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1-FOREWORD

I Up to 2000 : Locus Solum : A pure waste of paper , I believed
that foundations were dead.

I I discovered that the only dead were the fundamentalists , the
Jurassic Park .

I Quantum coherent spaces (2003) helped me to reposition the
dichotomy subject/object.

I Moving to von Neumann algebra induced a divine surprise .
• For instance many isomorphic (standard !) versions of N.
• Non internally isomorphic.

I Sophisticated mathematics far (esp. in spirit) from usual
set-theoretic combinatorics.

I Most difficult question : How to use them ?
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I-C∗-ALGEBRAS
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2-DEFINITION AND EXAMPLES

I Complex involutive Banach algebra such that :
‖uu∗‖ = ‖u‖2 (1)

I Space C(X) of complex continuous functions on compact X.
• Indeed the generic commutative example.
• If C commutative, take for X the space of characters .
• B.t.w., character = pure (extremal) state .
• State : linear form ρ such that ρ(uu∗) > 0, ρ(I) = 1.
• States of C(X) = probability measures on X.

I Space B(H) of bounded operators on Hilbert space H.
• Involution defined by 〈u∗(x) | y〉 := 〈x | u(y)〉.
• Subalgebras of B(H) are generic C ∗-algebras.
• Non equivalent faithful representations on H.
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3-SIMPLICITY

I Morphisms of C ∗-algebras defined algebraically .
I Indeed bounded, ‖ϕ(u)‖ 6 ‖u‖ :

• Use ‖uu∗‖ = ‖u‖2 to reduce to positive hermitians uu∗.
• Use ‖uu∗‖ = r(Sp(uu∗)) to define the norm algebraically :

‖uu∗‖ = sup {λ ; uu∗ − λI not invertible} (2)

I Injective morphisms are isometric, ‖ϕ(u)‖ = ‖u‖ :
• Norm shrinks ⇒ spectrum shrinks.
• Norm shrinks ⇒ ϕ not injective.

I A simple algebra (= no closed two-sided ideal) admits only
one semi-norm enjoying (1), a � C∗semi-norm � .

I Typical example : matrix algebras Mn(C).
I B(H) not simple (infinite dimension) : compact operators.
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4-THE CAR ALGEBRA

I Canonical anticommutation relations, between creators κ(a)

and their adjoints, the annihilators ζ(b) :
κ(a)ζ(b) + κ(b)ζ(a)= δab · I (3)

κ(a)κ(b) + κ(b)κ(a)= 0 (4)

I a, b range over a set A (or a Hilbert space δab  〈a | b〉).
• If A is finite, Car(A) algebraically isomorphic to matrices

n × n, with n := 2](A).
• By simplicity, unique C ∗norm on Car(A) for A finite.
• The same holds in general : use inductive limits.

I Related topics :
• The Clifford algebra : use κ(a) + ζ(a).
• The (exterior) Fock space : represent κ(a)(x) := a ∧ x.
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II-VN ALGEBRAS
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5-THE DEFINITION

I Positive hermitians (the uu∗) define an order relation.
I Require completeness w.r.t. bounded (directed) suprema.
I The solution works only for represented C∗algebras :

• No way to decide equality between suprema.
• Commutative case : no way to tell null sets.
• As C∗-algebras, dual Banach spaces : e.g. `∞ = (`1)].

∗ Intrinsic approach (W ∗-algebras) not quite successful.
I Subalgebra of B(H) closed under :

Strong limits : ui → 0 iff ‖ui(x)‖ → 0 (x ∈ H).
Weak limits : ui → 0 iff 〈ui(x) | x〉 → 0 (x ∈ H).

I Equivalently : subalgebra equal to its bicommutant .
I Also : the commutant of a self-adjoint subset of B(H).
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6-COMMUTATIVE VN ALGEBRAS

I As a C∗-algebra, A is of the form C(X).
I X extremely disconnected :

• The closure of an open set is still open.
I Clopen sets form a σ-algebra :

⊔

Oi :=
⋃

Oi (5)

I Commutative vN : space L∞(X, µ).
• Measure µ is up to absolute continuity .

I C([0, 1]) extends into a vN modulo a diffuse measure on [0, 1].
I In general : C ∗-algebra + faithful state ρ (i.e., ρ(uu∗) = 0

implies u = 0.) yields a vN completion.
I The CAR-algebra admits completions of all types I, II, III.
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7-THE GNS CONSTRUCTION

I From a C ∗-algebra C and a state ρ construct a representation .
I Define 〈u | v〉 := ρ(v∗u) ; induces a pre-Hilbert space.
I C acts by left multiplication on the separation/completion of

the latter.
I In case ρ is faithful , this representation is isometric.
I The double commutant of the representation is thus a vN

completion of C.
I Applies typically to simple algebras .
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8-THE CAR ALGEBRA

I Indeed inductive limit of matrices 2n × 2n.
I Each of them equipped with normalised trace :

tr(u) := 2−nTr(u).
I The trace on the inductive limit is a tracial state :

ρ(uv) = ρ(vu) (6)

I The vN algebra thus obtained is :
Factor : Trivial center.
Finite : It has a trace.
Hyperfinite : Finite matrices are weakly dense.

I Up to isomorphism, only one such vN algebra, the
Murray-von Neumann factor R.
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III-THE

FINITE/HYPERFINITE

FACTOR
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9-FACTORS

I Connected vN algebras.
I Z(A) = (A ∪ A′)′ is a vN algebra.
I A =

∫

A(x)dµ(x).
I Each A(x) is a factor , i.e., a vN algebra with trivial center.
I Classification of vN algebras thus reduces to classification of

factors.
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10-COMPARISON OF PROJECTIONS

I Equivalence of projections :
π ' π′ ⇔ ∃u (u∗u = π and uu∗ = π′) (7)

I Ordering of projections (inclusion + equivalence) :
π / π′ ⇔ ∃π′′ (π = ππ′′ and π′′ ' π′) (8)

I A is finite when I � I is wrong.
uu∗ = I ⇒ u∗u = I (9)

I For factors , / is total :
Type I : Order type {0, . . . , n} (In) or {0, . . . , n, . . . , ∞} (I∞).
Type II : Order type [0, 1] (II1) or [0, +∞] (II∞).
Type III : Order type {0, +∞}.
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11-TRACES

I Finiteness is the same as the existence of a normal (weakly
continuous on the unit ball) trace.

I Can be seen as a dimension .
• E, F have same dimension when

∃u dom(u) = E, Im(u) = F .
• E has dimension 1/2 when dim(E) = dim(E⊥).

I The completion of the CAR-algebra is finite and
infinite-dimensional :
• Factor of type II1.

I On a finite factor, the trace is unique.
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12-DISCRETE GROUPS

I G denumerable induces a convolution algebra, obtained by
linearisation.

I The convolution :
(xg) ∗ (yg) := (

∑

g=g′·g′′

xg′ · yg′′) (10)

is a bilinear map `2(G) × `2(G)  `∞(G).
I Define A(G) := {(xg); (xg)∗ : `2(G)  `2(G)}.
I A(G) is the commutant of the right convolutions ∗(yg).
I If G has infinite conjugacy classes (i.c.c.), then A(G) is a

factor.
I B.t.w., tr((xg)) = x1.
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13-HYPERFINITISM

I If G ⊂ G′, then A(G) ↪→ A(G′).
I If G is locally finite , the union

⋃

n A(Gn) is weakly dense.
• Every finite subset of G generates a finite subgroup.
• Any operator can be weakly approximated by matrices.

I Hyperfinite algebra : an increasing union
⋃

n An of finite
dimensional algebras is weakly dense in A.

I There are hyperfinite algebras of any type (close the CAR
algebra w.r.t. appropriate state).

I But only one hyperfinite factor of type II1. Murray-von
Neumann factor R.
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IV-GOI
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14-GOI IN A VN ALGEBRA

I Old style : interprets proofs by operators .
• Are galaxies made of stars or is it the other way around ?

∗ Foundations always proceed from small to big.
∗ This eventually leads to the FOM discussion list.

• Old GoI (papers 1,2,3) indeed use type I. � The stable form
of commutativity � (dixit Connes ).

• Type I : minimal projections ∼ points (sets, graphs).
I New style : takes place in the Murray-vN factor R :

• Finiteness forbids the primitives p, q, d.
∗ In a finite algebra, pp∗ = I ⇒ p∗p = I.

• Hyperfiniteness forbids t(u ⊗ (v ⊗ w))t∗ = (u ⊗ v) ⊗ w.
∗ Discrete group generated by t not locally finite.



Luminy, 16/21 Février 2006

15-FINITE GOI

I A base is the pair (ξ, ξ′) of two orthogonal projections of the
same dimension 6= 0 (default 1/2).

I Design of base (ξ, ξ′) : h ∈ R⊗R such that :
• h hermitian of support ⊂ ξ⊗I.
• Second tensor component R is the dialect .

I Duality on the same base : given h, k

• Tensorise h, k with I, swap the last two R, so as to get k′′ :
∗ ·⊗· ·⊗ · ⊗I
∗ ·⊗· ·⊗I ⊗ ·

• For r(u) < 1, define det(I − u) := etr(log(I−u))

• h, k are polar , notation h |
∼ k iff :

r(h′k′′) < 1 det(I − h′k′′) 6= 1 (11)
• Behaviour : set B of designs of given base s.t. B = ∼∼B.
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16-SEQUENTS

I Heavy use of the auxiliary base ξ′.
I Ternary example (ξ, ξ′), (η, η′), (υ, υ′) :

• 3 × 3 matrix with entries in R ⊗ R ⊗ R⊗R.
• Supports ξ ⊗ η′ ⊗ υ′⊗I, η ⊗ υ′ ⊗ ξ′⊗I, υ ⊗ ξ′ ⊗ η′⊗I.
• All supports have same dimension : no need for p, q.

I Cut on (ξ, ξ′) : replace
• ·⊗· with · ⊗ η′ ⊗ υ′⊗ · ⊗I

• · ⊗ · ⊗ ·⊗· with · ⊗ · ⊗ ·⊗I ⊗ ·

• Apply GoI (paper 4).
• Invariant (determinant) not quite preserved : λ  λdim ξ.
• However, duality preserved : if h ∈ B then h⊗π ∈ B.
• Introspective phenomenon.
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17-MULTIPLICATIVES

I The fax (identity axiom) :




0 ξ ⊗ ξ′⊗I

ξ ⊗ ξ′⊗I 0



 (12)

• Maps ·⊗· to ·⊗ξ′ ⊗ · ⊗ I

• Not an etaspansion .
• If dim(ξ) rational, finite matrix with entries = 0, 1.

I Tensor (cotensor) product replaces (ξ, ξ′), (η, η′) with
(ξ ⊗ η′ + ξ′ ⊗ η, ξ ⊗ η + ξ′ ⊗ η′).

I Basically use an isometry ϕ between ξ ⊗ η′ and ξ′ ⊗ η.
I ϕ is part of the data.
I A −◦ A based on (ξ ⊗ ξ′ + ξ′ ⊗ ξ, ξ ⊗ ξ + ξ′ ⊗ ξ′).
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18-THE ADDITIVE MIRACLE

I Additive situation : ξ, ξ′, η, η′ pairwise orthogonal.
I Replace (ξ, ξ′), (η, η′) with (ξ + η, ξ′ + η′).
I The with rule (how to share contexts) :

• Premises are 2 × 2 matrices :
• Their supports are ξ ⊗ υ′⊗I, υ ⊗ ξ′⊗I and

η ⊗ υ′⊗I, υ ⊗ η′⊗I.
• Just sum them : disjoint supports.

I Violently anti- η. Quantum coherent spaces .
I Summing up, perfect logic (in the linguistic sense) can be

interpreted in the hyperfinite factor.
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V-THE BLIND SPOT
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19-EXISTENCE VS. ESSENCE

I Jurassic foundations speak of Platonism .
• But there are things beyond our experience.
• Real question is that of morphology : laws etc.
• 2001 : intelligence preexists to its support. Religious . . .

I The real reference is Thomas Aquinus (Aristotle), not Platon .
• God is perfect in its perfect perfection.
• The universe is infinite in its infinite infinity.

I To go against that is to go against set-theory,
category-theory, one century of foundations, . . .

I The eternal golden braid : infinity, modalities, integers.
Everything is true or false, including meaningless formulas.

I� God created integers, everything else is the deed of man � .
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20-L INEAR LOGIC

I Main import was to split connectives into :
Perfect : ⊗, � , ⊕, &, ∀, ∃.
Imperfect : !, ?, the exponentials .

I The perfect part is not essentialist : no � meta-intelligence � .
• Satisfactory explanations , e.g., ludics .

I The imperfect part is the finger of Thomism.
• Put enough exponentials to perennialise .
• Long ago : double negations (Gödel).

I Schizophrenia between :
• Perfect world unsufficiently expressive.
• Imperfect world allowing towers of exponentials.
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21-JURASSIC PARK

I The peak of scientism , 1900.
• Various final solutions : societal, musical, logical. . .
• None of them very. . . subtle.

I What remains of foundations is set theory .
• Not taken seriously , i.e., for itself.
• But very convenient ,	 hygienic 
 .

I To be compared with equal temperament : 2N/12.

• Very convenient, compare with natural scale :
9/8, 10/9, 16/15, 9/8, 10/9, 9/8, 16/15.

• But slightly out of tune .
• Problematic when pushed to extremities ( dodecaphonism ).

I Set theory problematic in extreme situations (foundations).
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22-ICONOCLASM

I Destruction of (mental) images.
I Another finitist paradigm.

• Gödel’s theorem : finitism is not finitistic.
• Complexity : mathematical (logical) functions too fast.

∗ For no real reason, but logical maintenance.
I Foundations internalise everything.

• But eventually ends with transfinite metaturtles .
I The meta is the impossibility of internalising everything.

• But too late ; happens at meaningless stages.
I Since systematic internalisation is eventually wrong, it mu st

be refused from the start .
I Accept foundations with most of operations external .
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23-HYPERFINITISM

I The factor R is remarkably stable :
• Matrices with entries in R : M2(R) ∼ R.
• Tensor with himself R ⊗ R ∼ R.
• Crossed product with a locally finite group of external

automorphisms.
I Which means that it has many automorphisms .
I Most of them are external .

• Some of them can be internalised : crossed products.
• Typically, the twist σ of R ⊗ R can be added .
• Since σ2 = I, the result still isomorphic to R.
• But adding M2(R) ∼ R leads to a type III factor.
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VI-AN ICONOCLAST LOGIC
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24-THE ICONOCLAST PROGRAMME

I Finite from inside , infinite from ouside .
I Accept infinity, but not infinite infinity .

• Impossibility to create fresh objects forever.
I Reduces to search for light exponentials (BLL, LLL, ELL, . . . ).

• Alternative definition producing complexity effects.
• Cannot be semantically grounded : the blind spot .
• Use the geometrical constraints of factor R.

I B.t.w., logic in a factor of type II1 should correspond to ELL.
• Infinite product

∏

n∈N
G crossed by flush :

t · (4n, g) = (2n, g) · t (13)

t · (4n + 2, g) = (4n + 1, g) · t (14)
t · (2n + 1, g) = (4n + 3, g) · t (15)
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25-PERENNIAL BEHAVIOURS

I B is perennial when B = ∼∼(C⊗I).
I Perennial behaviours are duplicable .

• B ` B ⊗ B inhabited by a sort of fax :
• Bases ξ⊗(ξ ⊗ ξ + ξ′ ⊗ ξ′)⊗I ⊗ I,

(ξ ⊗ ξ′ + ξ′ ⊗ ξ)⊗ξ⊗I ⊗ I.
• Works because there is no dialectal component ⊗·

I Exponentials perennialise :
• Replace ·⊗· with ·⊗ · ⊗I⊗I.
• Takes place in R⊗((R . . . ⊗ . . . R) o G)⊗R.
• Denumerable tensor product R . . . ⊗ . . . R crossed by a

locally finite group G.
• G acts on integers by swapping bits in hereditary base 2.
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26-EXPONENTIALS

I X ⊂ N infinite and co-infinite ; !XB stronger when X smaller .
I !X perennialises with ⊗I on components of indices not in 2X .
I Multipromotion available with output : !XΓ ` !XtY B.

• Need to internalise the swappings of dialects · ⊗ I/I ⊗ ·

I Various definitions of integers, all externally isomorphic.
natY :=

⋂

X,B

(!X(B −◦ B)−◦!XtY (B −◦ B)) (16)

• Some are internally isomorphic, e.g. nat2Y and nat2Y +1.
• In which case, logical equivalence.

I Basic functions :
Sum : Type natY ⊗ natY −◦ natY tY ′ .
Product : Type natY ⊗ natY ′ −◦ natY tY ′ .
Square : Type !Xnat2Y −◦!XtX′nat2Y t2Y +1.
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27-À SUIVRE

I Observe that there is no need for syntax/semantics.
I Don’t bother with a sequent calculus :

• Finite combinations in G will do everything.
I Dynamics of G : a tower of exponentials.

• Height = depth of hereditary bits.
I Which complexity classes can be expressed ?


