a
consensus between players, as in real life —if real life is a game.

Of course a game by consensus can be seen as a usual game, with a rule, a
referee, etc. In that respect, a design becomes a real strategy, but we have to
work up to incarnation.

3.3.4 Typed vs. untyped

Designs can be handled in two ways :
Untyped : Designs can be considered as pure, i.e., as themselves.

Typed : Designs can be considered as part of a behaviour, i.e. with a restric-
tion on their use ; they are no longer considered as themselves, but as
they should be. In particular, they are only up to incarnation.

Typically, in the case of subtyping, i.e., of an inclusion G C H, the untyped
viewpoint says that a design in G is a design in H ; the typed viewpoint
induces a coercion map which replaces a design ® incarnated in G, by its
incarnation |®|g, see equation (4) above. This ambiguity is fundamental and
has spectacular consequences —typically the mystery of incarnation which
expresses the cartesian product as a delocated intersection, see 4.1.4.

3.3.5 The Skunk

Incarnation is delicate to grasp, so let us give a simple example. The set of
all designs of a given base is a behaviour (the orthogonal of the empty set).
When the base is negative, this behaviour is noted T and it corresponds to
the additive neutral « true ». Now what is the incarnation of a design with
respect to T 7 This incarnation is the smallest design included in ® —and
still in T, but this additional requirement is always satisfied. This design is
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therefore the empty design &€ = (), corresponding to a first rule with an empty
ramification :

— (&0)

&
This design is called the Skunk, and the name is is a comment on his social
life :

» [ is the only behaviour containing G¢. From this viewpoint, the skunk
is highly social, everybody lives in his company. ..

» ... But they only pretend ; there is no incarnated design in T other
than G¢t.

Here we discover something essential, the biggest behaviour is also the smallest
one, depending on the viewpoint —typed or untyped—we adopt. Incidentally,
observe that T is the empty intersection and that {(} is the empty product :
this is indeed the 0-ary case of the mystery of incarnation.

By the way, the orthogonal of T is the smallest behaviour on a positive base.
This behaviour is noted 0. As an easy consequence of separation, 0 = {"}.

3.4 Truth and completeness
3.4.1 Winning

If ®_L &, then the normalisation process —called a dispute— is a finite sequence
[® = €] consisting of the positive rules performed —up to a final daimon,
which corresponds to termination. This is a sort of play, and the daimon
corresponds to giving up ; but this daimon comes from one and exactly one
of ©, € —this is stability— and this design loses the dispute. Let us say © is
winning when it never loses against any € ; by separation, this is the same as
saying that it does not use the daimon'®.

3.4.2 Truth

Winning induces a notion of truth : « a behaviour G is true when it contains
a winning design, false when G is true ». Now, observe that, if ©, & are both
winning, then they cannot be orthogonal —typically nobody gives up and the
dispute becomes infinite. Hence it is impossible for a behaviour G to be both
true and false. But it is not the case that a behaviour is either true or false.

19The actual theory of winning involves two other conditions which are beyond the scope
of this introduction ; but this one —called obstination— is by far the most important.
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3.4.3 Completeness

Behaviour correspond to formulas, designs correspond to proofs. We have a
rough idea of the translation of a proof into a design, and the next section on
connectives will tell us about the translation of formulas into behaviours. Quite
naturally, to each proof m of A we shall associate a design in the behaviour
associated with A, w € A. This is indeed a theorem, called soundness. The
converse —i.e., whether or not this translation leaks— has been called full
completeness by Abramsky : is every © € A, of the form ® = & for some
proof m of A 7 The idea must be refined so as to avoid pitfalls :

1. Since full completeness admits the forgetful version « true implies prov-
able », A must be restricted to those formulas for which usual com-
pleteness works. This class is familiar, it consists of first-order formu-
las —universally quantified over their predicate symbols to make them
closed— the IT' formulas.

2. Due to the daimon, ® must be winning.

3. Finally, ® must be incarnated... This last constraint is easy to under-
stand : every design lives in the behaviour T which interprets the logical
constant T. But there is only one proof of T, corresponding to the unique
incarnated design of T.

Full completeness is the statement :

THEOREM 3
If A is closed and IT', if ® € A is a winning incarnated design, then ® = 7
for some proof m of A.

The theorem has been established in [1] for second-order propositional logic
without exponentials, i.e., the contraction-free part of logic.

3.4.4 Internal completeness

Full completeness is an important milestone, since it establishes the relevance
of our approach —even if some connectives, basically exponentials, are still
missing. But it is a step backwards too, since it reintroduces this duality syn-
tax/semantics —this is the story of the Thief of Baghdad, see 1.1.4.

The tradition is to consider completeness as an external thing, syntax is
(in)complete with respect to a given semantics. We saw in 1.3.1 that the
subformula property should be considered as the real completeness « nothing
is missing », and by the way what can be the value of a completeness which
needs some external reference 7 The task is to justify this mathematically, i.e.,
to formulate a sort of subformula property independently of any syntactical
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commitment.

Let us try at giving an internal meaning to full completeness. We start with a
formula A. Logic yields rules which govern the syntactical proofs of A ; these
proofs can be translated as a set E of designs ; what can we say about E 7
Very little indeed, it is a set of designs of the same base ; to remember that
it may come from the obedience to some rules, let us call such an arbitrary E
an ethics. Now, we can see EL as the (counter-) « semantics » of E ; now E++
corresponds to what is validated by the « semantics » of E. Completeness is
therefore that E = E++, i.e., the fact that we have a direct description of a
behaviour, without using the biorthogonal. For technical reasons —especially
in the negative case—, the equality is required only up to incarnation : for
instance the set {&t} is a complete ethics for T.

The typical example of an internal completeness theorem is given by the con-
nective @, defined —modulo delocation— as (G U H)*t ; one proves that the
biorthogonal can be removed, i.e., that G U H is a complete ethics for G & H.
By the way this internal completeness of @ is the familiar disjunction property
« a proof of G @ H is a proof of G or a proof of H ».

Internal completeness is the essential ingredient of the proof of external (full)
completeness. The task is, given an object of the appropriate type, to build a
proof, indeed a cut-free proof. The main difficulty is of course to find the last
rule, for we can then iterate the construction for the premises... Typically, in
the case of a disjunction, the disjunction property provides one with the last
rule, a left or right introduction of the disjunction.

4 The social life of behaviours

4.1 Additives

4.1.1 Locative vs. spiritual

All extant explanations of logic are spiritual. This means that the objects are
taken up to isomorphism. This is plain in the Tarskian case —a formula refers
to an interpretation somewhere on the Moon— this is also the case for more
refined paradigms —typically category-theoretic ones. The spiritual treatment
of logic can be smart enough to interpret conjunction as a cartesian product
in the « constructive » case, and as a lunar intersection in general. But why
this duality of interpretations ?... Circulez, il n’y a rien & voir ! In fact the
spiritual straightjacket makes it impossible to imagine a relation between an
intersection and a cartesian product —by cartesian product, I mean a plain set-
theoretic product, not a categorical nonsense. What is needed is the possibility
of taking intersections of formulas —intersection types so to speak—, but how
can we intersect sets defined up to isomorphism 7
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Ludics is locative : a proof m of = A, located in - ¢ interacts with a proof A of
A F located in ¢ -, not on the Moon. A behaviour is made of precise objects,
which are themselves, not an isomorphism class : in ludics we can take an
« intersection of formulas », so let us see what happens. A detour through set
theory is illuminating.

4.1.2 Locativity and set theory

The familiar operation of union admits two versions :

Locative : XUY ; this operation is commutative, associative, with neutral el-
ement (). But it is not spiritual, i.e., compatible with isomorphisms (here :
bijections) ; in other terms §(X UY") is not determined by #(X),{(Y),
the best we can say is (X UY) < #(X) + #(Y).

Spiritual : a.k.a. disjoint sum, X +Y := f(X)Ug(Y), where f, g are ad hoc
injections. This is the total operation satisfying (X +Y) = §(X) +4(Y).
But commutativity, associativity, neutrality fail ; or rather you need a
serious training in category-theory to understand in which way something
of the like remains.

The same holds for the product, again with two possibilities :

Locative : XX Y = {z Uy;z € X,y € Y} ; this operation is really com-
mutative, associative, with neutral element {@} ; it distributes over U.
Unfortunately, we can only state that §(XX Y) < #(X).4(Y).

Spiritual : a.k.a. product?®, X x Y := f(X)X g(Y), where f,g are ad hoc
injections. This is the total operation satisfying $(X x V) = #(X).£(Y).
Again, commutativity, associativity, neutrality... only survive through
(canonical) isomorphisms.

The locative product is —as far as I know— a novel operation ; it is quite

good, think of p;( X UY) = pr(X)X pr(Y), an equality.

4.1.3 Delocation

In the case of set theory, f, g were chosen so as to make f(X), g(Y), « disjoint »
in an appropriate sense. Something similar can be done with ludics. The locus
o being fixed, delocations ¢, are defined by

ploxixT)=0%2ix7  YloxixT)=0%21+1%7T (5)

20 An alternative definition of the set-theoretic product.



FROM FOUNDATIONS TO LUDICS 31

Since ¢ respects the tree structure, the image under ¢ of a design ® is easily
defined and shown to be a design of the same base. We can also define the image
under ¢ of a behaviour G as ¢(G) = p[G]**, with ¢[G] = {¢(D) ;D € G}.
In case the base is positive, this simplifies into ¢(G) = ¢[G], but what about
a negative base 7 The answer is negative : if the first (downmost) rule of ® is
(0 F,N), then the first rule of (D) is (o k-, p(N)). But nobody forbids me
to « widen » the ramification ¢(®) into —say— ¢(®) U {{1}}, so as to get
¢ D p(D), still in p(G), but clearly not in ¢[G]. But wait a minute, €\@(D)
is useless, i.e., does not contribute to the incarnation. In fact the incarnated
designs of p(G) are all in p[G], i.e., the equality ¢(G) = ¢[G] holds up to
incarnation : this is precisely what we called internal completeness.

In order to understand what ¢, actually achieve, observe that ¢(I) = 1(J)
ifft T = J = (), which is impossible, since ramifications are non-empty. This
makes the behaviours G’ = ¢(G),H' = ¢(H) disjoint, which means :

Positive case : the only design in G’ N H’ is the daimon, i.e., G' "H' = 0.
Negative case : if ® € G’ N H/, then |D|g N |D | = 0.

This is obvious, for instance, in the negative case, let (o -, N') be the last rule
of @, then |D|g is obtained by restricting N to {¢(I) ; p(I) € N}, etc.

4.1.4 The mystery of incarnation
For any negative G’, H' of the same base o - :

Dlenm = Dler U] (6)
which means that any incarnated design in G’ N H' is the union of an incar-

nated design in G’ and an incarnated design in H'. If we introduce the notation
|G| for the set of incarnated designs of G, this rewrites as :

G'NH'| = |G'|XIH (7)

If G, H' are disjoint, then the union (6) is disjoint ; then (7) rewrites as :
|G'"H'| ~ |G| x |[H| (8)

This might be the most spectacular result of ludics : the cartesian product is
a particular case of the intersection, provided we focus on incarnation.
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4.1.5 An example

Let us explain this in terms of the syntactical example of 2.2.3, i.e., consider
the negative behaviour K corresponding to the sequent A . It will of course
contain designs corresponding to (A F, {{P, R}, {Q, R}}), but also designs cor-
responding to —say— (A F, {{P, R},{Q, R},{P,Q,T}}), where T is another
formula not related to A. But the incarnation of such a design will only re-
tain the two premises {P, R}, {Q, R}. This shows something, namely that a
negative rule can —in ludics— have useless premises. This is by the way the
reason why full completeness is restricted to incarnated designs : the addi-
tional premises correspond to nothing syntactically visible.

Now K is the orthogonal of the set of proofs starting either with (- A, {P, R})
or with (F A, {Q, R}), i.e., it is the orthogonal of a union —which is the same
as an intersection of orthogonals. We can therefore write K =GNH. To
take the incarnation in G (resp. H) consists in retaining only the premise
corresponding to { P, R} (resp. {@, R}). In that case the behaviours G, H are
disjoint, hence, up to incarnation, K appears as the cartesian product of G
and H.

4.1.6 The disjunction property

If G, H' are positive behaviours of the same base - ¢, then the set (ethics)
G’ UH' is not a behaviour. However, when G’, H' are disjoint

(GUH)** =G UH (9)

4.1.7 Additive connectives

Coming to the point of connectives —i.e., the social life of behaviours—, we dis-
cover that each connective can be presented —like the union and the product—
in two different ways, a basic locative connective, and a spiritual one obtained
by delocation from the basic case. Let us treat an example ; if G, H are be-
haviours of base o -, then we can define the (negative) conjunction —i.e., a
behaviour K of the same base—, in two different ways :

Locative : K = G N H. This operation enjoys very good properties, typically
(real) commutativity, associativity ; it has a real neutral element, namely
T. But completeness —internal, hence external— fails ; this is the well-
known problem of the syntax of « intersection types ».

Spiritual : G & H = ¢(G) Ny (H). The delocations ¢, are used to force
the behaviours to be disjoint. As a result, we get a total and complete
connective. But equalities are weakened into canonical isomorphisms.
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The completeness of & is the fact that there is a simple description of G & H,
in terms of incarnation, obtained from (8) :

IG&H|~ |G| x [H]| (10)

Usual (negative) conjunction appears as a particular case of intersection ; the
« intersection type » is more primitive.

If we turn our attention towards disjunction, then there are again two ways to
form the disjunction of positive behaviours G, H, one being the locative sum
(G UH)*, the other being the spiritual sum G & H = (p(G) U ¢ (H))+t. In
the spiritual case, the disjunction property enables us to remove the biorthog-
onal : this is the completeness of the sum, which can be written as :

G @ H\0 = (G\0) + (H\0) (11)

4.1.8 Incarnation and records

This explanation of conjunction as a delocated intersection is indeed the final
answer to a small mystery. In the eighties, computer scientists developed
various theories of objects ; but they insisted on the point that records were
not quite products. In a record, we have fields with labels ; in a cartesian
product, we have two projections. In a record, we can decide to ignore part of
the data, we still get a record of the same type : « a coloured point is still a
point » ; the same is logically impossible, a pair (point,colour) is not a point.
Ludics is very close to the « record spirit ». For instance, its locative features
are the exact analogues of the field labels ; similarly, inheritance is a natural
property of designs. It is projection, coercion (the fact for a point to lose its
colour) that become more complex : coercion corresponds to incarnation « we
have no use for the colour, let’s erase it », and projection involves a delocation.

4.2 Multiplicatives
4.2.1 Shifts

As we said, one of the novelties of ludics is the use of polarity. This means that
behaviours are divided into two classes, the positive and the negative ones.
We just defined & as a connective sending negative behaviours to negative
behaviours ; similarly ¢ sends positive behaviours to positive behaviours. But
the tradition is that connectives apply, independently of polarity. In order to
allow this, it is enough to define connectives allowing a change of polarity : if
G is of base o * 0 (positive or negative), then JG is of base o and of opposite
polarity. More precisely, if G is of base o % 0 -, then |G is of base - o (resp.
if G is of base I o * 0, then 1G is of base o F). The construction amounts
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at adding to the bottom of each design in G a rule (- o, {0}) (resp. a rule
(o {{0}})).

In terms of a naive game-theoretic intuition, the shift corresponds to a sort
of dummy move. But this move is not quite dummy, because [1 G is not
isomorphic to G : « operationally » speaking, two dummy moves have been
added, with the possibility for each « player » to « give up » (i.e., use Daimon)
at these early stages.

4.2.2 The locative tensors

The tensor is the positive product, the adjoint of (linear) implication. The
general form of the definition is :

GoH={D®9:9cG,D c H}* (12)

i.e., the tensor of behaviours is defined from a tensor of designs. The basic
question is therefore : given any two designs 2,9’ of base F o, how do we
form their tensor product ? The answer depends on the respective first rules
of 0,0 :

1. If one of ©,®' is a daimon, then D ® D' = k.

2. If the first rules of ©,9" are (- o,I), (- 0,I') and I N I' = (), then one
can define © @ @' as follows : the first rule is (- o, T UI"), with premises
o * i, for i € I, on which we proceed like in ® and with premises o * ',
for ' € I', on which we proceed like in ®'.

3. But in case I N I' # (), there is no obvious answer. There is of course a
spiritual answer : ® @ D' = (D) ® Y(D'). Since p(I) NY(I) = 0, we
are back, up to a delocation, to the previous case.

But imagine that we want a locative tensor, something which should be to ®
what N is to &. We have to solve a locative conflict —to take an exact image,
imagine a flight, © has booked rows {1,12, 13}, ®’ has booked rows {7, 13,21},
with a conflict on the coveted row 13. The spiritual solution just mentioned
amounts at delocating © on rows {2,24,26} and @' on rows {15, 27,43}, but
this supposes an airplane big enough. If we turn our attention towards loca-
tive solutions, there are four possibilities —indeed four solutions admitting
adjoints.

DD : D gets seats 1,12, D' gets 7,13, 21.
DOD : D gets seats 1,12,13, D' gets 7,21.
D ® D : the flight is cancelled : ® ® D' = "X
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DO : D gets seats 1,12, D' gets 7,21 ; 13 given to G¢. Better to travel
with a skunk than not travelling at all !

The first two solutions are the symmetric expressions of the same non-commutative
idea : one of the the two designs has priority, e.g., when 7 € I N I, proceed
as in @’ (protocol ©). The last protocol (D) gives the disputed row to any-
body : when i € I N I', proceed as you want. For reasons of incarnation,
« as you want » may be replaced with the « worst » case, the empty design
G¢e. But the most natural protocol remains ® which solves the conflict in
a drastic way. These four protocols are associative, but this does not im-
ply that the resulting tensor of behaviours is associative : if G (©) H is short
for {D®D";D €G,D’ € H}, there is no reason why ((G©O©H)*+©K)*++
should equal ((G© (H©K)*+)++. Associativity comes from the existence
of adjoints.

4.2.3 The adjoint implications

Each of the locative tensors has adjoints, for instance
LF DD >=<xFD]|D>=<DF|D> (13)

5, 5[D], [D']F are of base o I and ©,®’ are of base F 0. By the separation
theorem, equation (13) defines —say— §[D] in terms of §,D.

The adjoints enable one to give a characterisation of the orthogonals of the
various tensors. Typically :

F€(GoH) VDD e G = FD cH (14)
This equation is used, together with the dual form :
Fec(GoH) VD@ cH= D5 € G) (15)

to prove the associativity of © as well as its distributivity over the locative
sum (G U H)**. The connectives @, ® enjoy similar properties, and, of course,
commutativity.

4.2.4 The spiritual tensor

G ® H is defined as ¢(G) ® ¢ (H), where ® is any of the locative tensors
©,08,D,® (the choice is irrelevant). The spiritual tensor inherits all associa-
tivity, commutativity, distributivity from the locative case —but only up to
isomorphism.
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4.2.5 The meaning of commutativity

The fact that the spiritual tensor is not commutative is nothing but the fact
that f(x,y) # f(y,z). A contrario, the commutativity of the locative tensors
@, ® mean something like f(z,y) = f(y,z). Can we clarify this nonsense ?
First, let us introduce the notation for the adjoint of ©® :

LF|DOD>=<FD|D>=<xFD|D> (16)

from which we actually get ((§)D)D' = ((F)D')D : the locative application
is quite commutative ! In the case of usual (spiritual) application, we get
(®)p(D)Y(D") # ((F)p(D'))(D), which explains the mystery. To sum up,
locative application is commutative because the arguments are given together
with their locations : there is no need for an order of application. You may
think of the function as a module with several plugs : if application is plug-
ging, then application is commutative. Delocation is indeed the possibility
of shuffling plugs, no wonder that this induces a non-commutativity —but to
some extent this non-commutativity is external to application.

4.2.6 Completeness properties

The completeness of the tensor consists in finding a complete ethics for G ® H ;
the obvious candidate is G (¢) H. To make the long story short, completeness
holds in the case of ¢(G)©(H), which means that the spiritual conjunction
G ® H is complete. Contrarily to the additive case, this completeness result
is highly non-trivial.

4.2.7 Sequents of behaviours

The behaviours so far considered have atomic bases - o or o I-. One can define
behaviours on any base ; furthermore, one can form, on the model of sequents
of formulas, sequents of behaviours. For instance, if G, H are behaviours of
respective bases - ¢ and F 7, one can define the behaviour G - H of base
ok 71by:

FeGFH&VDeG [§,9]€H (17)

equivalently :
FeGFrH&eVeEcH" [§,¢] Gt (18)

The obvious question is « what about G - G and the identity axiom ? » First
notice that the answer is —strictly speaking— negative : G - G has the base
o F o, which is not a pitchfork, remember that the loci must be pairwise
incomparable. But we can reformulate the question with G F 6(G), where 6
is the delocation #(o * 7) = o' * 7, and 0,0’ are incomparable.
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Game-theoretically, the answer is well-known, it is the « copycat » strategy,
which consists in recopying the last move of the opponent. Here we shall call
it Faz, to stress the fact that it implements a delocation, here 6 ; by the way,
real copycats are at work everyday on the Web, and it is essential that they
do their cheating at distance. But there is an even older intuition, namely
the n — expansion of the identity axiom, which reduces an identity on A to
identities on P, (), R, which in turn are reduced to identities... The process
needs not stop : just understand that a propositional atom is indeed a variable,
quantified universally or existentially ; once it has been replaced with a witness
(an actual behaviour) the n-expansion can be resumed. The fax Fax, ./ is the
following design :

: Saxo-’*i,o'*i

Lo xiFoxi...

Fo',oxI

(G

(0,5 (N\{0})
ok o oI

The operationality of the fax is expressed by the following :

[Sax, D] = 0(D) (19)
[ar, €] = 07(¢) (20)
[Soz, D, €] = [9,07(€)] = [0(D), €] (21)

The three equations (19) (20) (21) are equivalent definitions of the fax : this
is plain from separation and associativity.

4.3 Quantifiers
4.3.1 Locative quantifiers

Locative quantifiers are quantifiers which do not follow the truth tables, which
shun category theory. They are defined from the idea of intersection, not the
idea of infinite product, and since no delocation can work, they are definitely
different. Now the question is : does this become a mess, or do we get some-
thing nice out of it ? In fact something wonderful arises from the unexpected
shock between locative quantification and spiritual connectives : these oper-
ations commute —sometimes beyond what seems reasonable, i.e., up to the
violation of certain classical principles.
Let Gg4,d € D be a family of behaviours of the same base ; then one defines
the behaviours

VdeD Gy:=[)Gq (22)

deD
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and

3d €D Gy := (| J Ga)™ (23)

deD

The typical example is second-order quantification : ID consists in all the be-
haviours of a given positive base (typically - ()) ; if a formula A[X] contains
several « occurrences » of X, X+, we interpret these occurrences as the images
under delocations 61, ... ,0, of an unknown behaviour G (or its negation G1)
based on F (). The typical example VX (X % 1X), makes uses of the « oc-
currences » : X+ = 0(G1), with 0(()) = (), 0(n x o) = 2nx 0, and X = p(G),
with p(o) = 1% 0.
Another example is the plain intersection type, Gy N Gy ; in that case,
D = {0,1}. But first-order quantification is not locative, see below.

4.3.2 Prenex forms

The basic —and completely unexpected result— is that quantifiers commute
with all spiritual connectives —but exponentials, not yet treated in ludics ;
these commutations enable one to write prenez forms, a facility usually re-
stricted to classical logic. Some of these commutations are obvious, they are
just the result of polarity : V commutes to negative, 3 commute to positive,
typically (VXAX) % B is the same as VX(AX % B). Other commutations
are a real surprise ; let us give two examples :

Vd(Gq @ Hy) = (VdGy) @ (VdH,) (24)
This equation implies the second order formula IXVY (AX = AY).
Vd(Gq ® Hy) = (VdGy) @ (VdH,) (25)

This equation is even more violent, since it contradicts classical logic : typically
it implies =VX (X V —=X). By the way this shows that a « constructive » —i.e.,
procedural— interpretation need not be weaker than a classical one : no hand
tied in the back !

4.3.3 Locative phenomena

It is with second order quantification that locative phenomenons become the
most prominent —shocking or promising, depending on one’s attitude towards
« foundations ».

Equation (25) can be understood from second-order realisability :

c®AVB & Jd((c=1xd Nd®A)V(c=2*xd N d® B)) (26)
c®VXA & YO c® AlC/X] (27)
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From this :
c®VX(AVB) & (c®VXA)V (c® VXB) (28)

The reason is simple, if ¢ ® VX (A V B), then ¢ ® A[Cy/X]V B[Cy/X], hence
is of the form 1 % d, in which case d ® A[C/X] for all C, or 2 * d, in which
case d ® B[C/X] for all C. Observe that (27) refers to a quantification on
something whose generic member has been called C, but we didn’t need any
information about those C' but perhaps the fact that we can name one of them,
Cy. In fact we are using the locative aspects of realisability : ¢ is « located »
among the 1 x d or among the 2 x d, and this location is a feature of ¢ not of
the parameter C. The crucial point is therefore that the realisers cc are equal
(to ¢) ; should they be isomorphic, the property would fail. What we just
explained is an exact rephrasing of the real argument in the archaic language
of realisability : if we replace the maps d ~ 1 xd, d ~ 2 x d with ¢, 1, ¢ with
a design, C' with a positive behaviour, we get the correct proof of (25).

Of course, if somebody had stumbled 30 years ago?' on something like (28)
no conclusion would have been drawn —for realisability was leaking a lot,
especially as soon as implication —or simply negation— was concerned :
realisability was often percieved as « non-standard » ! But in ludics, the
situation is quite different, there is no leakage up to IT' ; a sequent like
VX(A® B) - (VXA) @ (VXB) is not IT' : it belongs to the incomplete
realm where everything is possible, including a departure from classical logic.
The usual rules for second order logic are correct, but incomplete ; the usual
prejudice is to say « they are incomplete for want of enough comprehension
axioms », and by the way it is true that, if we enlarge the syntax so as to get
more comprehension, we get more X' theorems. But here we got something
which cannot be fixed in this way —remember that (25) implies the classically
false =VX (X VvV =X), that no comprehension axiom will entail.

The classical explanation of quantification is that of a big conjunction —maybe
uniform in some sense. Classically speaking, VX (A @ B) refers to each X sep-
arately. In ludics, this is not the case ; not because we absolutely want to
produce warped effects, but because « there is not enough space ». If we want
to interpret VX (A @ B) as a sort of BIG conjunction, then we need disjoint
delocations, one for each behaviour G for which the variable X stands. But
there can be at most Ry such delocations??, whereas the number of behaviours

21 Added in print : in fact it did happen, this is Troelstra’s uniformity principle
VX3nA = InVX A, which relies —like (28)— on the fact that the realiser does not depend on
the parameter C'. This uniformity principle is genuinely locative and has been later studied
by topos theoreticians, Lambek, P. Scott, Hyland, Rosolini... but rather as a warped by-
product of « impredicativity » and not as a genuine principle of quantification omitted from
predicate calculus.

22The same argument applies to old style realisability, there are more « types » than
realisers : this is where « impredicativity » comes in, by forcing VX to be an intersection ;
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is 22°°.

The formula 3XVY (AX = AY) is obtained from IXVY (AX —o AY') which
in turn comes from VX AX —o VY AY by prenex operations, justified by (24).
The typical element in this behaviour is a design obtained from the fax
—that lambda-calculus would simply note Az.xz. Hence

Az.x € AXVY(AX = AY), but we cannot find any witness for X, i.e. the
existence property fails. Concretely this means that we cannot remove the
biorthogonal in the definition of the behaviour IXVY (AX —o AY), in other
terms that this behaviour is incomplete. This is not a surprise, Godel’s the-
orem —or its version ante litteram, Cantor’s theorem— forbids such a thing,
but with a heavy argument based on diagonalisation : the paragon of incom-
pleteness is Gddel’s formula, which is TIY, i.e., £'. Nothing of the like here :
there is no witness, period ; this is quite different from « I cannot name the
witness ». So ludics does not enjoy the existence property... But is it a deadly
sin 7 Indeed the existence property is required for numerical quantifiers, i.e.,
quantifiers restricted to natural numbers —and of course it holds in that case.

4.3.4 First order quantification

First order quantification is a sort of big conjunction, maybe uniform in some
sense : this is the viewpoint of model-theory, of German style proof-theory, etc.
This is also the viewpoint we must adopt if we want to extend completeness to
predicate calculus. It seems that the extant tools in ludics —esp. uniformity,
a topic we avoided in this survey— are sharp enough to make it. But do
we really need this, i.e., is there a need for a « constructive » —procedural—
interpretation of predicate calculus ? To tell the truth, I never saw any such
interpretation. In fact first order quantification has always been used in the
particular case of numerical quantification, i.e., in contexts Vz (x € N= )
and 3z (x € NA -). For instance coming back to realisability, one defines

c®YnA & (Vn{c}n ® An/z))A...% (29)

But I never saw any real definition of ¢ ® VzA.

It is therefore legitimate to question the interest of the predicate part of Heyt-
ing’s logic, which has been unimaginatively modelled on classical predicate
calculus. What would for instance be the result of treating first order quan-
tification in the locative spirit, i.e., by means of equations (22) and (23) ?
Obviously more formulas would be validated, with an incompleteness of the
existential quantifier, typically 3zVy(Ax = Ay). But with no consequence of
the form ImVn(Am = An) : this would not alter our beloved existence prop-
erty for numerical quantification. x € N translates into the usual Dedekind

this in turn implies uniformity, which holds for any intersection.
23Some nonsense to fix the leakage.
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formulation
VXVz(zeX=2z+41€X)= (0 X =12€X)) (30)

The completeness of this IT' formula provides the required witness.

5 The challenge of exponentials

5.1 On integers
5.1.1 Kronecker

God created the integers, all else is the work of man ; the sentence is the
best illustration of the intrinsic difficulty of foundations : how can we proceed
beyond integers ? There is no way of making the natural number series lose its
absoluteness : for instance model theory has considered non-standard integers,
but the very choice of the expression betrays the existence of standard ones.
Our approach to natural numbers must therefore be oblique, not because we
want a warped notion, but because we meet a blind spot of our intuition.
The possibility of an oblique approach is backed by quantum physics —by the
way the major scientific achievement of last century— : one has been able to
speak of non-realistic artifacts, in complete opposition to our « fundamental
intuitions » concerning position, momentum, ... The short story of quantum
mechanics begins with the discovery by Planck of small cracks, asperities, in
this impressive realistic building, thermodynamics. Our only hope will be in
the discovery of a « crack » in the definition of integers : even a small crack
may do it.

5.1.2 Rates of growth

But it is quite desperate to seek an asperity in this desperately smooth {0, 1,2, ...

as long as we see it as a set. It becomes different if we see it as a « process »,
since we can play on the rate of growth. This is backed by the development of
computational complexity, and paradoxically by the impossibility of proving
any non-immediate separation theorem between the various classes : some-
thing about integers could be hidden there. The « rate of growth » could
concern the possible functions involving integers ; more likely, there could be
several rates of growth (polytime, logspace, ...) corresponding to different
notions of integers.

5.1.3 Norms

Can we imagine different notions of integers 7 Again, let us try an analogy :
there is no problem with the finite dimensional space C", corresponding to the
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basis {ey, ..., e,} ; but C¥, which corresponds to the basis {e1, ..., e,,...} has
no meaning at all —some quantitative information should be added, typically
a norm, usually the /!-norm or the /2>-norm. Could we find something like a
« norm » (or norms) in the case of integers ?

5.1.4 Dedekind

There is no reason to criticise Dedekind’s definition of integers (30), and little
reasons to refuse its simplified version

VX(X = X)= (X =X)) (31)

which is indeed the familiar polymorphic definition of the integers in system
F. We shall try to plug in real numbers in (31). Fortunately, VX ((X = X) =
(X = X)) is not flat like {0,1,2,...}, it offers two asperities, one is VX : we
could play on the possible X —i.e., restrict comprehension. This has been the
main activity of an ism —predicative mathematics— : nothing ever came or
can be expected from this approach, which is pure bondage. There remains
the other entrance, the connective =.

5.2 On implication
5.2.1 The input of Scott domains

If we consider implication, there is a real crack in the building, not a very
recent one, since it dates back to 1969, to Scott domains. This work was the
final point to a problem illustrated by the names of Kleene, Kreisel, Gandy, ...
on higher order computation?®. The question was to find a natural topology
on function spaces, in modern terms, to build a CCC of topological spaces. D.
Scott (and independently Ershov) solved the question beyond doubt, but there
is something puzzling : this is achieved by a restriction to queer spaces whose
topology is not Hausdorff —only 7, the only separation property which costs
nothing. In other terms, the Scott topology succeeds in keeping the cardinality
of functionals quite low ; but it is cheap topology, in which separately continu-
ous functions happen to be continuous.. This is our crack : the logical rules for
implication contradict usual topology : we cannot interpret them with spaces
like R.

There are two possible interpretations of the absence of a convincing « contin-
uous » explanation : the usual way is to fix it, and this is what everybody has
so far tried. But there is another way out, maybe our logical rules, typically
composition f, g~ fog are wrong. Removing —more likely simply tampering

24] have written somewhere that beyond second-order, higher order has been useful only
for producing Ph.D. theses ; this was not quite true at that time.
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with— composition may change a lot of things, and the kind of modification
I am seeking is likely to have a different fate from intuitionism whose novelty
was tamed by Godel’s translation : the « enemy » was still present —it only
took the ——-disguise. We must accept the idea that perhaps the exponential
n ~ 2™ —which is a typical product of composition— may disappear once for
all... This is shocking, but do we want something new, or are we happy with
metaturtles ?

5.2.2 The input of linear logic

Linear logic started with a decomposition of implication :
A=B =1A—oB (32)

into a more basic linear implication and a repetition operation, the exponen-
tial 'A which mainly takes care of contraction. The exponential-free part is
something peculiar, extremely basic —so to speak foundationally neutral ; this
is the fragment so far interpreted by ludics. Exponentials were excluded from
the present version of ludics—not because of any essential impossibility— but
because of a slight malaise, in particular as to their precise locativity : by the
way, this malaise is part of the crack we are seeking.

Using linear logic, it was possible to revisit continuous interpretations :

» Formulas become Banach spaces®®, proofs linear maps of norm < 1.

» Positive connectives are interpreted by means of /!-norms ; typically the
connective @ corresponds to a direct sum equipped with
lz @yl = ll=ll + llyll

» Negative connectives are interpreted by means of /*°-norms ; typically
the connective & corresponds to a direct sum equipped with

Iz & yll = sup(llz], [ly[])-

» Usual implication E = F corresponds to analytical functions from the
open unit ball of E to the closed unit ball of F'.

The crack already noticed in Scott domains becomes more conspicuous : what
prevents us from composing functions is the difference between an open ball
and a closed ball —more precisely the impossibility of extending an analytic
function to the closed ball in any reasonable way. For instance, for ||z| < 1,
the Dirac measures !z do not depend continuously on z, ||!z—!y|| = 2 as soon

as x # y.

25Indeed coherent Banach spaces, in which the « dual space » is specified ; this accounts
for the want of reflexivity of Banach spaces like £1, £,
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5.3 Objective : exponentials
5.3.1 On infinity

Methodologically speaking, the introduction of exponentials induces a schizophre-
nia between labile operations —the basic linear connectives— and « stable »
ones, the exponentials !, 7. One of the basic theses of linear logic was about
infinity : infinity is not in some external reality, but in the possibility of reuse,
i.e., contraction, i.e., exponentials :

Infinity as Eternity

For instance, no diagonalisation argument is possible in the absence of expo-
nentials ; typically, Prawitz’s naive set-theory, rewritten in a (basic) linear
framework is consistent : this naive set theory normalises in logspace.

5.3.2 Light logics

In 1986 when linear logic was created, there was no question of departing from
usual logic, to create yet another Broccoli logic. This is why the standard rules
of exponentials have been chosen so as to respect intuitionistic logic through
the translation (32). Infinity is concentrated in the exponentials, hence any
tampering with exponentials will alter the properties of infinity. This is the
oblique approach I mentioned : in this way, we can expect access to something
beyond our realistic intuitions. Several systems with « light exponentials »
have been produced ; my favourite being LLL, light linear logic, which has a
polytime normalisation algorithm and can harbour all polytime functions.
Unfortunately these systems are good for nothing, they all come from bondage :
artificial restrictions on the rules which achieve certain effects, but are not
justified by use, not even by some natural « semantic » considerations.

5.3.3 Some science-fiction

Let us put things together. In the mismatch logic/topology, my thesis is that
logic is wrong, not topology : so let us modify logic. Using linear logic, the
modification must take into account the mismatch open ball/closed ball, and
one can imagine several ways out —e.g., changing the diameters of balls—
which all would have the effect of plugging real parameters in logical definitions
such as Dedekind’s.

However we are not yet in position to do so : the Banach space thing is only a
semantics, i.e., a badly leaking interpretation. We have to import parameters
—say complex— into ludics and accommodate exponentials in a continuous
setting. We should eventually get a norm (rather several norms, none of them
distinguished), not quite on the integers, but on a wider space... But the best
programs are those written after their fulfilment.



FROM FOUNDATIONS TO LUDICS 45

References

[1] J.-Y. Girard. Locus Solum. Mathematical Structures in Computer Sci-
ence, 11:301 — 506, 2001. 26

26 This paper contains a very comprehensive bibliography, this is why we give no other
reference here.



