

# 1 — EPICYCLES, A.K.A. THE REALIST PREJUDICE

- xx<sup>th</sup> century logic begins *after* incompleteness.
   Herbrand: synthetic *a posteriori,* a.k.a. *usine.* BHK: synthetic *a priori*, a.k.a. *usage.* Gentzen: relation usine/usage through *cut-elimination.*
- XIX<sup>th</sup> century, up to ~1925: axomatic and semantic.
   Hilbert: *militarism* (axiomatics). *A priori* → consistency.
   Russell: *religion* (of reality). Semantics, a.k.a. *prejudice.*
- *Realism:* cognitive simplicism, yields monsters.
   Epicycles: fantasmatic reality backing *geocentric* prejudice.
- Realism expressed by *classical* reduction to *true/false*.
   Loss of propositional expressivity.
   Compensation: fantasmatic first-order individuals.
   Symptom: no logical handling of *equality*.

# I — THE FOUR HORSEMEN OF COGNITION

|          | 0           |           |
|----------|-------------|-----------|
|          |             |           |
|          |             |           |
|          | Analytic    | Synthetic |
| Explicit | Constat     | Usine     |
| T 1/     | Performance | Usage     |

#### **2** — **ANALYTICITY : CONSTAT VS. PERFORMANCE**

- Cognition *without* presupposition: everything on the table.
   Including table: finite (no etc.), no link to external « reality ».
   Verbatim: the style of cowards, *meaningless.*
- Key J either constative: adds new line, incremental. Or: Performative: launches program, destructive.
- Pure lambda-calculus approximates analyticity.
   Strong normalisation relates constat and performance.
   Undecidability: performance not constative.
   Church-Rosser relates performance and usage.
- External performance replaced with self-performance:
   Plugging of wires of complementary colours.
   Unification: makes wires split into implicit subwires.
   Resolution: clause Γ ⊢ A becomes {γ, a}.

### **3**—**SYNTHETICITY**: USINE VS. USAGE

- Cognition *with* presupposition. Dubious *since* meaningful.
- *L'usine* a.k.a. synthetic *a posteriori:* factory tests.
   Proof-nets: no vicious circle (already in Herbrand).
   Testing: analytic performance; output unquestionable.
- *L'usage,* a.k.a. synthetic *a priori:* use of the product. Gentzen: the cut-rule, deductive *since* destructive.
- Fundamental *duality* of meaning: *dinaturals,* hexagons.
   Predictivity: *commitment* usine w.r.t. usage.
   Cut-elimination: performance implementing the reduction.
   Incompleteness: convergence of reduction problematic.
- Consistency proofs: no commitment. Ditto with realism: Semantics: identification usine/usage: no testing. Reformed BHK: one must choose between testing and use.

#### 4 — DEREALISM

- First order treatment of  $\mathbb{N}$  *axiomatic,*  $\neq$  logic. Second order: (Dedekind) induction on T handled by  $\exists X$ .
  - Flexibility: range of (inductive) witnesses T in A[T/X]. Subf. property: depends on possible T; ditto for 1st order. Foundational problems: reduction usage/usine problematic.
- Church and Curry both wrong w.r.t. l'usine:
   Essentialism: objets born synthetic, typed. No usine.
   Existentialism: objects born analytic, untyped. Usine ∞.
- Derealism: usine stays finite if witness made part of proof.
   Épure: analytic vehicle + synthetic mould, i.e., witness.
   Epidictics: requires/believes moulds to be balanced.
   Balance: rights/duties (cut-elim.) not checkable at usine.
- *Consistency* and Hegel's contradictory foundations: Animæ: « Incorrect » proofs, mingle analytic/synthetic.

# II — PREDICATE CALCULUS

### 5 — A CONTROVERSIAL NOTION

- System 𝔅 (Oslo, 1970): propositions are (roughly) enough.
   Forgetful functor: keeps computational (analytic) contents.
   Realisability: awkward reduction predicate → proposition.
- Predicate calculus: XIX<sup>th</sup> century legacy.
   Axiomatics: cannot avoid « Barbari » ∀xA ⊢ ∃xA.
   Semantics: models non-empty; but justification empty.
- Dubious principle: besides *proper* variables, used for ⊢ ∀
   Junk variables: dedicated to the sole *Barbari*.
- Intrusion of reality through *external* domain.
   Variables, functions: proceed from the Sky.
- In constrast to propositional quantification:
   Variables: refer to propositions, well-defined by l'usine.
   Functions: refer to connectives.

### 6 — EQUALITY

- Logical primitive mistreated by metaphysical axiomatics:
   E.g., a predicate: « function » individuals ~ propositions.
- And/or through *semantic* pleonasm: BHK: empty, reduces proof of t = u to semantics. Semantics: t = u true when *same* denotation: |t| = |u|.
- ∀X (Xt ⇒ Xu) (Leibniz) interesting, *since* totally wrong.
   2nd order: not expected at elementary level.
   Circular: are those two « c » equal? Prejudiced:
   Relevant properties: those compatible with... equality.
- A logical *epicycle*, i.e., a realistic contraption.
   Individuals + predicates: *all* of those which are *relevant*.
- Break epicycle by replacing *individual* t with *proposition* t. Meaning: «I am t ». Equality as logical equivalence  $t \equiv u$ .

# **III** — **P**REDICATES AS CONNECTIVES

#### 7 — INDIVIDUALS AS MULTIPLICATIVES

- *Individuals = proposition* forbidden by prejudice:
  - Classical:  $t \equiv u \lor u \equiv v \lor v \equiv t$ . Only two individuals. Intuitionistic:  $\neg \neg (t \equiv u \lor u \equiv v \lor v \equiv t)$ . Not more than 2. Linear: with  $(t \multimap u) \& (u \multimap t)$  as equality. No obstacle.
- *n*-ary multiplicative: sets of partition of {1,...,n}.
  Duality: C⊥D iff their incidence graph is a tree (n ≠ 0).
  Multiplicative: non-trivial set of partitions equal to bidual.
  Example: ⊗ := {{1,2}} vs. 𝔅 := {{1}, {2}}.
  Series/parallel: ¶ := {{1,2}, {3,4}} + {{2,3}, {4,1}}.
  Not sequential: ¶ admits proof-nets, no sequent calculus.

#### 8 — FUNCTIONS AND PREDICATES

- Functional *terms* come from same multiplicative matrix:
  Positive multiplicatives with possible repetitions.
  Example: x ⅔ (x ⊗ y). No constant, no *Barbari*, no regrets.
  Pairing: ensured by (x ⅔ y) ⊗ (x ⅔ x ⅔ y).
- *Predicate* variables *P*, *Q*, ... as variable *connectives*.

*Pt* handled by unknown binary connective *K*. Usage: all possible uses  $Kt\tilde{t}$  of individual *t* and negation  $\tilde{t}$ . Usine: enough to test with  $K = \otimes$  and  $K = \Im$ . Equality principle:  $t = u \Rightarrow (Pt \multimap Pu)$  OK'ed by l'usine. Refused:  $t = u \Rightarrow (Pt \multimap Qu)$  and  $t = u \multimap (Pt \multimap Pu)$ .

- Equality handled by:  $(\tilde{t} \Re u) \& (t \Re \tilde{u})$ .
- First-order quantification: restriction of « full » case.
   Existential witnesses: taken among multiplicative terms.

#### 9 — DISCUSSION

- Logic is second order, including so-called first-order: Propositions: variables, implicit ∀X performed after. Usage: externalised by counter-models (∃X forbidden). No testing: dubious advantage of externalisation.
- Individuals: *tame* second order.

Witnesses: multiplicatives, limited loss of subformula pty. Balance: rights/duties, usine/usage not really problematic.

- *Arithmetic:* all axioms removed but: Third/fourth Peano axioms:  $Sx \neq 0$  and  $Sx = Sy \Rightarrow x = y$ .
- The origin of logical doubt (incompleteness, etc.):
   Épure vs. gabarit: performance V + M + G.
   Variance: usine works better with lax M. Usage may fail.
   Example: induction on « ill-formed » M.