

1-FOREWORD

- Up to 2000 : Locus Solum : A pure waste of paper, I believed that foundations were dead.
- I discovered that the only dead were the fundamentalists, the Jurassic Park.
- Quantum coherent spaces (2003) helped me to reposition the dichotomy subject/object.
- Moving to von Neumann algebra induced a divine surprise.
 - For instance many isomorphic (standard !) versions of N.
 - Non internally isomorphic.
- Sophisticated mathematics far (esp. in spirit) from usual set-theoretic combinatorics.
- Most difficult question : How to use them ?

I-C*-ALGEBRAS

2-DEFINITION AND EXAMPLES

Complex involutive Banach algebra such that :

 $||uu^*|| = ||u||^2 \tag{1}$

• Space $\mathbb{C}(X)$ of complex continuous functions on compact X.

- Indeed the generic commutative example.
- If \mathcal{C} commutative, take for X the space of characters.
- B.t.w., character = pure (extremal) state.
- State : linear form ho such that $ho(uu^*) \geqslant 0$, ho(I) = 1.
- States of $\mathbb{C}(X)$ = probability measures on X.
- ▶ Space $\mathcal{B}(\mathbb{H})$ of bounded operators on Hilbert space \mathbb{H} .
 - Involution defined by $\langle u^*(x) \mid y \rangle := \langle x \mid u(y) \rangle$.
 - Subalgebras of $\mathcal{B}(\mathbb{H})$ are generic C*-algebras.
 - Non equivalent faithful representations on \mathbb{H} .

3-SIMPLICITY

- Morphisms of C*-algebras defined algebraically.
- ▶ Indeed bounded, $\| \varphi(u) \| \leqslant \| u \|$:
 - Use $||uu^*|| = ||u||^2$ to reduce to positive hermitians uu^* .
 - Use $||uu^*|| = r(\operatorname{Sp}(uu^*))$ to define the norm algebraically : $||uu^*|| = \sup \{\lambda; uu^* - \lambda I \text{ not invertible}\}$ (2)
- ▶ Injective morphisms are isometric, $\|\varphi(u)\| = \|u\|$:
 - Norm shrinks \Rightarrow spectrum shrinks.
 - Norm shrinks $\Rightarrow \varphi$ not injective.
- A simple algebra (= no closed two-sided ideal) admits only one semi-norm enjoying (1), a « C*semi-norm ».
- Function Typical example : matrix algebras $\mathcal{M}_n(\mathbb{C})$.
- ▶ $\mathcal{B}(\mathbb{H})$ not simple (infinite dimension) : compact operators.

4-THE CAR ALGEBRA

• Canonical anticommutation relations, between creators $\kappa(a)$ and their adjoints, the annihilators $\zeta(b)$: $\kappa(a)\zeta(b) + \kappa(b)\zeta(a) = \delta_{ab} \cdot I$ (3)

$$\kappa(a)\kappa(b) + \kappa(b)\kappa(a) = 0 \tag{4}$$

- ▶ a, b range over a set A (or a Hilbert space $\delta_{ab} \rightsquigarrow \langle a \mid b \rangle$).
 - If A is finite, Car(A) algebraically isomorphic to matrices $n \times n$, with $n := 2^{\sharp(A)}$.
 - By simplicity, unique C*norm on Car(A) for A finite.
 - The same holds in general : use inductive limits.
- Related topics :
 - The Clifford algebra : use $\kappa(a) + \zeta(a)$.
 - The (exterior) Fock space : represent $\kappa(a)(x) := a \wedge x$.

II-VN ALGEBRAS

5-THE DEFINITION

- **Positive** hermitians (the uu^*) define an order relation.
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented C*algebras :
 - No way to decide equality between suprema.
 - Commutative case : no way to tell null sets.
 - As C*-algebras, dual Banach spaces : e.g. $\ell^{\infty} = (\ell^1)^{\sharp}$.
 - * Intrinsic approach (W*-algebras) not quite successful.
- ▶ Subalgebra of $\mathcal{B}(\mathbb{H})$ closed under : Strong limits : $u_i \to 0$ iff $||u_i(x)|| \to 0$ ($x \in \mathbb{H}$).
 - Weak limits : $u_i
 ightarrow 0$ iff $\langle u_i(x) \mid x
 angle
 ightarrow 0$ ($x \in \mathbb{H}$).
- Equivalently : subalgebra equal to its bicommutant.
- Also : the commutant of a self-adjoint subset of $\mathcal{B}(\mathbb{H})$.

6-COMMUTATIVE VN ALGEBRAS

- ▶ As a C*-algebra, \mathcal{A} is of the form $\mathbb{C}(X)$.
- ► X extremely disconnected :
 - The closure of an open set is still open.
- Clopen sets form a σ -algebra :

- Commutative vN : space $L^{\infty}(X, \mu)$.
 - Measure μ is up to absolute continuity.
- $\mathbb{C}([0,1])$ extends into a vN modulo a diffuse measure on [0,1].
- ▶ In general : C*-algebra + faithful state ρ (i.e., $\rho(uu^*) = 0$ implies u = 0.) yields a vN completion.
- ▶ The CAR-algebra admits completions of all types I, II, III.

7-THE GNS CONSTRUCTION

- From a C*-algebra C and a state ρ construct a representation.
- Define $\langle u \mid v \rangle := \rho(v^*u)$; induces a pre-Hilbert space.
- C acts by left multiplication on the separation/completion of the latter.
- In case ρ is faithful, this representation is isometric.
- The double commutant of the representation is thus a vN completion of C.
- Applies typically to simple algebras.

8-THE CAR ALGEBRA

- Indeed inductive limit of matrices $2^n \times 2^n$.
- ► Each of them equipped with normalised trace : $tr(u) := 2^{-n}Tr(u).$
- ► The trace on the inductive limit is a tracial state :

ho(uv) =
ho(vu)

(6)

The vN algebra thus obtained is :

Factor : Trivial center.

Finite : It has a trace.

Hyperfinite : Finite matrices are weakly dense.

Up to isomorphism, only one such vN algebra, the Murray-von Neumann factor *R*.

III-THE FINITE/HYPERFINITE FACTOR

9-FACTORS

- Connected vN algebras.
- $Z(\mathcal{A}) = (\mathcal{A} \cup \mathcal{A}')'$ is a vN algebra.
- ▶ $\mathcal{A} = \int \mathcal{A}(x) d\mu(x)$.
- Each $\mathcal{A}(x)$ is a factor, i.e., a vN algebra with trivial center.
- Classification of vN algebras thus reduces to classification of factors.

10-COMPARISON OF PROJECTIONS

Equivalence of projections :

$$\pi \simeq \pi' \quad \Leftrightarrow \quad \exists u \; (u^*u = \pi \; \text{and} \; uu^* = \pi')$$
 (7)

Ordering of projections (inclusion + equivalence) :

$$\pi \lessapprox \pi' \quad \Leftrightarrow \quad \exists \pi'' \ (\pi = \pi \pi'' \text{ and } \pi'' \simeq \pi')$$
 (8)

►
$$\mathcal{A}$$
 is finite when $I \lessapprox I$ is wrong.
 $uu^* = I \Rightarrow u^*u = I$ (9)

► For factors, $\leq is$ total : Type I : Order type $\{0, ..., n\}$ (I_n) or $\{0, ..., n, ..., \infty\}$ (I_∞). Type II : Order type [0, 1] (II₁) or $[0, +\infty]$ (II_∞). Type III : Order type $\{0, +\infty\}$.

11-TRACES

- Finiteness is the same as the existence of a normal (weakly continuous on the unit ball) trace.
- ► Can be seen as a dimension.
 - E, F have same dimension when $\exists u \quad \operatorname{dom}(u) = E, \operatorname{Im}(u) = F.$
 - *E* has dimension 1/2 when $\dim(E) = \dim(E^{\perp})$.
- The completion of the CAR-algebra is finite and infinite-dimensional :
 - Factor of type II_1 .
- On a finite factor, the trace is unique.

12-DISCRETE GROUPS

- ► *G* denumerable induces a convolution algebra, obtained by linearisation.
- ► The convolution :

$$(x_g) * (y_g) := (\sum_{a=a' \cdot a''} x_{g'} \cdot y_{g''})$$
(10)

is a bilinear map $\ell^2(G) \times \ell^2(G) \xrightarrow{g=g^* \cdot g^*} \ell^{\infty}(G)$.

- ▶ Define $\mathcal{A}(G) := \{(x_g); (x_g)* : \ell^2(G) \rightsquigarrow \ell^2(G)\}.$
- $\mathcal{A}(G)$ is the commutant of the right convolutions $*(y_g)$.
- ► If G has infinite conjugacy classes (i.c.c.), then A(G) is a factor.

▶ B.t.w.,
$$tr((x_g)) = x_1$$
.

13-HYPERFINITISM

- ▶ If $G \subset G'$, then $\mathcal{A}(G) \hookrightarrow \mathcal{A}(G')$.
- ▶ If G is locally finite, the union $\bigcup_n \mathcal{A}(G_n)$ is weakly dense.
 - Every finite subset of *G* generates a finite subgroup.
 - Any operator can be weakly approximated by matrices.
- ▶ Hyperfinite algebra : an increasing union $\bigcup_n \mathcal{A}_n$ of finite dimensional algebras is weakly dense in \mathcal{A} .
- There are hyperfinite algebras of any type (close the CAR algebra w.r.t. appropriate state).
- But only one hyperfinite factor of type II₁. Murray-von Neumann factor *R*.

IV-Gol

14-GOI IN A VN ALGEBRA

- Old style : interprets proofs by operators.
 - Are galaxies made of stars or is it the other way around?
 - * Foundations always proceed from small to big.
 - * This eventually leads to the FOM discussion list.
 - Old Gol (papers 1,2,3) indeed use type I. « The stable form of commutativity » (dixit Connes).
 - Type I : minimal projections \sim points (sets, graphs).
- New style : takes place in the Murray-vN factor \mathcal{R} :
 - Finiteness forbids the primitives p, q, d.
 - * In a finite algebra, $pp^* = I \Rightarrow p^*p = I$.
 - Hyperfiniteness forbids $t(u\otimes (v\otimes w))t^*=(u\otimes v)\otimes w.$
 - * Discrete group generated by *t* not locally finite.

15-FINITE GOI

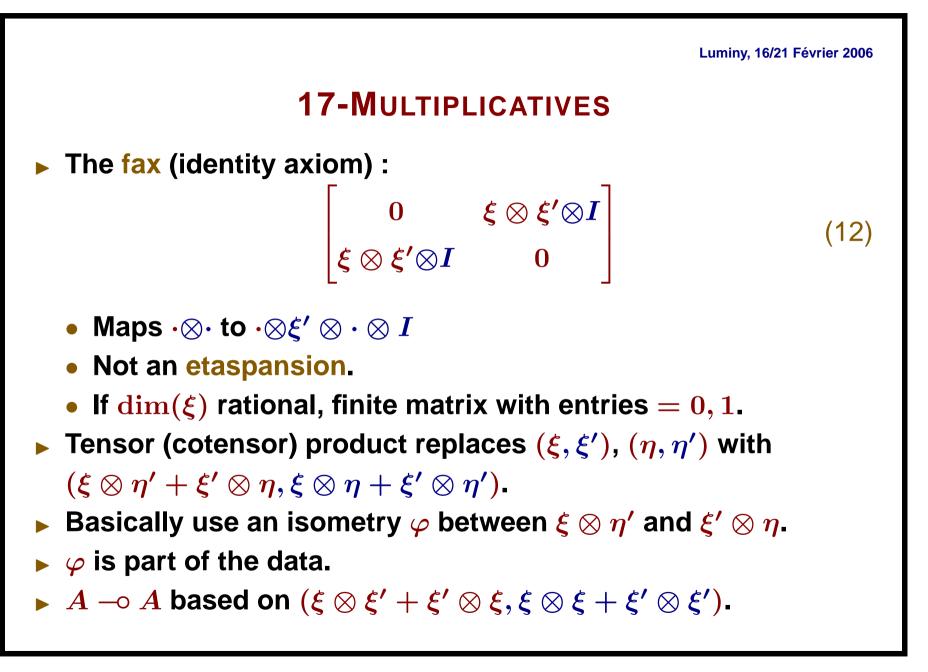
- A base is the pair (ξ, ξ') of two orthogonal projections of the same dimension $\neq 0$ (default 1/2).
- ▶ Design of base (ξ, ξ') : $h \in \mathcal{R} \otimes \mathcal{R}$ such that :
 - *h* hermitian of support $\subset \boldsymbol{\xi} \otimes \boldsymbol{I}$.
 - Second tensor component \mathcal{R} is the dialect.
- ▶ Duality on the same base : given *h*, *k*
 - Tensorise h, k with I, swap the last two \mathcal{R} , so as to get k'':
 - $* \cdot \otimes \cdot \cdots \cdot \otimes \cdot \otimes I$
 - $* \cdot \otimes \cdot \rightsquigarrow \cdot \otimes I \otimes \cdot$
 - For r(u) < 1, define $det(I u) := e^{tr(log(I u))}$
 - h, k are polar, notation $h \downarrow k$ iff :

r(h'k'') < 1 $det(I - h'k'') \neq 1$ (11)

• Behaviour : set B of designs of given base s.t. $B = \sim \sim B$.

16-SEQUENTS

- Heavy use of the auxiliary base ξ' .
- For Ternary example (ξ, ξ') , (η, η') , (υ, υ') :
 - 3×3 matrix with entries in $\mathcal{R} \otimes \mathcal{R} \otimes \mathcal{R} \otimes \mathcal{R}$.
 - Supports $\xi \otimes \eta' \otimes v' \otimes I, \eta \otimes v' \otimes \xi' \otimes I, v \otimes \xi' \otimes \eta' \otimes I$.
 - All supports have same dimension : no need for p, q.
- Cut on (ξ, ξ') : replace
 - $\cdot \otimes \cdot$ with $\cdot \otimes \eta' \otimes v' \otimes \cdot \otimes I$
 - $\cdot \otimes \cdot \otimes \cdot \otimes \cdot$ with $\cdot \otimes \cdot \otimes \cdot \otimes I \otimes \cdot$
 - Apply Gol (paper 4).
 - Invariant (determinant) not quite preserved : $\lambda \rightsquigarrow \lambda^{\dim \xi}$.
 - However, duality preserved : if $h \in B$ then $h \otimes \pi \in B$.
 - Introspective phenomenon.



18-THE ADDITIVE MIRACLE

- Additive situation : ξ, ξ', η, η' pairwise orthogonal.
- ▶ Replace (ξ, ξ') , (η, η') with $(\xi + \eta, \xi' + \eta')$.
- The with rule (how to share contexts) :
 - Premises are 2×2 matrices :
 - Their supports are $\xi \otimes v' \otimes I, v \otimes \xi' \otimes I$ and $\eta \otimes v' \otimes I, v \otimes \eta' \otimes I$.
 - Just sum them : disjoint supports.
- Violently anti- η . Quantum coherent spaces.
- Summing up, perfect logic (in the linguistic sense) can be interpreted in the hyperfinite factor.

V-THE BLIND SPOT

19-EXISTENCE VS. ESSENCE

- Jurassic foundations speak of Platonism.
 - But there are things beyond our experience.
 - Real question is that of morphology : laws etc.
 - 2001 : intelligence preexists to its support. Religious ...
- ► The real reference is Thomas Aquinus (Aristotle), not Platon.
 - God is perfect in its perfect perfection.
 - The universe is infinite in its infinite infinity.
- To go against that is to go against set-theory, category-theory, one century of foundations, ...
- The eternal golden braid : infinity, modalities, integers. Everything is true or false, including meaningless formulas.
- God created integers, everything else is the deed of man ».

20-LINEAR LOGIC

Main import was to split connectives into : Perfect : ⊗, 𝔅, ⊕, &, ∀, ∃.

Imperfect : !, ?, the exponentials.

- ► The perfect part is not essentialist : no < meta-intelligence >>.
 - Satisfactory explanations, e.g., ludics.
- ▶ The imperfect part is the finger of Thomism.
 - Put enough exponentials to perennialise.
 - Long ago : double negations (Gödel).
- Schizophrenia between :
 - Perfect world unsufficiently expressive.
 - Imperfect world allowing towers of exponentials.

21-JURASSIC PARK

- ▶ The peak of scientism, 1900.
 - Various final solutions : societal, musical, logical...
 - None of them very... subtle.
- What remains of foundations is set theory.
 - Not taken seriously, i.e., for itself.
 - But very convenient, « hygienic ».
- ▶ To be compared with equal temperament : $2^{N/12}$.
 - Very convenient, compare with natural scale : 9/8, 10/9, 16/15, 9/8, 10/9, 9/8, 16/15.
 - But slightly out of tune.
 - Problematic when pushed to extremities (dodecaphonism).
- Set theory problematic in extreme situations (foundations).

22-ICONOCLASM

- Destruction of (mental) images.
- Another finitist paradigm.
 - Gödel's theorem : finitism is not finitistic.
 - Complexity : mathematical (logical) functions too fast.
 - * For no real reason, but logical maintenance.
- Foundations internalise everything.
 - But eventually ends with transfinite metaturtles.
- ▶ The meta is the impossibility of internalising everything.
 - But too late ; happens at meaningless stages.
- Since systematic internalisation is eventually wrong, it must be refused from the start.
- Accept foundations with most of operations external.

23-HYPERFINITISM

- The factor \mathcal{R} is remarkably stable :
 - Matrices with entries in \mathcal{R} : $\mathcal{M}_2(\mathcal{R}) \sim \mathcal{R}$.
 - Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$.
 - Crossed product with a locally finite group of external automorphisms.
- Which means that it has many automorphisms.
- Most of them are external.
 - Some of them can be internalised : crossed products.
 - Typically, the twist σ of $\mathcal{R}\otimes \mathcal{R}$ can be added.
 - Since $\sigma^2 = I$, the result still isomorphic to \mathcal{R} .
 - But adding $\mathcal{M}_2(\mathcal{R}) \sim \mathcal{R}$ leads to a type III factor.

VI-AN ICONOCLAST LOGIC

24-THE ICONOCLAST PROGRAMME

- ► Finite from inside, infinite from ouside.
- Accept infinity, but not infinite infinity.
 - Impossibility to create fresh objects forever.
- ▶ Reduces to search for light exponentials (BLL, LLL, ELL, ...).
 - Alternative definition producing complexity effects.
 - Cannot be semantically grounded : the blind spot.
 - Use the geometrical constraints of factor \mathcal{R} .
- **B.t.w.**, logic in a factor of type II_1 should correspond to ELL.
 - Infinite product $\prod_{n \in \mathbb{N}} G$ crossed by flush :

$$t \cdot (4n,g) = (2n,g) \cdot t \tag{13}$$

$$t \cdot (4n+2,g) = (4n+1,g) \cdot t \tag{14}$$

$$t \cdot (2n+1,g) = (4n+3,g) \cdot t \tag{15}$$

25-PERENNIAL BEHAVIOURS

- ▶ B is perennial when $B = \sim \sim (C \otimes I)$.
- Perennial behaviours are duplicable.
 - $\mathbf{B} \vdash \mathbf{B} \otimes \mathbf{B}$ inhabited by a sort of fax :
 - Bases $\boldsymbol{\xi} \otimes (\boldsymbol{\xi} \otimes \boldsymbol{\xi} + \boldsymbol{\xi}' \otimes \boldsymbol{\xi}') \otimes I \otimes I$, $(\boldsymbol{\xi} \otimes \boldsymbol{\xi}' + \boldsymbol{\xi}' \otimes \boldsymbol{\xi}) \otimes \boldsymbol{\xi} \otimes I \otimes I$.
 - Works because there is no dialectal component ⊗.
- Exponentials perennialise :
 - Replace $\cdot \otimes \cdot$ with $\cdot \otimes \cdot \otimes I \otimes I$.
 - Takes place in $\mathcal{R} \otimes ((\mathcal{R} \dots \otimes \dots \mathcal{R}) \rtimes G) \otimes \mathcal{R}$.
 - Denumerable tensor product $\mathcal{R} \dots \otimes \dots \mathcal{R}$ crossed by a locally finite group *G*.
 - *G* acts on integers by swapping bits in hereditary base 2.

26-EXPONENTIALS

- $X \subset \mathbb{N}$ infinite and co-infinite; $!_X B$ stronger when X smaller.
- $!_X$ perennialises with $\otimes I$ on components of indices not in 2^X .
- Multipromotion available with output : $!_X \Gamma \vdash !_{X \sqcup Y} B$.
 - Need to internalise the swappings of dialects $\cdot \otimes I/I \otimes \cdot$
- ► Various definitions of integers, all externally isomorphic. $nat_Y := \bigcap_{X,B} (!_X(B \multimap B) \multimap !_{X \sqcup Y}(B \multimap B)) \quad (16)$
 - Some are internally isomorphic, e.g. nat_{2Y} and nat_{2Y+1} .
 - In which case, logical equivalence.

```
▶ Basic functions :
Sum : Type \operatorname{nat}_Y \otimes \operatorname{nat}_Y - \circ \operatorname{nat}_{Y \sqcup Y'}.
```

```
Product : Type \operatorname{nat}_Y \otimes \operatorname{nat}_{Y'} \multimap \operatorname{nat}_{Y \sqcup Y'}.
```

```
Square : Type !_X \operatorname{nat}_{2Y} \multimap !_{X \sqcup X'} \operatorname{nat}_{2Y \sqcup 2Y+1}.
```

27-À SUIVRE

- Observe that there is no need for syntax/semantics.
- Don't bother with a sequent calculus :
 - Finite combinations in *G* will do everything.
- **b** Dynamics of G: a tower of exponentials.
 - Height = depth of hereditary bits.
- Which complexity classes can be expressed?