New Programs... 13 Novembre 2000

Jean-Yves Girard

New Programs... 13 Novembre 2000 1 DUALISM IN LOGIC

DUALISM

- **▶** Schizophrenia ideas/matter. Descartes.
- ▶ In logic:
 - Properties vs. Objects.
 - Syntax vs. semantics.
- ► Tarski.

TARSKIAN SEMANTICS

- $ightharpoonup A \wedge B$ is true when A is true and B is true.
- $ightharpoonup A \lor B$ is true when A is true or B is true.
- $ightharpoonup \neg A$ is true when A is not true.
- $ightharpoonup \forall x A[x]$ is true when A[c] is true for all c.

LA PALICE

- Un quart d'heure avant sa mort, il était encore en vie.
- ▶ vs. Truth is the quality of what is true.
- ▶ Unfair, Tarski invented meta : compare ∧ and and.
- ▶ Un quart d'heure avant sa mort, il remarqua qu'il était encore en vie.

New Programs... 13 Novembre 2000

THE HOLY TRINITY

▶ Syntax

 $au \acute{lpha} \xi \iota \varsigma$ $\sigma \tilde{\eta} \mu \alpha$ Semantics

 μ έaulphaMeta

ARISTOTLE

- No distinction syntax/semantics.
- ▶ Barbara : every A is B, every B is C, hence every A is C.
- ► Scholastic interpretation : reduce Barbara to Disamis...
- \blacktriangleright Tarski : if $\mathbf{A} \subset \mathbf{B}$ and $\mathbf{B} \subset \mathbf{C}$, then $\mathbf{A} \subset \mathbf{C}$.
- ► The real scholastics : Tarskism.

New Programs... 13 Novembre 2000 2 TOWARDS MONISM

GÖDEL'S INCOMPLETENESS

- Second theorem : you cannot fix your spectacles while wearing them.
- ► First theorem : mismatch between provability and truth, between the world and its representation.
- Internal version : questioning about the reality of reality.

BROUWER

- Mathematics eventually refers to itself.
- Identity between the world and its representation.
- Commutation between provability and connectives, e.g.,

if $A \lor B$ is provable, then one of A or B is provable.

► Intuitionistic logic.

INCOMPLETENESS REVISITED

▶ Provability does not commute with negation.

BLACK MASS

- Paralogics make negation commute with provability.
- ► To know not = Not to know : joke of the prisoners.
- **▶** Plain logical revisionism.

ORTHOGONALITY

- ► Make negation commute with provability.
- ▶ A proof of A^{\perp} is an object orthogonal to all proofs of A.

New Programs... 13 Novembre 2000 FORMULAS VS. PROOFS 3

New Programs... 13 Novembre 2000

CLASSICAL LOGIC

- **▶** Logic of reality
- ► Rules established in XIXth century.

PROOF-THEORY

- ▶ Study of the rules of logic.
- **▶** To make consistency proofs.
- ▶ Insurance against the explosion of Earth.
- ▶ Gentzen.

CONSTRUCTIVITY

- Merge between Proof theory and Intuitionism.
- ▶ 1970, Curry-Howard isomorphism.
- ► Proofs-as-functions.
- **▶** Proofs as morphisms.

PROCEDURAL LOGIC

- ► Intuitionistic logic, Linear logic.
- **▶** Logic is about itself, refers to its rules.
- ▶ From the rules of logic to the logic of rules.

FORMULAS VS. PROOFS

- Formula as set of its proofs.
- Vacuum cleaner : there should be enough proofs.
- Proofs with mistakes, paralogisms.
- **▶** Typical exemple, the Daimon.

$$\frac{}{\vdash \Lambda} \stackrel{\maltese}{} \tag{1}$$

New Programs... 13 Novembre 2000 4 DESIGNS

Locus Solum

- What remains of a proof when we have forgotten
 - The formula proven.
 - Irrelevant temporalities; focalisation.
- **▶** Only the location matters.
- Designs can also be seen as sort of models.

POLARITIES

- Linear logic distinguishes
 - Positive operations : multiplicative conjunction ⊗, active.
 - Negative operations : additive conjunction &, passive.
- ► Positive rules vs. negative rules.

Loci

- ▶ Locus: Location ξ of a formula, e.g. address in computer.
- ▶ Bias : Relative location i of immediate subformula $\xi * i$.
- ► Ramification : Finite set I of biases. Corresponds to a positive rule (ξ, \mathbf{I}) .
- ▶ Directory : Set \mathcal{N} of ramifications . Corresponds to a negative rule (ξ, \mathcal{N}) .

New Programs... 13 Novembre 2000

RULES

$$\frac{\dots \xi * i \vdash \Lambda_i \dots}{\vdash \Lambda, \xi} (\vdash \xi, I)$$
 (2)

$$\frac{\dots \vdash \Lambda_I, \xi * I \dots}{\xi \vdash \Lambda} (\xi \vdash \mathcal{N}) \tag{3}$$