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2 Part III

“F is a functor from ... to ... preserving direct limits and pull-backs”;

this is the leitmotiv of Parts III and IV. This sentence makes use of three

keywords, “direct limits”, “pull-backs”, “functors”, which have specific

roles in the theory:

direct limits: this expresses, in a category-theoretic framework, noth-

ing but the familiar ideas of continuity, i.e. the principle of computability

from finitary data; by itself, this idea is not a new principle (but its com-

binations with the two other principles considerably increase its interest).

functor: this expresses, in a category-theoretic framework, indiscernabil-

ity properties; in some sense, the “neighbourhoods” connected with direct

limits will all be “alike”.

pull-backs: pull-backs, which are a category-theoretic version of the idea

of finite intersection, are essential to obtain unicity conditions.

A typical combination of these three principles is the normal form the-

orem of Section 8.2.:

– functoriality enables us to represent any point < F (x) by an expression

(z0 ; x0, ..., xi, ... ; x)F .

– preservation of direct limits enables us to represent such a point by a

finite expression (z0 ; x0, ..., xn−1 ; x)F .

– preservation of pull-backs enables us to choose, among all such represen-

tations, a distinguished one, the normal form... .

One of the main features of such objects is that they are completely

determined by their restriction to a denumerable category of finite dimen-

sional objects; in practice, in Part III, these finite dimensional objects will

exactly be integers. From that we shall keep a “finitary” control on all

our constructions. On the other hand, a system of “finitary” data does

not necessarily determine an object of the kind we are seeking: typically,

a functor from integers to integers can be extended to ordinals by means
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of direct limits, but its limit needs not to be an ordinal... . (Similarly,

a sequence of rationals does not necessarily define a real... .) Everything

which is connected with this “finitary” aspect ot Π1
2-logic (not bothering

too much about well-foundedness of extensions) determines an “algebraic”

theory, which, in the case of dilators, is developed in Chapter 8.

But the functors we are interested in, send ordinals on well-founded

structures, and, at some stage, this phenomenon becomes essential! A

dilator is therefore a way of speaking of well-founded classes, by means of

finitary data... . Chapter 9 develops this viewpoint.

Dilators are in some sense the Π1
2 analogue of the Π1

1 concept of wf-

tree; but, whereas the mathematical structure of wf-trees is practically

inexistent, we have used two chapters to study dilators: Chapters 8 and 9

are the analogues of Chapter 5.

The place of Chapter 6 is taken by Chapter 10; we find a (functorial)

analogue of the ω-completeness theorem, by means of functorial proofs.

The β-proofs obey to the leitmotiv: they are functors preserving direct

limits and pull-backs.

Chapter 11 is the analogue of Chapter 7 for inductive definitions in the

framework of Π1
2-logic. Chapter 11 combines all the techniques introduced

in the previous chapters (8–10). The inductive definitions are analyzed by

means of a cut-elimination theorem. This cut-elimination theorem in the

framework of Π1
2-logic has the following features:

– this is a total cut-elimination (i.e. all cuts are removed);

– there is a true subformula property.

The procedure can also be applied to the simplest of all inductive def-

initions, namely integers; this yields a new ordinal analysis of arithmetic

by means of the Howard ordinal η0. Other relations of arithmetic with η0

can be found in 9.A (comparison of hierarchies) and 12.A (Gödel’s T and

ptykes) and ???. All these results are closely related.

Since we have β-completeness in the case of inductive definition, the

methods of Π1
2-logic can be used to investigate in questions closely con-

nected to inductive definitions: admissible sets. The next admissible, the

Σ1 functions over a successor admissible, can be, in many cases, analyzed
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by means of recursive dilators. What is remarkable in this, is that gen-

eralized recursion (which is not recursive at all) can be reduced, in some

sense, to usual recursion... .
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CHAPTER 8

DILATORS: ALGEBRAIC THEORY

We begin by recalling a certain number of category theoretic notions:

1. a category consists of the following data

– a class of objects |C|;

– for any two objects a, b in |C|, a set MorC(a, b), the set of morphisms

from a to b;

– a distinguished element ida ∈ MorC(a, a) for all a ∈ |C|;

– for all a, b, c ∈ |C|, a composition map:

MorC(a, b)×MorC(b, c)→ MorC(a, c)

t, u ; ut

We require that:

1) t ∈ MorC(a, b)→ idbt = t ida = t

2) t ∈ MorC(a, b), u ∈ MorC(b, c), v ∈ MorC(d, c)→ v(ut) = (vu)t.

In the sequel we shall use many categories, for instance ON (ordi-

nals), OL (linear orders), DIL (dilators)... . Most of the time we shall

not define the composition, nor the identity morphisms, which will be

clear from the context... . When t ∈ MorC(a, b) is such that for some

u ∈ MorC(b, a): tu = idb, ut = ida, then t is called an isomorphism

and u = t−1 is unique.

2. If C is a category, then a subcategory D of C consists of the following

data:

– a subclass |D| of |C|

– for all a, b ∈ |D|; a subset MorD(a, b) of MorC(a, b) such that:

– ida ∈ MorD(a, a)

– the composition maps MorD(a, b)×MorD(b, c) into MorD(a, c).
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A typical example is that of a full subcategory: D is a full subcat-

egory of C when:

∀a∀b ∈ |D| MorD(a, b) = MorC(a, b) .

3. If C and D are categories, then a functor F from C to D consists of

the following data:

– for all x ∈ |C| an object F (x) ∈ |D|

– for all x, y ∈ |C| and f ∈ MorC(a, b), a morphism

F (f) ∈ MorD
(
F (a), F (b)

)
such that the following holds:

– F (ida) = idF (a)

– F (ut) = F (u)F (t) if t ∈ MorC(a, b), u ∈ MorC(b, c) .

Functors are rather “large” objects; in practice, our functors will

always be determined by their restrictions to rather small categories;

for instance, dilators, which are functors from ON to itself, will be

completely determined by their restriction to the subcategory of finite

ordinals!

4. If F and G are functors from C to D, then a natural transformation

T from F to G is a family (Tx)x∈|C| such that:

– Tx ∈ MorD
(
F (x), G(x)

)
for all x ∈ |C|

– if t ∈ MorC(x, y), then the morphisms G(t)Tx and TyF (t) are equal;

this is expressed by saying that the diagram

Tx
F (x) G(x)

F (t) G(t)

F (y) G(y)
Ty

is commutative.

It is convenient to consider T as something close to a functor: define

– if x ∈ |C| T (x) = Tx
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– if t ∈ MorC(x, y) T (t) = G(t)Tx = TyF (t).

It is possible to compose natural transformations:

if T is a natural transformation from F to G,

if U is a natural transformation from G to H, then

UT is a natural transformation from F to H:

(UT )x = UxTx .

In practice, it is not so clear for the beginner that natural trans-

formations are of any interest. In fact this notion corresponds to the

idea of “substructure”, but some practice is needed to understand how

this concept must be used. My advice is (since the technical content

of natural transformations is very limited) to ignore at the first reading

all the results concerning natural transformations... .

5. An isomorphism between C and D is a pair (F,G) such that:

– F is a functor from C to D

– G is a functor from C to D

– G ◦ F is the identity functor of C

– F ◦ G is the identity functor of D.

In the sequel, we shall construct many isomorphisms of categories

(for instance between DIL and SHD, BIL and ΩDIL); however, this

situation is not very common,1 and current category-theoretic practice

uses a more general notion:

6. An equivalence between C and D is a 6-tuple (F,G, T, T ′, U, U ′) such

that:

1Here we can build isomorphisms, because we are dealing with rigid objects, which
have no automorphisms... .
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– F is a functor from C to D

– G is a functor from D to C

– T (resp. T ′, U , U ′) are natural transformations from the identity

functor of C (resp. G ◦ F , the identity functor of D, F ◦ G) to G ◦ F
(resp. the identity functor of C, F ◦ G, the identity functor of D) and

∀x ∈ |C| (T ′T )x = idx (TT ′)x = id
G

(
F (x)

)
∀x ∈ |D| (U ′U)x = idx (UU ′)x = id

F

(
G(x)

)

The next concepts that we shall use are those of direct limit and pull-

back, that will be introduced later on. Our use of categories is very limited,

byt perhaps a bit repellent to some readers; of course, there is no absolute

evidence that one must present Π1
2-logic in a category-theoretic framework.

The advantage of such a presentation is that general patterns appear more

easily, and a certain number of directions are naturally suggested by the

category-theoretic framework. The price to pay for that is that perhaps

we lose a bit of our intuitive approach to these matters... .

I have chosen what I think to be a medium position; the category-

theoretic language is mainly used in definitions, and generally soon re-

placed by some useful characterization in usual mathematical terms: for

instance the abstraction “preservation of direct limits and pull-backs” is

replaced by a normal form theorem which has exactly the same contents.

It may certainly be useful for the beginner to try to translate the ab-

stract category-theoretic constructions into more elementary ones; he will

then get close to the original intentions and constructions... . Unfortu-

nately, it is no longer possible for me to think (or to expose) the theory

in very elementary and technical terms... . In any case the contents are

exactly the same.
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8.1. Direct limits and pull-backs

8.1.1. Definition.

Assume that x, y are two linear orders; then I(x, y) denotes the set of all

strictly increasing functions from x to y (see 5.3.1 (ii)).

8.1.2. Definition.

We shall consider the following categories:

(i) the category OL of linear orders: the objects are linear orders

(ii) the category ON of ordinals: the objects are ordinals

(iii) when x is an ordinal, the category ON < x; the objects are ordinals

< x

(iv) when x is an ordinal, the category ON ≤ x; tjhe objects are ordinals

≤ x.

In all these categories, the morphisms from x to y are the elements of

I(x, y).

8.1.3. Definition.

If x and y are ordinals such that x ≤ y, one defines Exy ∈ I(x, y) by

Exy(z) = z for all z ∈ x. Exx is abbreviated into Ex.

8.1.4. Definition.

The following are functors from ON2 to ON: let x, x′, y, y′ be ordinals,

let f ∈ I(x, x′), g ∈ I(y, y′)

(i) the functor sum

– x+ y is the familiar ordinal sum of x and y (5.5.3 (iii))

– if z < x, then (f + g)(z) = f(z), if z < y, then (f + g)(x + z) =

x′ + g(z).

(ii) the functor product
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– x · y is the familiar ordinal product of x and y (5.5.3 (iv))

– if t < x, u < y, then (f · g)(x · u+ t) = x′ · g(u) + f(t).

(iii) the functor exponential

– (1 + x)y is defined as in 5.5.3 (v)

– (1 + f)g
(
(1 + x)u1 · (1 + t1) + ...+ (1 + x)un · (1 + tn)

)
=

(1 + x′)g(u1) ·
(
1 + f(t1)

)
+ ...+ (1 + x′)g(un) ·

(
1 + f(tn)

)
for all u1, ..., un, t1, ..., tn such that y > u1 > ... > un and t1, ..., tn <

x.

8.1.5. Remarks.

(i) the definition of the exponential for morphisms makes heavy use of

the Cantor Normal Form 5.5.4.: the function (1 + f)g can be defined

because every ordinal < (1 + x)y can be written in Cantor normal

form, in a unique way. The fact that (1 + f)g is strictly increasing is

immediate.

(ii) these functors can easily be extended into functors from OL2 to OL

(using the Definition 5.4.9 together with 5.4.10 in the case of exponen-

tiation). Direct limits provide a general way of extending (particular)

functors from ON (or ON2) to ON into functors from OL (or OL2)

to OL (see 8.2.11 (ii)). In fact our definition of (1 + x)y for x, y

arbitrary linear orders is exactly what one obtains if one extends the

functor exponentiation by means of direct limits... .

8.1.6. Remark.

It can be of some interest to consider the category OW of well-orders

(morphisms being still given by I(x, y)). There is a functor order type

from OW to ON, defined by

– ‖x‖ = unique ordinal isomorphic to x

– if f ∈ I(x, y), then ‖f‖ ∈ I(‖x‖, ‖y‖) is defined by ϕyf = ‖f‖ϕx (where

ϕz is the unique isomorphism from z to ‖z‖)
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f
x y

ϕx ϕy

‖x‖ ‖y‖
‖f‖

i.e. this diagram is commutative.

We shall often be in the following situation: we are given a functor F

from OL to OL such that F maps OW into OW. Then it will be possible

to consider the “restriction” of F to ON, which will be a functor from ON

to ON, defined by: (and denoted by ‖F‖)

G(x) = ‖F (x)‖ G(f) = ‖F (f)‖ .

There are many functors from OL to OL which cannot be “restricted”

as above. A typical example is the functor ,̃ defined by:

– x̃ is the order opposite to x (same domain, order reversed)

– f̃ = f .

Then, when x is an infinite well-order, x̃ is not a well-order. However,

when x is a finite (well-) order, so is x̃, hence it is possible to “restrict”

˜ to ON < ω. We have “ñ”, and “f̃”(n − 1 − z) = m − 1 − f(z), when

f ∈ I(n,m).

8.1.7. Definition.

If x is an ordinal, let x̂ = x + 1; if x, y are ordinals and f ∈ I(x, y),

define f̂ ∈ I(x̂, ŷ) by: f̂(z) = sup
t<z

(f(t) + 1), equivalently: f̂(0) = 0,

f̂(z + 1) = f(z) + 1, and for z limit, f̂(z) = sup
t<z

f(t).

ˆis clearly a functor from ON to ON.
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8.1.8. Definition.

Let C be a category, and let I be a non void ordered set; we shall always

assume that I is directed, i.e. that, given i, j ∈ I there exists k ∈ I such

that i, j ≤ k.

A direct system in C indexed by I, appears as a family (xi, fij)i≤j∈I

such that:

(i) for all i ∈ I, xi is an object of C

(ii) for all i, j ∈ I such that i ≤ j, fij is C-morphism from xi to xj

(iii) for all i ∈ I, fii is the identity of xi

(iv) for all i, j, k in I such that i ≤ j ≤ k, we have fik = fjkfij.

fij
xi xj

fik fjk

xk

8.1.9. Definition.

A direct system of morphisms (indexed by ϕ) from the direct system

(xi, fij) (indexed by I) to the direct system (yl, flm) (indexed by L) is a

family (hi)i∈I (denoted (hi)i∈ϕ) such that:

(i) ϕ is an increasing function from I to L

(ii) for all i ∈ I hi is a C-morphism from xi to yϕ(i)

(iii) if i, j ∈ I and i ≤ j then hjfij = gϕ(i)ϕ(j)hi.

fij
xi xj

hi hj

yϕ(i) yϕ(j)
gϕ(i)ϕ(j)

8.1.10. Remark.

It would be possible to form a category with direct systems in C as objects,
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and direct systems of morphisms as morphisms. If (hi)i∈ϕ and (kl)l∈ψ

are direct systems of morphisms from (xi, fij)i≤1j∈I to (yl, glm)l≤2m∈L and

from (yl, glm)l≤2m∈L to (zp, dpq)p≤3q∈P , then the composition of (kl)l∈ψ and

(hi)i∈ϕ is defined to be the family h′i = kϕ(i)hi. It is immediate that (h′i)i∈ψϕ

is a direct system of morphisms from (xi, fij)i≤1j∈I to (zp, dpq)p≤2q∈P .

We shall always try to avoid the abstract nonsense of categories of di-

rect systems; however, it is sometimes useful to have them in mind to be

able to understand operations like composition of direct systems of mor-

phisms. The notation i ∈ ϕ is rather shocking, but is has the immense

advantage of giving explicitly the function ϕ.

8.1.11. Definition.

Let (xi, fij) be a direct system in C, indexed by I; a family (x, fi)i∈I is said

to be a direct limit of (xi, fij) iff (i)–(iv) hold:

(i) x is an object of C

(ii) for all i ∈ I fi is a C-morphism from xi to x

(iii) for all i, j ∈ I such that i ≤ j, fi = fjfij

(iv) if (y, gi) is any family enjoying conditions (i)–(iii), then one can find

a unique morphism h from x to y such that for all i ∈ I gi = hfi.

xi
gi

fi h
fij x y

fj

gj
xj

8.1.12. Theorem.

If C is one of the categories of Def. 8.1.2, then Condition (iv) of direct

limits can be restated as:

(iv)′: =
⋃
i∈I

rg(fi), i.e. every point in x can be written as fi(zi) for some

i ∈ I and zi ∈ xi.
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Proof. (iv) → (iv)′: let X =
⋃
i∈I

rg(fi); define y and k ∈ I(y, x) by

rg(k) = X, and gi ∈ I(xi, y) by the condition fi = kgi; since (y, gi)

enjoys (i)–(iii), Condition (iv) ensures the existence of h ∈ I(x, y) such

that g0 = hfi, hence fi = khfi for all i ∈ I; from this kh(z) = z for all

z ∈ X, and h maps X onto y: since h is strictly increasing this forces

X = x.

(iv)′ → (iv): let z ∈ x; we define h(z) as follows: choose i ∈ I and

zi ∈ xi such that z = fi(zi) (this is possible by (iv)′) and let h(z) = gi(zi);

this definition is not absurd, because, if z = fj(zj), choose k ≥ i, j; then

gi(zi) = gk
(
fik(zi)

)
= gk

(
fjk(zj)

)
= gj(zj) (the equality fik(zi) = fjk(zj)

comes from z = fk
(
fik(zi)

)
= fk

(
fjk(zj)

)
and the fact that fk is strictly

increasing...). h is strictly increasing: if z < z′, then by the directedness

of I one can choose i ∈ I, zi, z
′
i with z = fi(zi), z

′ = fi(z
′
i). Since fi

and gi are strictly increasing, it follows that zi < z′i and gi(zi) < gi(z
′
i),

i.e. h(z) < h(z′). By construction we clearly have gi(zi) = h
(
fi(zi)

)
, so

gi = hfi. The unicity of such an h is obvious. 2

8.1.13. Examples.

(i) The simplest example of a direct limit is that of a supremum: let

x be a limit ordinal, and let I = x, and for y ∈ x, let ay = y, and

for y ≤ z ∈ x, let fyz = Eyz. Then (x,Eyx)y∈x is a direct limit of

(ay, fyz): in that case the direct limit coincides with the supremum.

(ii) If the system (xi, fij) is such that all xi’s are equal to some fixed inte-

ger n, then the system has a direct limit of the form (n, fi). (Because

all functions fij are isomorphisms.) But if xi is constantly equal to

some infinite ordinal, nothing can be said as to its direct limit. For

instance, if x is a limit ordinal with a denumerable cofinality, it is

possible to find a direct system (xi, fij) with all xi = ω having a

direct limit of the form (x, fi).

(iii) We give now the crucial example of a system (xi, fij) with all xi’s

finite, and a direct limit of the form (ω + 1, fi): I will be the set IN

of integers; if n ∈ I, let xn = n + 1, if n ≤ m, let fnm = Enm + E1,
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i.e. fnm(z) = z for z < n and fn(n) = m; define fn ∈ I(n+ 1, ω + 1)

by fn = Enω + E1, i.e. fn(z) = z for z < n, fn(n) = ω.

x3 = 4 0 1 2 3

f3,6 ↓ ↓ ↓
x6 = 7 0 1 2 3 4 5 6

f6,7 ↓ ↓ ↓ ↓ ↓ ↓
x7 = 8 0 1 2 3 4 5 6 7

f7 ↓ ↓ ↓ ↓ ↓ ↓ ↓
ω + 1 0 1 2 3 4 5 6 7 ... ω

(iv) In a similar way, the system (n+n,Enm+Enm) has (ω+ω,Enω+Enω)

as direct limit; the system (n · n,Enm · Enm) has (ω · ω,Enω · Enω)

as direct limit... .

8.1.13. Proposition.

(i) If (x, fi) is a direct limit of (xi, fij), then x is unique up to isomor-

phism. (This is the reason why we shall often speak of x as “the

direct limit of (xi, fij).) In ON and in its subcategories, identity

morphisms are the only isomorphisms, hence x is actually unique.

(The same situation will hold for the category DIL of dilators.)

(ii) Suppose that (xi, fij)i≤1j∈I and (yl, glm)l≤2m∈L admit direct limits

(x, fi) and (y, gl) in C; then, if (hi)i∈ϕ is a direct system of mor-

phisms from (xi, fij) to (yl, glm), it is possible to define a morphism

h ∈ I(x, y) such that for all i ∈ I: hfi = gϕ(i)hi.

hi
xi yϕ(i)

fij fi gϕ(i) gϕ(i)

hj
xj yϕ(j)

fj gϕ(j)

x y
h
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This morphism is called the direct limit of (hi).

Proof. (i) If (x, fi) and (y, gi) are two direct limits of (xi, fij), then by

8.1.11 (iv) one can find h and k such that gi = hfi and fi = kgi for all

i ∈ I. From this one gets fi = khfi for all i ∈ I; by condition 8.1.11 (iv),

kh is the unique morphism such that fi = khfi for all i ∈ I. This forces

kh to be the identity of x, and similarly hk is the identity of y. So x and

y are isomorphic.

(ii) (y, gϕ(i)hi) enjoys conditions 8.1.11 (i)–(iii), hence there is a unique

h from x to y such that hfi = gϕ(i)hi for all i ∈ I. 2

8.1.14. Remark.

“The” direct limit is functorial in the following sense: assume that (xi−fij),
(yl, glm), (zp, dpq) are as in 8.1.10 and have direct limits (x, fi), (y, gl), (z, dp)

and assume that (hi), (kl), (h′i) are as in 8.1.10. Then their respective di-

rect limits h, k, h′ are such that h′ = k · h.

8.1.15. Example.

Assume that (xi)i∈I and (yl)l∈L are increasing families of ordinals, and

that ϕ is an increasing function from I to L. Assume that the func-

tions f ∈ I(xi, yϕ(i)) are such that i ≤ j → fj extends fi, i.e. that for

z ∈ xi fj(z) = fi(z). Then it is possible to define a function g =
⋃
i

fi,

with g ∈ I
(

sup(xi), sup(yl)
)

by g(z) = fi(z), where i is any index such that

z ∈ xi.
In fact,

⋃
i

fi is a very simple case of a direct limit of morphisms: re-

call rhat (with x = sup(xi), y = sup(yl)) (x,Exix) (res[. (y,Eyly)) is the

direct limit of the system (xi,Exixj) (resp. (yl,Eylym)); it is immediate that

(fi)i∈ϕ is a direct system of morphisms between (xi,Exixj) and (yl,Eylym)

and that the function g =
⋃
i

fi is their direct limit.

8.1.1.6. Theorem.

The category ON < ω is dense in the categories ON, OL (and ON < x

for x infinite). This means that:
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(i) if x is any object of one of these categories, then one can find a direct

system (xi, fij), with all xi’s integers together with functions fi, such

that (x, fi) is the direct limit of (xi, fij).

(ii) if x, y are objects in one of these categories, and (x, fi) (resp. (y, gl))

is the direct limit of (xi, fij) (resp. (yl, glm)) with xi, yl finite for all i

and l, then for any h ∈ I(x, y), one can find an increasing function ϕ

together with a direct system of morphisms (hi)i∈ϕ such that h is the

direct limit of (hi).

Proof. (i) Define I = {a ; a finite, a ⊂ x}; I (ordered by inclusion) is

obviously directed. Define xa = ‖a‖ (i.e. the order type of x restricted to

a); if a ⊂ b, let eab be the inclusion map from a into b, and let fab = ‖eab‖.
It is immediate that xa is an integer and (xa, fab) is a direct system. Let

eax be the inclusion map from a into x, and let fa = ‖eax‖. It is immediate

that (x, fi) enjoys Conditions 8.1.11 (i)–(iii) of direct limits w.r.t. (xi, fij).

Condition (iv)′ is satisfied as well, since if z ∈ x, z ∈ rg(f{z}). Hence (x, fi)

is a direct limit for (xi, fij).

(ii) If a is any finite subset of y, one can find an index a∗ ∈ L such

that a ⊂ rg(ga∗). It is an easy exercise of set theory to show that the

function a ; a∗ can be chosen increasing, i.e. a ⊂ b → a∗ ≤2 b∗. (De-

fine, using the axiom of choice, a∗ by transfinite induction over a well-

ordering of the finite subsets of y, which extends the inclusion.) Given

i ∈ I, let ϕ(i) =
(
rg(hfi)

)∗
; then ϕ is an increasing function and we have

rg(hfi)
∗ ⊂ rg(gϕ(i)), so one can define hi ∈ I(xi, yϕ(i)) by the condition:

hfi = gϕ(i)hi. It is immediate that (hi)i∈ϕ is a direct system of morphisms

from (xi, fij) to (yl, glm) and h is the direct limit of (hi). 2

8.1.17. Notations.

(i) (x, fi) = lim
−→

(xi, fij) expresses that (x, fi) is the direct limit of

(xi, fij); one can note the indexing set I by: lim
−→
I

. If we are only

interested in x, we shall use the notation: x = lim
−→

∗
(xi, fij).
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(ii) h = lim
−→

(hi) when h is the direct limit of the system (hi); one can

note the indexing function by: lim
−→
ϕ

.

8.1.18. Theorem.

In OL, all direct systems have direct limits.

Proof. Let (xi, fij) be a direct system in OL; let X be the disjoint union of

the xi’s, and define a binary relation R on X by: (a, i)R (b, j) iff for some

k ≥ i, j, fi,k(a) ≤k fjk(b) (≤k is the order relation of xk). R is obviously a

preorder, and by directedness, R is a total preorder, i.e. any two elements

of X are comparable; if S is the equivalence relation associated with R,

X/S is celarly linearly ordered by R/S. Let us call this ordered set x, and

define fi ∈ I(xi, x) by fi(z) = eq. class of z modulo S. It is immediate

that (x, fi) enjoys 8.1.11 (i)–(iii) w.r.t. (xi, fij). (iv)′ holds as well, since if

a is an equivalence class modulo S, and (z, i) ∈ a, then a = fi(z). Hence

(x, fi) = lim
−→

(xi, fij). 2

8.1.19. Remark.

The analogue of 8.1.18 fails for ON: if x = lim
−→

∗
(xi, fij), with all xi’s

finite, then x̃ = lim
−→

∗
(x̃i, fij), but x̃ is not an ordinal when x is an infinite

ordinal: the direct system (x̃i, f̃ij) is (isomorphic to) a direct system in

ON, but it cannot have any direct limit in ON since such a limit would

be isomorphic to x̃, which is not a well-order. The relation between the

concepts of direct limit in ON and in OL are given by:

8.1.20. Theorem.

Let (xi, fij) be a direct system in ON, and let x be its direct limit in the

category OL. Then (xi, fij) admits a direct limit in ON iff x is a well-

order. In that case, the direct limit is exactly ‖x‖.

Proof. Assume that (in OL) (x, fi) = lim
−→

(xi, fij).
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(i) If x is a well-order, one can replace x by ‖x‖, fi by ‖fi‖; and Condi-

tions 8.1.11 (i)–(iv) hold for (‖x‖, ‖fi‖) in OL, hence in ON.

(ii) Conversely, if (xi, fij) has a limit (y, gi) in ON, then in the category

OL, (y, gi) enjoys 8.1.11 (i)–(iii) w.r.t. (xi, fij), hence for some h ∈
I(x, y) gi = hfi; but h ∈ I(x, y) and y is a well-order: by 5.3.4, x is

a well-order. 2

8.1.21. Theorem.

Assume that (xi, fij) and (x, fi) enjoy conditions 8.1.11 (i)–(iii), with xi,

x in ON; then (xi, fij) has a direct limit in ON.

Proof. We construct x, y, k, gi exactly as in the proof of the implication

(iv)→ (iv)′. It is immediate that (y, gi) enjoys (iv)′, and since k ∈ I(y, x),

y is a well-order. By 8.1.20, (xi, fij) has a direct limit in ON. 2

8.1.22. Remark.

Direct limits can be thought of as an effective way of dealing with infinite

objects such as ordinals: we can think of an ordinal x = lim
−→

∗
(xi, fij)

as the (ideal) limit of an approximation process by means of the integers

xi. It is a fact that most operations on ordinals can be handled by means

of similar operations on finite approximations, i.e. can be represented by

means of a functor preserving direct limits. Examples of such functors are

dilators, β-proofs ... . Each time we succeed in eliminating an operation on

actual infinite objects in favor of a similar one acting on approximations,

we have realized something akin to Hilbert’s program, namely eliminating

infinite objects from our universe.

Let us see how direct systems can be connected with ideas of recursive-

ness:

(i) first it is natural to consider recursive index sets: I is a recursive

subset of IN ordered by a recursive relation.

(ii) then we look at the question of representing the family xi: in the basic

situation, the ordinals xi will be integers, hence xi can be represented
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as {e} i for some index i. (More generally, if xi is a recursive well-

order, then we require that {e} i is an index for xi.)

(iii) a function f ∈ I(n,m) can be encoded by df e = 〈f(0), ..., f(n −
1),m〉. Hence it is possible (when xi’s are integers), to represent the

family fij by dfij
e = {f} (i, j) for some index f . (More generally, we

require that {f} (i, j) is an index for fij.)

We have clearly defined two concepts:

– the concept of a recursive direct system of integers

– the concept of a recursive direct system of recursive well-orders.

Observe that any recursive well-order can be obtained as the direct

limit of a recursive direct system of integers: let X = (|X|,≤) be a recur-

sive well-order. Let I = IN ; for n ∈ IN let xn = ‖(|X| ∩ n,≤ |̀ |X| ∩ n)‖,
and if for n ≤ m, enm is the inclusion map between X|̀n and X|̀m, let

fnm = ‖enm‖. Then X is clearly the direct limit of (xn, fnm). Conversely

we have:

8.1.23. Proposition.

If (xi, fij) is a recursive direct system of integers (or of recursive well-

orders), then its direct limit in OL(x, fi) can be chosen recursive.

Proof. First of all, we construct a recursive function ϕ from IN to I, with

the property that ϕ is increasing and rg(ϕ) is cofinal in I: let ϕ(n) be

the smallest integer which is greater (for the ordering of I) than all the

elements of I ∩ {0, ..., n− 1}:

ϕ(n) = µm
(
m ∈ |I| ∧ ∀p < n (p ∈ |I| → p ≤ m)

)
.

This function is total because I is non-void and directed! The direct limit

will be the linear order X = (|X|,≤1) defined by:

X =
{
〈n, z〉 ; z ∈ xϕ(n) ∧ ∀m∀z′

(
〈m, z′〉 < 〈n, z〉 →(

(m ≤ n ∧ z 6= fϕ(m)ϕ(n)(z
′)
)
∨
(
(m > n ∧ z′ 6= fϕ(m)ϕ(n)(z))

))}
〈n, z〉 ≤1 〈m, z′〉 ↔ fϕ(n)ϕ(p)(z) ≤∗ fϕ(m)ϕ(p)(z

′)
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where ≤∗ stands for the order relation of xϕ(p) and p = sup(n,m). X is

clearly the direct limit of (xi, fij); the functions fi can be defined by: fi(z)

is the smallest pair 〈n, z′〉 such that fij(z) = fϕ(n)j(z
′) for some j ≥ i, ϕ(n).

2

8.1.24. Definition.

Let x1, x2, x3, x be objects of a category C, and let f1, f2, f3 be C-
morphisms from respectively x1, x2, x3 to x; then f3 is said to be a pull-

back of f1 and f2 iff

(i) there exist C-morphisms f31 and f32 from x3 to x1 and x2 such that:

f3 = f1f31 = f2f32

(ii) given any other solution (x′3, f
′
3, f

′
31, f

′
32) enjoying (i) one can find a

unique morphism h from x′3 to x3 such that

f ′31 = f31h and f ′32 = f32h .

x1

f ′31 f1

f31

h f3
x′3 x3 x

f32

f ′32 f2

x2

8.1.25. Notation.

f3 = f1∧f2 means that f3 is “the” pull-back of f1 and f2. The pull-back is

easily shown to be unique up to isomorphism (on the model of 8.1.13 (i)).

In the category ON, pull-backs will therefore be uniquely determined.



22 8. Dilators: algebraic theory

8.1.26. Theorem.

In the categories ON and OL, f3 = f1 ∧ f2 iff rg(f3) = rg(f1) ∩ rg(f2).

Hence, in these categories pull-backs always exist.

Proof. Any solution f3 of 8.1.24 (i) enjoys rg(f3) ⊂ rg(fi) for i = 1, 2 , so

rg(f3) ⊂ rg(f1) ∩ rg(f2). Conversely, if f3 is such that rg(f3) ⊂ rg(f1) ∩
rg(f2), then 8.1.24 (i) holds: if z ∈ x3, then f3(z) ∈ rg(f1), hence f3(z) =

f1(z′) for some uniquely determined z′ ∈ x1, and one can put f31(z) = z′.

Assume now that rg(f3) = rg(f1)∩rg(f2); then, given an arbitrary f ′3 such

that rg(f ′3) ⊂ rg(f1) ∩ rg(f2), define h ∈ I(x′3, x3) by: h(z) = the unique

z′ such that f ′3(z) = f3(z′); then it is immediate that h is the only solution

of f ′31 = f31h, f ′31 = f32h. Conversely suppose that f3 = f1 ∧ f2, and apply

8.1.24 (ii) to f ′3 such that rg(f ′3) = rg(f1) ∩ rg(f2): then f ′3 = f3h, so

rg(f3) ⊃ rg(f ′3), hence rg(f3) = rg(f1) ∩ rg(f2). 2



The normal form theorem 23

8.2. The normal form theorem

8.2.1. Remark.

(i) If F is a functor from C to D and if (xi, fij) is a direct system in

C,
(
F (xi), F (fij)

)
is a direct system in D. But in general, if (x, fi)

= lim
−→

(xi, fij),
(
F (x), F (fi)

)
need not be the direct limit of

(
F (xi,

F (fij)
)
: conditions 8.1.11 (i)–(iii) of direct limits are obviously ful-

filled, whereas (iv) is problematic.

(ii) If F is a functor from C to D and if f3 = f1∧f2, then in general F (f3)

is not equal to F (f1) ∧ F (f2); however, condition 8.1.24 (i) is always

fulfilled.

8.2.2. Definition.

Let F be a functor from C to D; then

(i) F preserves direct limits iff given any direct system (xi, fij) in C,
with a direct limit (x, fi), then

(
F (xi), F (fij)

)
has a direct limit in

D, and this direct limit is equal to
(
F (x), F (fi)

)
.

(ii) F preserves pull-backs iff given any f1, f2, f3 such that f3 = f1∧f2

in C, then F (f1) ∧ F (f2) exists in D and equals F (f3).

8.2.3. Theorem (Girard, [5]) Normal Form Theorem.

Let F be a functor from one of the categories OL, ON, ON ≤ x, ON < x

to OL or ON; then F preserves direct limits and pull-backs iff the following

holds: for all x, for all z ∈ F (x), then one can find an integer n and

z0 ∈ F (n) and f ∈ I(n, x) such that

(i) z = F (f)(z0).

(ii) if z0 = F (g)(z1) with g ∈ I(n; , n) and z1 ∈ F (n′), then n = n′ (and

g = En) and n, z0, f are uniquely determined by (i) and (ii).
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Proof. Assume first that F preserves direct limits and pull-backs: choose

x, an object in the domain of F , and then (x, fi) = lim
−→

(xi, fij) for a well-

chosen direct system, with all xi’s finite, by 8.1.16 (i). By preservation of

direct limits
(
F (x), F (fi)

)
= lim

−→

(
F (xi), F (fij)

)
, hence z ∈ rg

(
F (fi)

)
for some i: there exists an integer n, z0 ∈ F (n) and f ∈ I(n, x) such that

z = F (f)(z0). If one chooses n minimum with this property, one gets (i)

and (ii). We must show that n, z0 and f are uniquely determined: assume

that n, f, z0, and m, f ′, z1 are two distinct solutions of (i)–(ii); necessarily

rg(f) 6⊂ rg(f ′) (otherwise f = f ′k, and z0 = F (k)(z1)...), hence f 6= f ∧f ′;
let g = g ∧ g′; by preservation of pull-backs, F (g) = F (f) ∧ F (f ′), i.e.

rg
(
F (g)

)
= rg

(
F (f)

)
∩ rg

(
F (f ′)

)
, hence z ∈ rg

(
F (g)

)
; write g = fh;

then z = F (g)(z2) = F (f)F (h)(z2), hence z0 = F
(
h(z2)

)
with h 6= En:

this contradicts property (ii) of n, z0, f .

Conversely, assume that F is such that a unique representation by

means of (i) and (ii) is possible: if (x, fi) = lim
−→

(xi, fij), we have already

remarked (8.2.1 (i)) that
(
F (x), F (fi)

)
enjoys conditions 8.1.11 (i)–(iii)

w.r.t.
(
F (xi), F (fij)

)
; it suffices to show that (iv)′ is fulfilled: if z ∈ F (x),

write z = F (f)(z0) for f ∈ I(n, x) and z0 ∈ F (n). Since rg(f) is fi-

nite, one can gind an index i such that rg(f) ⊂ rg(fi) (use condition (iv)′

for (x, fi) and the directedness of I), hence f = fih for some h. Then

z = F (fi)F (h)(z0), i.e. z ∈ rg
(
F (fi)

)
. Assume now that f3 = f1 ∧ f2;

then by Remark 8.2.1 (ii), we know that F (f3) enjoys condition 8.1.24 (i)

w.r.t. F (f1) and F (f2), i.e. that rg
(
F (f3)

)
⊂ rg

(
F (f1)

)
∩ rg

(
F (f2)

)
.

The reverse inclusion is shown below: if z ∈ rg
(
F (f1)

)
∩ rg

(
F (f2)

)
,

write z = F (f1)(z1) = F (f2)(z2), and choose n1, z
′
1, g1, and n2, z

′
2, g2 such

that conditions (i) and (ii) hold w.r.t. z1 and z2: then z1 = F (g1)(z′1),

z2 = F (g2)(z′2); hence z = F (f1g1)(z′1) = F (f2g2)(z′2). Since z′1 is such

that z′1 = F (h)(z′′1 ) → h is the identity (similarily for z′2), it follows that

(from the unicity of n, z0, f such that (i) and (ii)) that z′1 = z′2, n1 = n2,

f1g1 = f2g2. Clearly rg(f1g1) ⊂ rg(f3), hence f1g1 = f3k for some k:

z = F (f3)F (k)(z′1), so z ∈ rg
(
F (f3)

)
. 2
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8.2.4. Notation.

When z < F (x), we shall represent x by means of the data n, z0, f such

that (i) and (ii): we shall represent z by (z0 ; x0, ..., xn−1 ; x)F , with x0 =

f(0), ..., xn−1 = f(n−1). We may forget the index F when F is clear from

the context.

Let us sum up under which conditions (z0 ; x0, ..., xn−1 ; x)F is a deno-

tation:

(i) x0, ..., xn−1, x are ordinals such that x0 < ... < xn−1 < x.

(ii) z0 ∈ F (n).

(iii) for all m < n and all f ∈ I(m,n), z0 6∈ rg
(
F (f)

)
.

One clearly sees that in the denotation, there is a right part, namely the

pair (z0 ; n), and another part that can take arbitrary values (the strictly

increasing sequence x0, ..., xn−1, x; but its length is fixed).

The behaviour of the functorial constructions w.r.t. denotations arising

from Theorem 8.2.3 is given by:

8.2.5. Proposition.

(i) F (f)
(
(z0 ; x0, ..., xn−1 ; x)F

)
= (z0 ; f(x0), ..., f(xn−1) ; y)F when f ∈

I(x, y).

(ii) if T is a natural transformation from F to G, then T (x)
(
(z0 ; x0, ...,

xn−1 ; x)F
)

= (T (n)(z0) ; x0, ..., xn−1 ; x)G.

Proof. (i) If g ∈ I(n, x) is defined by: g(0) = x0, ..., g(n − 1) = xn−1,

then (z0 ; x0, ..., xn−1 ; x)F denotes F (g)(z0), and F (f)(z) = F (fg)(z0) is

denoted by: (z0 ; f(x0), ..., f(xn−1) ; y).

(ii) Consider the following commutative diagram

T (n)
F (n) G(n)

F (g) G(g)

F (x) G(x)
T (x)
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where g is defined as in (i). Then it is clear that T (x)
(
(z0 ; x0, ..., xn−1 ; x)F

)
= G(g)

(
T (n)(z0)

)
hence, it will suffice to prove that T (n)(z0) = G(h)(z1)→

h = En. If h 6= En, it is possible to find g1, g2 ∈ I(n, n + 1) such

that g1 6= g2, but g1h = g2h. Then G(g1)T (n)(z0) = G(g1h)(z1) =

G(g2h)(z1) = G(g2)T (n)(z0), but F (g1)(z0) = (z0 ; g1(0), ..., g1(n− 1) ; n+

1)F 6= (z0 ; g2(0), ..., g2(n−1) ; n+1)F = F (g2)(z0), hence T (n+1)F (g1)(z0)

6= T (n+ 1)F (g2)(z0), a contradiction:

T (n)
F (n) G(n)

F (gi) G(gi)

F (n+ 1) G(n+ 1)
T (n+ 1)

2

8.2.6. Theorem.

Assume that F is a functor from ON < ω to OL; then, if F preserves

pull-backs

(i) F can be extended into a functor from OL to OL preserving direct

limits and pull-backs; this extension is unique up to isomorphism.

(ii) Moreover, if F is a functor from ON < ω to ON and if the extension

computed in (i) is a well-order for all x, then F can be extended into

a functor from ON to ON preserving direct limits and pull-backs.

Proof. First of all, remark that F preserves direct limits (if (n, fi) =

lim
−→

(ni, fij), then there is some i ∈ I such that ni = n, fi = En), hence

the normal form theorem can be applied to F .

(i) If x is a linear order, then define G(x) as follows:

– G(x) consists of all formal expressions (z0 ; u0, ..., un−1 ; x) such that

u0, ...,

un−1 is a strictly increasing sequence in x, z0 ∈ F (n), and z0 cannot

be written F (h)(z1) with h 6= En.

– G(x) is linearly ordered as follows: (z0 ; u0, ..., un−1 ; x) = z and (z1 ; v0, ...,

vm−1 ; x) = z′ can be compared by considering the subset {w0, ..., wp−1} =
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{u0, ..., un−1} ∪ {v0, ..., vm−1} of x, and f ∈ I(p, x) such that rg(f) =

{w0, ..., wp−1}; then one can write ui = fg(i), vi = fh(i), for some

g ∈ I(n, p) and h ∈ I(m, p); consider y = (z0 ; g(0), ..., g(n − 1) ; p) and

y′ = (z1 ; h(0), ..., h(m−1) ; p). Then z is less than z′ in G(x) iff y is less

than y′ in F (p).

– if f ∈ I(x, y), then define G(f)
(
(z0 ; u0, ..., un−1 ; x)

)
to be (z0 ; f(u0), ...,

f(un−1) ; y). One easily checks that G(f) is a strictly increasing function

from G(x) to G(y), and G is a functor from OL to OL.

Now observe that G enjoys the normal form theorem: if z ∈ G(x), z =

(z0 ; x0, ..., xn−1 ; x), then clearly z = F (f)(z′0), with: f ∈ I(n, x) defined

by f(0) = x0, ..., f(n− 1) = xn−1, z′0 = (z0 ; 0, ..., n− 1 ; n). Conditions (i)

and (ii) are obviously fulfilled, and this is of course the only solution.

Strictly speaking, G is not an extension of F , since the values G(n)

are not exactly equal to F (n); however, G(n) is isomorphic to F (n) (to

(z0 ; x0, ..., xm−1 ; n), associate (z0 ; x0, ..., xm−1 ; n)F !) and so a very small

modification of G on the integers enables us to construct an extension of

F preserving direct limits and pull-backs... .

The extension is unique up to isomorphism: if x = lim
−→

∗
(xi, fij) with

all x’s finite, then one must have G(x) = lim
−→

∗ (
F (xi), F (fij)

)
: recall that

direct limits are unique up to isomorphism.

(ii) is immediate: assume that the extension of F computed in (i) ac-

tually maps ON into OW; then ‖ ‖ ◦ F maps ON into ON and preserves

direct limits and pull-backs. (For a pedantic proof of this: observe that

‖ ‖ preserves direct limits and pull-backs... .) 2

8.2.7. Remark.

In order that the functor F from ON < ω to ON may be extendable into

a functor from ON to ON preserving direct limits and pull-backs, it is

necessary and sufficient that:

(i) F preserves pull-backs.

(ii) The direct limit of
(
F (xi), F (fij)

)
exists in ON, where (xi, fij) is a di-
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rect system in ON, with all xi’s finite, and such that lim
−→

∗
(xi, fij) =

ℵ1.

(Proof. By 8.2.6 (ii), it suffices to show that G(x) is a well-order for all or-

dinals x; but, if G(x) is not a well-order, let y0, ..., yp, ... be a s.d.s. in G(x),

and let (x0
0, ..., x

0
m0−1), ..., (xp0, ..., x

p
np−1), ... be the elements of x occurring

in the normal forms of the points y0, ..., yp, ...; if Y is the set of all these co-

efficients, then Y is denumerable, and if g ∈ I(y, x) is such that rg(g) = Y ,

it is immediate that yi = F (g)(zi), for a certain s.d.s. zi in G(y). Then

G(y) is not a well-order; but y < ℵ1, hence G(eyℵ1) ∈ I
(
G(y), G(ℵ1)

)
and

since by hypothesis G(ℵ1) is a well-order, so is G(y), a contradiction. 2)

8.2.8. Definition.

A dilator is a functor from ON to ON preserving direct limits and pull-

backs.

8.2.9. Examples.

(i) If x is an ordinal, then x defined by

x(y) = x x(f) = Ex

is a dilator.

(ii) The functor Id defined by

Id(x) = x Id(f) = f

is a dilator.

(iii) The functors sum, product, exponential allow us to form new dila-

tors: if F , F ′ are dilators, so are F + F ′, F · F ′, (1 + F )F
′
, defined

by

(f + F ′)(x) = F (x) + F ′(x) (F + F ′)(f) = F (f) + F ′(f)

(F · F ′)(x) = F (x) · F ′(x) (F · F ′)(f) = F (f) · F ′(f)

(1 + F )F
′
(x) =

(
1 + F (x)

)F ′(x)
(1 + F )F

′
(f) =

(
1 + F (f)

)F ′(f)
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These combinations are dilators because of the

8.2.10. Theorem.

The functors sum, product, exponential preserve direct limits and pull-

backs.

Proof. The theorem is an obvious consequence of an analogue of the normal

form theorem 8.2.3 for binary functors. It suffices to show that if F is any

of the functors sum, product, exponential, then any z = F (x, y) can be

written as F (f, g)(z0), for some f ∈ I(n, x), g ∈ I(m, y) and z0 ∈ F (n,m)

such that z0 = F (f ′, g′)(z1) → f ′ = En and g′ = Em, moreover, one must

show that z0, n, m, f , g are uniquely determined by these conditions. We

content ourselves with exhibiting z0, n, m, f , g, and the unicity is left to

the reader:

(i) if z < x + y, and: +z < x; let n = 1, m = 0, z0 = 0, f ∈ I(1, x) be

defined by f(0) = z, g = E0y. +z ≥ x; write z = x + z′; let n = 0,

m = 1, z0 = 0, f = E0x, g ∈ I(1, y) with g(0) = z′.

(ii) if z < x · y, write z = x · u + v, with u < y, v < x; let n = m = 1,

z0 = 0, f ∈ I(1, x) be defined by f(0) = v, g ∈ I(1, y) be defined by

g(0) = u.

(iii) if z < (1+x)y, write z = (1+x)yp−1(1+up−1)+...+(1+x)y0(1+u0) with

u0, ..., up−1 < x, y0 < ... < yp−1 < y; let m = p and let g ∈ I(p, y)

be defined by g(0) = y0, ..., g(p − 1) = yp−1; let n and f ∈ I(n, x)

be such that rg(f) = {u0, ..., up−1}, and let k0, ..., kp−1 be such that

f(k0) = u0, ..., f(kp−1) = up−1; then define z0 = (1 + n)p−1 · (1 +

kp−1) + ...+ (1 + n)0 · (1 + k0). 2

8.2.11. Remarks.

(i) One of the most remarkable features of direct limits is their good be-

haviour w.r.t. questions of double limits, function spaces (in contrast

with topological continuity). Results established for unary functors

can usually be extended without any problems to the case of binary

functors.
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(ii) For instance, any functor from (ON < ω)2 to ON preserving pull-

backs can be extended into a functor from OL2 to OL preserving

direct limits and pull-backs. The obvious idea is to use two variable

normal forms. If one applies this to sum, product, exponential, this

enables us to define these operations on arbitrary linear orders. It

turns out that this way of extending these functors to OL2 exactly

coincides with our definition of Chapter 5.

8.2.12. Examples.

(i) ,̃ as a functor from OL to OL, preserves direct limits and pull-backs.

(ii) ˆis a functor from ON to ON; but is preserves neither direct limits,

nor pull-backs.

(Proof. The functor 1 + Id coincides withˆon the category ON < ω;

this functor preserves direct limits, hence, if ˆ would preserve direct

limits one should haveˆ= 1+ Id, by unicity of the extension by means

of direct limits; but ω̂ = ω + 1 whereas (1 + Id)(ω) = ω. So ˆ does

not preserve direct limits (this can be seen from the definition of f̂ ,

which is not “finitary”). Let f, g ∈ I(ω, ω) be defined by f(n) = 2n,

g(n) = 2n + 1. Then f ∧ g = E0ω, hence ( ̂f ∧ g) = E1ω+1; on the

other hand f̂ ∧ ĝ = E0ω + E1, henceˆdoes not preserve pull-backs.2)

8.2.13. Definition.

Let f, g ∈ I(x, y); then f ≤ g means that: ∀z ∈ x
(
f(z) ≤ g(z)

)
.

8.2.14. Lemma.

If x, y are ordinals, if f, g ∈ I(x, y) , then f ≤ g iff there exist an ordinal

z and functions h ∈ I(y, z), k ∈ I(z, z), such that hg = khf .

Proof. (i) If hg = khf , then, for all t < x, h
(
g(t)

)
= k

(
h
(
f(t)

))
; but,

since z is an ordinal, k(u) ≥ u for all u, hence h
(
g(t)

)
≥ h

(
f(t)

)
, and

from this g(t) ≥ f(t).

(ii) Conversely, let z = ω2y, h(t) = ω2t+1; if u < z, write u = u′+r, with

u′ = sup {ω2f(t)+1 ; ω2f(t)+1}, and let v′ = sup {ω2g(t)+1 ; ω2f(t)+1 ≤ u}, and
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let k(u) = v′ + r; observe that hg = khf , so it remains to show that k is

strictly increasing: assume that (with obvious notations) u1 +r1 < u2 +r2;

then

• if u1 = u2, then v1 = v2, hence v1 + r1 < v2 + r2.

• if u1 < u2, then v1 < v2; choose t such that r1 < ω2f(t)+1 ≤ u2; then

r1 < ω2f(t)+1 ≤ ω2g(t)+1 ≤ v2, hence v1 + r1 < v2 ≤ v2 + r2. 2

8.2.15. Theorem.

Assume that F is a dilator; then f ≤ g → F (f) ≤ F (g).

Proof. If f ≤ g, then write hg = khf , hence F (h)F (g) = F (k)F (h)F (f),

and so F (f) ≤ F (g). 2

8.2.16. Definition.

A predilator is a functor from OL to OL preserving direct limits and pull-

backs, and such that ∀x∀y∀f∀g
(
f, g ∈ I(x, y) ∧ f ≤ g → F (f) ≤ F (g)

)
.

8.2.17. Example.

The functor˜is the typical example of a functor from OL to OL preserving

direct limits and pull-backs, and which is not a predilator: if f ≤ g, then

g̃ ≤ f̃ !

8.2.18. Proposition.

A functor F from OL to OL preserving direct limits and pull-backs is

a predilator iff the denotations w.r.t. F are increasing in the coefficients,

i.e. iff x0 ≤ x′0, ..., xn−1 ≤ xn−1, and x′n−1 < x → (z0 ; x0, ..., xn−1 ; x)F ≤
(z0 ; x′0, ..., x

′
n−1 ; x)F .

Proof. If f ≤ g, and F is a predilator, then F (f)
(
(z0 ; 0, ..., n− 1 ; n)F

)
≤

F (g)
(
(z0 ; 0, ..., n− 1 ; n)

)
: define f ∈ I(n, x) by f(0) = x0, ..., f(n− 1) =

xn−1, and g ∈ I(n, x) by g(0) = x0, ..., g(n− 1) = xn−1, then f ≤ g and so

we get: (z0 ; x0, ..., xn−1 ; x)F ≤ (z0 ; x′0, ..., x
′
n−1 ; x)F . Conversely, assume

that f ≤ g, and that the denotations w.r.t. F are increasing in the coeffi-

cients. Then if z = (z0 ; y0, ..., yn−1 ; y) and f, g ∈ I(y, x), we get F (f)(z) =

(z0 ; f(y0), ..., f(yn−1) ; x) and F (g)(z) = (z0 ; g(y0), ..., g(yn−1) ;



32 8. Dilators: algebraic theory

x), and clearly F (f)(z) ≤ F (g)(z). 2

8.2.19. Corollary.

A functor F from OL to OL preserving direct limits and pull-backs is

a predilator iff its restriction to ON < ω enjoys the property f ≤ g →
F (f) ≤ F (g).

Proof. In order to compare (z0 ; x0, ..., xn−1 ; x)F and (z0 ; x′0, ..., x
′
n−1 ; x)F ,

when x0 ≤ x′0, ..., xn ≤ x′n−1 < x, one can assume that x is an integer: this

is a consequence of the:

8.2.20. Theorem.

Let F be a functor from ON (or OL, ON ≤ x) to OL, and assume

that (z0 ; x0, ..., xn−1 ; x)F and (z1 ; y0, ..., ym−1 ; x)F are denotations for

elements < F (x). Then the order relation between these two elements is

completely determined by: (if one knows F ) z0, n, z1, m and the order

relations between the points xi and yj.

Proof. This means that given any two strictly increasing sequences x′0 <

... < x′n−1 < x′ and y′0 < ... < y′m−1 < x′ such that, for all i, j:

xi < yj ↔ x′i < y′j
and

yj < xi ↔ y′j < x′i
then

t < u ↔ t′ < u′ ,

where t = (z0 ; x0, ..., xn−1 ; x)F , u = (z1 ; y0, ..., ym−1 ; x)F , t′ = (z0 ; x′0, ...,

x′n−1 ; x′)F , u′ = (z1 ; y′0, ..., y
′
m−1 ; x)F . Define an integer p (resp. p′) and

a function f ∈ I(p, x) (resp. f ′ ∈ I(p′, x′)) by: rg(f) = {x0, ..., xn−1} ∪
{y0, ..., ym−1} (resp. rg(f ′) = {x′0, ..., x′n−1}∪ {y′0, ..., y′m−1}). Then one can

find t0, u0 ∈ F (p), t′0, u
′
0 ∈ F (p′) such that t = F (f)(t0), u = F (f)(u0),

t′ = F (f ′)(t′0), u′ = F (f ′)(u′0). Hence it suffices to show that t0 < u0 ↔
t′0 < u′0. Now observe that the hypothesis xi < yj ↔ x′i < y′j and

yj < xi ↔ y′j < x′i implies that the sets {x0, ..., xn−1} ∪ {y0, ..., ym−1}
and {x′0, ..., x′m−1} ∪ {y′0, ..., y′m−1} have the same order type, hence p =

p′; for the same reason f−1(x0) = f ′−1(x′0), ..., f−1(xn−1) = f ′−1(x′n−1),
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f−1(y0) = f ′−1(y′0), ..., f−1(ym−1) = f ′−1(y′m−1), hence t0 = t′0, u0 = u′0. 2

end of the proof of 8.2.19.: one can find integers y0, ..., yn−1, y
′
0, ..., y

′
n−1, y

such that xi < x′j ↔ yi < y′j and x′j < xi ↔ y′j < yi, hence yi ≤ y′i
for all i, hence (z0 ; y0, ..., yn−1 ; y)F ≤ (z0 ; y′0, ..., y

′
n−1 ; y)F , and by 8.2.20

(z0 ; x0, ..., xn−1 ; x)F ≤ (z0 ; x′0, ..., x
′
n−1 ; x)F . 2

8.2.21. Corollary.

If F is a dilator, then “the” extension of F into a functor from OL to OL

is a predilator.

Proof. By 8.2.19 and 8.2.15. 2

8.2.22. Remark.

Hence dilators can be viewed as special cases of predilators, just as well-

orders are special cases of linear orders. The relation between the categories

DIL and PIL of dilators and predilators is exactly the same as the relation

between ON and OL: OL (resp. PIL) is “the closure” of ON (resp. DIL)

w.r.t. direct limits. Direct limits in DIL and PIL will be investigated later

on (see Sec. 8.3).

8.2.23. Definition.

A dilator is weakly finite iff F (n) is finite for all n. A weakly finite dila-

tor is recursive (resp. primitive recursive) iff the function dF e which

associates to any sequence 〈x0, ..., xn−1 ; m〉 with x0 < ... < xn−1 < m (this

sequence is the code for the function f ∈ I(n,m) : f(0) = x0, ..., f(n−1) =

xn−1) the sequence encoding F (f), is recursive (resp. prim. rec.). (The def-

inition of df e when f ∈ I(n,m) is given in 8.1.22 (iii).
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8.2.24. Proposition.

Assume that F is a recursive weakly finite dilator, and let X = (|X|,≤1)

be a recursive well-order; then F (X) is (isomorphic to) a recursive well-

order.

Proof. One can represent all elements of F (X) by sequence (z0 ; x0, ..., xn−1 ;

X)F with:

(i) (z0 ; 0, ..., n− 1 ; n)F is a F -denotation.

(ii) x0 <1 ... <1 xn−1.

The condition (i) is perfectly recursive: it can be translated as: lh
(
dF e(〈0,

..., n〉)
)
> z0 + 1 ∧

(
n = 0 ∨ n 6= 0 ∧ ∀s (lh(s) 6= 0 ∧ ∀i < lh(s)− 1 (x)i <

(x)i+1 ∧ (s)lh(s)−1 = n ∧ ∃p < lh(s)− 1 z0

(
dF e(s)

)
p
→ lh(s) = n+ 1

)
.

The comparison of two elements of F (X) is given by

(z0 ; x0, ..., xn−1 ; X) ≤F (X) (z1 ; x′0, ..., x
′
m−1 ; X)

iff

(z0 ; p0, ..., pn−1 ; n+m) ≤F (n+m) (z1 ; p′0, ..., p
′
m−1 ; n+m) ,

where p0, ..., pm−1, p
′
0, ..., p

′
m−1 are integers such that:

pi < p′j ↔ xi < x′j
and

p′j < pi ↔ x′j < xi ;

the construction of the sequences p0, ..., pn−1 and p′0, ..., p
′
n−1 can be done

from x0, ..., xn−1 and x′0, ..., x
′
n−1 in a recursive way, since the ordering of X

is recursive. Finally (z0 ; p0, ..., pn−1 ; n+m)F is exactly
(
dF e(〈p0, ..., pn−1, n+

m〉)
)
z0

, i.e. is obtained from 〈p0, ..., pn−1〉, z0 in a recursive way, similarly

for (z1 ; p′0, ..., p
′
m−1 ; n+m), hence the ordering is recursive. 2

8.2.25. Remarks.

(i) Obviously 8.2.24 holds when “primitive recursive” is substituted ev-

erywhere for “recursive”.



Trace of a dilator 35

(ii) One can imagine a more general meaning of “recursive dilator”, namely

when the dilator is not necessarily weakly finite, and the requirement

is that the functions:

– to each integer n the code of the recursive well-order F (n)

– to each df e (f ∈ I(n,m)) the code of the recursive function F (f)

are recursive. This concept still enjoys 8.2.24.
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8.3. Trace of a dilator

8.3.1. Definition.

Assume that F is a dilator (resp. a predilator) then the trace of F , de-

noted by Tr(F ), is the set of all pairs (z0, n) such that (z0 ; 0, ..., n−1 ; n)F

is a F -denotation.

8.3.2. Definition.

We shall consider in the sequel the following categories:

DIL, the category of dilators: the objects are dilators.

PIL, the category of predilators: the objects are predilators.

In both cases, the morphisms from F to G are given by the set I1(F,G)

of all natural transformations from F to G. I1(F,G) is a set because T ∈
I1(F,G) is completely determined by T (ω). (We recall that if T ∈ I1(F,G),

U ∈ I1(G,H), then UT ∈ I1(F,H) is defined by (UT )(x) = U(x)T (x).)

8.3.3. Definition.

Assume that F , G are objects of DIL (resp. PIL), and that T ∈ I1(F,G);

then one defines a function Tr(T ) from Tr(F ) to Tr(G) by:

Tr(T )
(
(z0, n)

)
= (T (n)(z0), n) .

8.3.4. Remarks.

(i) Tr(T ) is well-defined because of 8.2.5 (ii).

(ii) tr is a functor from DIL (or PIL) to the category SET of sets; less

pedantically this means that Tr(T ) is the identity of Tr(F ) when T is

the identity of F , and that Tr(Tu) = Tr(T )Tr(U).

8.3.5. Examples.

(i) If F is the constant dilator x, then Tr(x) = {(z, 0) ; z < x}; if f ∈
I(x, y), define a natural transformation f from x to y by: f(a)(z) =

f(z) for all a ∈ 0n. Then Tr(f) is defined by Tr(f)
(
(z, 0)

)
= f(z), 0).
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(ii) F is by no means determined by its trace; but if F and G are known,

then any T ∈ I1(F,G) is completely determined by Tr(T ), since

T (x)
(
(z0 ; x0, ..., xn−1 ; x)F

)
= (z1 ; x0, ..., xn−1 ; x)G ,

with Tr(T )
(
(z0, n)

)
= (z1, n).

8.3.6. Theorem.

Let G be a dilator (resp. a predilator); then given any subset X of Tr(G)

one can find a unique dilator F (resp. a unique-up-to-isomorphism predila-

tor F ) and T ∈ I1(F,G) such that rg
(

Tr(T )
)

= X.

Proof. Consider for all x the subsets H(x) of G(x), consisting of all denota-

tions (z0 ; x0, ..., xn−1 ; x)G, with (z0 ; n) ∈ X, and let H(f) be the function

from H(x) to H(y) obtained by restriction of G(f). It is immediate that

H preserves direct limits, pull-backs and morphisms: if we start with a

predilator G, H is therefore a predilator, and rg(H) = X; the transforma-

tion T is just the inclusion T (x) from H(x) into G(x), and Tr(T ) is just the

inclusion map from Tr(H) = X into Tr(G). When G is a dilator, simply

replace H and T defined as above by: H ′(x) = ‖H(x)‖, H ′(f) = ‖H(f)‖,
T ′(x) = ‖T (x)‖, ... . H ′ is clearly a dilator, and T ′ ∈ I1(H ′, G′) is such

that rg
(

Tr(T ′)
)

= X. Unicity conditions are left to the reader... . 2

8.3.7. Theorem.

Let (Fi, Tij) be a direct system in DIL (resp. in PIL) and let (F, Ti) be a

family enjoying 8.1.11 (i)–(iii) w.r.t. (Fi, Tij); then the following conditions

are equivalent:

(i) (F, Ti) = lim
−→

(Fi, Tij).

(ii) Tr(F ) =
⋃
i

rg
(

Tr(Ti)
)
.

(iii) For all n
(
F (n), Ti(n)

)
= lim

−→

(
Fi(n), Tij(n)

)
.

(iv) For all direct systems (xl, flm) indexed by L, with a direct limit (x, fl)

in ON (resp. in OL), one has
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(
F (x), Ti(fl)

)
= lim
−→
I×L

(
Fi(xl), Tij(flm)

)
.

As usual, one sets: T (f) = G(f)T (x) = T (y)F (f) when f ∈ I(x, y),

and T ∈ I1(F,G).

Proof. (i) → (ii): Define X ⊂ Tr(F ) by X =
⋃
i

rg
(

Tr(Ti)
)
; define H

and U ∈ I1(H,F ) by rg
(

Tr(U)
)

= X; one can surely write: Tr(Ti) =

Tr(U)ui for some function ui from Tr(Fi) to Tr(H); one easily constructs

Ui ∈ I1(Fi, H) such that Tr(Ui) = ui, and we have Ti = UUi. The family

(H,Ui) enjoys 8.1.11 (i)–(iii), hence one can find V ∈ I1(F,H) such that

Ui = V Ti for all i: hence Ti = UV Ti, i.e. Tr(Ti) = Tr(U)Tr(V )Tr(Ti) for

all i: for all a ∈ X Tr(U)Tr(V )(a) = a. We know that rg
(

Tr(U)
)

= X:

hence for b 6∈ X, Tr(U)Tr(V ) = a must belong to X: Tr(U)Tr(V )(a) =

Tr(U)Tr(V )(b), contradicting the obvious injectivity of Tr(U) and Tr(V ).

Hence X = Tr(F ).

(ii) → (iv): The double direct system index by the product I × L,

and the family
(
F (x), Ti(fl)

)
obviously enjoys 8.1.11 (i)–(iii); we prove

condition (iv)′: if z ∈ F (x), write z = (z0 ; x0, ..., xn−1 ; x); choose an

index i such that (z0 ; n) ∈ rg
(

Tr(Ti)
)
, and an index l ∈ L such that

x0, ..., xn−1 ∈ rg(fl); then it is immediate (see Remark 8.1.8 (ii)) that

(z0 ; x0, ..., xn−1 ; x) ∈ rg
(
Ti(fl)

)
.

(iv) → (iii): Immediate by considering xi = x = n, fi = fij = En.

(iii) → (i): Assume that
(
F (n), Ti(n)

)
= lim

−→

(
Fi(n), Tij(n)

)
for all n

and let (G,Ui) be any family enjoying 8.1.11 (i)–(iii) w.r.t. (Fi, Tij); if f ∈
I(n,m), then

(
G(m), Ui(f)

)
enjoys 8.1.11 (i)–(iii) w.r.t.

(
Fi(n), Tij(n)

)
;

hence there exists a unique function V (f) ∈ I
(
F (n), G(m)

)
such that

Ui(f) = V (f)Ti(n). By unicity, one easily gets G(g)V (f) = V (g)F (f),

i.e. the family V (n) = V (En) defines a natural transformation V from

F |̀ON < ω to G|̀ON < ω. Such a natural transformation obviously ex-

tends to an element V ∈ I1(F,G), which is the unique solution of Ui = V Ti.

2

8.3.8. Remarks.
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(i) 8.3.7 clearly shows that the concept of direct limit of dilators, predila-

tors, is very easy to handle: we have two ways of handling it:

• by means of the “pointwise” direct limits 8.3.7 (iii).

• by means of the traces (8.3.7 (ii)). Observe that this condition

means that
(

Tr(F ),Tr(Ti)
)

= lim
−→

(
Tr(Fi),Tr(Tij)

)
in the category

SET of sets.

(ii) Given rg
(

Tr(T )
)

and rg(f), it is easy to determine rg
(
T (f)

)
: since

T (f)
(
(z0 ; x0, ..., xn−1 ; x)F

)
=

(T (n)(z0) ; f(x0), ..., f(xn−1) ; y)G

one gets, provided T ∈ I1(F,G), f ∈ I(x, y):

rg
(
T (f)

)
=
{

(z1 ; y0, ..., yn−1 ; y) ; (z1 ; n) ∈

rg
(

Tr(T )
)
∧ y0, ..., yn−1 ∈ rg(f)

}
.

8.3.9. Theorem.

(i) In PIL, every system has a direct limit.

(ii) In DIL, if (Fi, Tij) and (F, Ti) enjoy 8.1.11 (i)–(iii), then (Fi, Tij) has

a direct limit.

Proof. (i) If (Fi, Tij) is a direct system in PIL, let
(
F (n), Ti(n)

)
=

lim
−→

(
Fi(n), Tij(n)

)
: F (n) exists as a linear order in OL. If f ∈ I(n,m),

consider the system Fi(f) indexed by the identity function from I to I and

let F (f) ∈ I
(
F (n), F (m)

)
be the direct limit of the Fi(f)’s. One easily

checks that F is the restriction to ON < ω of a predilator (still denoted

by F ) and that Ti ∈ I1(Fi, F ). Conditions 8.1.11 (i)–(iii) are fulfilled,

together with 8.3.7 (iii), hence (F, Ti) = lim
−→

(Fi, Tij).

(ii) Define X, H, U , Ui exactly as in the proof of 8.3.7 (i)→ (ii); then it

is immediate that Tr(U) =
⋃
i

rg
(

Tr(Ui)
)
, hence (H,Ui) = lim

−→
(Fi, Tij).
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2

8.3.10. Theorem.

Let T1 ∈ I1(F1, G), T2 ∈ I1(F2, G), T3 ∈ I1(F3, G); then the following

conditions are equivalent:

(i) T3 = T1 ∧ T2.

(ii) rg
(

Tr(T3)
)

= rg
(

Tr(T1)
)
∩ rg

(
Tr(T2)

)
.

(iii) T3(n) = T1(n) ∧ T2(n) for all integers n.

(iv) For all x1, x2, x3, y and f1 ∈ I(x1, y), f2 ∈ I(x2, y) and f3 ∈ I(x3, y)

such that f3 = f1 ∧ f2, one has:

T3(f3) = T1(f1) ∧ T2(f2) .

Proof. (i) → (ii): Assume that T3 = T1 ∧ T2, hence T3 = T1T31 = T2T32,

for some T31 and T32, hence Tr(T3) = Tr(T1)Tr(T31) = Tr(T2)Tr(T32), and

this implies rg
(

Tr(T3)
)
⊂ rg

(
Tr(T1)

)
∩ rg

(
Tr(T2)

)
. Define F ′3 and T ′3 ∈

I1(F ′3, G) by rg
(

Tr(T ′3)
)

= rg
(

Tr(T ′1)
)
∩ rg

(
Tr(T ′2)

)
. It is easy to find

T ′31 ∈ I1(F ′3, F1) and T ′32 ∈ I1(F ′3, F2) such that T ′3 = T1T
′
31 = T2T

′
32, and

U ∈ I1(F3, F
′
3) such that T3 = T ′3U . (T ′31, T ′32, U can be easily obtained

by means of their traces; see 8.3.11 (ii).) Since T3 = T1 ∧ T2, there exists

V ∈ I1(F ′3, F3) such that T ′31 = T31V , T ′32 = T31V , hence T ′3 = T3V : from

that we obtain T3 = T3V U and T ′3 = T ′3UV . Tr(T3) = Tr(T3)Tr(V )Tr(U)

entails (since the function Tr(T3) is injective) Tr(V )Tr(U) = identity of

Tr(F3), hence V U is the identity of F3, similarly UV is the identity of F ′3,

and this forces rg
(

Tr(T ′3)
)

to be equal to rg
(

Tr(T3)
)
.

(ii) → (iv): Assume that rg
(

Tr(T3)
)

= rg
(

Tr(T1)
)
∩ rg

(
Tr(T2)

)
; and

that rg(f3) = rg(f1) ∩ rg(f2); then, by Remark 8.3.8 (ii): rg
(
T3(f3)

)
={

(z0 ; x0, ..., xn−1 ; y)G ; (z0 ; n) ∈ rg
(

Tr(T3)
)
∧ x0, ..., xn−1 ∈ rg(f3)

}
=

rg
(
T1(f1)

)
∩ rg

(
T2(f2)

)
.

(iv) → (iii): Take f3 = f1 = f2 = En.

(iii) → (i): Assume that T3(n) = T1(n) ∧ T2(n) for all n, and let

T ′3 ∈ I1(F ′3, G), T ′31 ∈ I1(F ′3, F1), T ′32 ∈ I1(F ′3, F2) be such that 8.1.24
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(i) holds, i.e. T ′3 = T1T
′
31 = T2T

′
32; then we have when f ∈ I(m,n)

T ′3(f) = T1(n)T ′31(f) = T2(n)T ′32(f), and by condition 8.1.24 (ii) of pull-

backs: there exists a unique morphism U(f) ∈ I
(
F ′3(m), F3(n)

)
such that

T ′31(f) = T31(n)U(f) and T ′32(f) = T32(n)U(f); unicity of U(f) implies

that

F3(g)U(f) = U(g)F ′3(f)

when g ∈ I(n, p), i.e. U(n) = U(En) is the restriction to ON < ω of a

natural transformation from F ′3 to F3, still denoted by U . Hence we get

T ′31 = T31U and T ′32 = T32U , and U is clearly uniquely determined by these

conditions, since U is determined by its restriction to ON < ω. 2

8.3.11. Remarks.

(i) 8.3.10 gives us two ways of computing pull-backs in the categories

DIL and PIL:

– by means of an intersection (8.3.10 (ii)); this means that Tr(T1 ∧
T2) = Tr(T1) ∧ Tr(T2) in the category SET of sets.

– by means of the “pointwise” pull-backs T1(n) ∧ T2(n).

(ii) We have several times made an implicit use of the following principle:

assume that T ∈ I1(F,H), U ∈ I1(G,H) are such that rg
(

Tr(T )
)
⊂

rg
(

Tr(U)
)
; then there exists a unique V ∈ I1(F,G) such that T =

UV .

(Proof. If u = Tr(U), t = Tr(T ), then one can find a unique v such

that t = uv; the mapping v from Tr(F ) to Tr(G) induces for all x a

mapping V (x) from F (x) to G(x), by

V (x)
(
(z0 ; x0, ..., xn−1 ; x)F

)
= (z1 ; x0, ..., xn−1 ; x)G ,

with (z1, n) = v(z0, n); one easily checks that V (x) ∈ I
(
F (x), G(x)

)
,

i.e. that V (x) is strictly increasing. The property V (f)F (x) =

G(y)V (f) is immediate as well. 2)
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8.3.12. Theorem.

In PIL and DIL, pull-backs always exist. Moreover, in DIL, they are

uniquely determined.

Proof. Immediate from 8.3.10 (ii) and 8.3.6. 2
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8.4. Finite dimensional dilators

8.4.1. Definition.

Let F be a dilator (or a predilator); then the dimension of F , dim(F ) is

by definition the cardinal of Tr(F ).

8.4.2. Remarks.

(i) If T ∈ I1(F,G), then dim(F ) ≤ dim(G).

(ii) A dilator (or a predilator) is finite dimensional iff its dimension is

finite. Finite dimensional dilators form a full subcategory DILfd of

DIL.

(iii) It is not possible to replace the cardinal dim(F ) by an ordinal: there

is no natural way of well-ordering Tr(F ), even when F is a dilator.

(However, we shall see that Tr(F ) is naturally linearly ordered, see

8.4.22; but even when F is a dilator, this linear order need not to be

a well-order.)

8.4.3. Theorem.

Let F be a finite dimensional predilator; then F is isomorphic to a dilator

G. (This G is finite dimensional, and uniquely determined.)

Proof. We first prove that F (x) is a well-order for all x ∈ 0n. Let (sn) be

a s.d.s. in F (x), and let us write sn = (zn ; xn0 , ..., x
n
pn−1

; x)F ; the sequence

(zn, pn) varies through the finite set Tr(F ), hence one can find a subset

I ⊂ IN , I infinite such that (zn, pn) = (z, p) = constant for all n ∈ I; by

renumbering the subsequence (sn)n∈I one can find a s.d.s. (s′n) of the form

(z ; yn0 , ..., y
n
p−1 ; x)F in F (x). Define a partition I(2, ω) = C0∪...∪Cp−1 by:

f ∈ Ci iff i is the smallest integer such that y
f(0)
i > y

f(1)
i . (Such an integer

i exists, because if y
f(0)
i ≤ y

f(1)
i , this would entail s′f(0) ≤ s′f(1) by 8.2.18.)

By Ramsey’s theorem, there exists an infinite set X and an integer i0 < p

such that if f(0), f(1) ∈ X, then f ∈ Ci0 . Then the infinite sequence

(yni0)n∈X is strictly decreasing in X, a contradiction. The theorem holds

with G(x) = ‖F (x)‖, G(f) = ‖F (f)‖. 2
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8.4.4. Theorem.

DILfd is “dense” in DIL and PIL w.r.t. direct limits. In the case of PIL,

DILfd is not, strictly speaking, a subcategory of PIL

(i) if F is any object in DIL or PIL, then one can find a direct system

(Fi, Tij), with all Fi’s finite dimensional, together with morphisms Ti

such that:

(F, Ti) = lim
−→

(Fi, Tij) .

(ii) if F , G are objects of DIL (or PIL), and (F, Ti) = lim
−→

(Fi, Tij),

(G,Ul) = lim
−→

(Gl, Tlm) with Fi and Gl finite dimensional for all

i and l, then given any V ∈ I1(F,G), one can find an increasing

function ϕ together with a direct system of morphisms (Vi)i∈ϕ, such

that

V = lim
−→

(Vi) .

Proof. (i) Define I = {a ; a finite, a ⊂ Tr(F )}. I (ordered by inclusion) is

clearly directed. If a ∈ I define Fa and Ta ∈ I1(Fa, F ) by rg
(

Tr(Ta)
)

= a;

Fa is finite dimensional. Now, since when a ⊂ b, rg
(

Tr(Ta)
)
⊂ rg

(
Tr(Tb)

)
,

it is possible to define Tab ∈ I1(Fa, Fb) by Ta = TbTab (Remark 8.3.11

(ii)); it is immediate that (Fi, Tij) defines a direct system, and that (F, Ti)

enjoys 8.1.11 (i)–(iii) w.r.t. (Fi, Tij), hence it suffices to show 8.3.7 (ii); but

if (z0, n) ∈ Tr(F ), clearly (z0, n) ∈ rg
(

Tr(T{(z0,n)})
)
.

(ii) is easily established on the model of 8.1.16 (ii). 2

8.4.5. Remark.

We have therefore a strict analogy between: DILfd DIL PIL

ON < ω ON OL
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Similarly to ON < ω, DILfd has the property that the only systems hav-

ing a direct limit inside the category are trivial.

8.4.6. Proposition.

Let F be a dilator; then F is finite dimensional iff the function n ; F (n)

is a polynomial.

Proof. If F is finite dimensional, then F (n) = a0 + a1 · n + a2 · n(n −
1)/2+ ...+ak · n(n−1)...(n−k+1)/k! with k = sup {i ; ∃z (z, i) ∈ Tr(F )},
ai = card {z ; (z, i) ∈ Tr(F )} (because the number of strictly increasing

sequences p0 < ... < pi−1 < n is exactly n(n − 1)...(n − i + 1)/i!). Con-

versely, if the function n ; F (n) is a polynomial, it is still possible to

write F (n) = a0 + a1n + ... + ai · n(n − 1)...(n − i + 1)/i! + ... with

ai = card {z ; (z, i) ∈ Tr(F )}, and such an infinite sum of binomial poly-

nomials is a polynomial iff almost all coefficients are equal to 0, and this

forces the sum
∑
i

ai = dim(F ) to be finite. 2

8.4.7. Proposition.

Finite dimensional dilators are primitive recursive.

Proof. F (k) can be viewed as the set of all denotations (z0 ; i0, ..., in−1 ; k)F ,

with (z, n) ∈ Tr(F ) and i0 < ... < in−1 < k, and for f ∈ I(k, k′),

F (f)
(
(z ; i0, ..., in−1 ; k)F

)
= (z ; f(i0), ..., f(in−1) ; k′)F , so all we need to

show is that the ordering of F (k) can be obtained as a prim. rec. function of

k: but, in order to compare (z ; i0, ..., in−1 ; k)F with (z′ ; j0, ..., jm−1 ; k)F ,

by 8.2.20 it is sufficient to compare (z ; i′0, ..., in−1 ; l)F with (z′ ; j′0, ..., j
′
m−1 ;

l)F where the sequences i′r and j′s are such that i′r < j′s ↔ ir < js; the

problem is to find a uniform value for l; the only requirement on l is that

l ≥ n+m (because if l ≥ n+m, one can always find i′r, j
′
s as above), and

since Tr(F ) is finite, n and m vary through a finite set: it is therefore pos-

sible to find a uniform value l0 for l, and the ordering of F (l0) determines

the ordering of F (k) for all k in a prim. rec. way. 2

8.4.8. Remark.

It remains to answer the question: is it possible to generate all finite di-
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mensional dilators effectively, for instance to enumerate them by a prim.

rec. function. As we shall see below the answer is positive. For an alter-

native proof of this property, see [5], (4.3.9).

8.4.9. Proposition.

Let F be a dilator; then the following conditions are equivalent:

(i) dim(F ) = 1.

(ii) If G is dilator with I1(G,F ) 6= ∅, then G = F or G = 0.

(iii) There exists an integer n such that all elements in F (x) can be

written (0 ; x0, ..., xn−1 ; x)F (for all x ∈ 0n).

(iv) The function p ; F (p) is equal to a binomial polynomial p(p −
1)...(p− n+ 1)/n! for some integer n.

When F satisfies these equivalent requirements, F is said to be prime.

Proof. Immediate, left to the reader. 2

8.4.10. Definition.

Let F be a prime dilator, with Tr(F ) = {(0, n)}; then one defines a per-

mutation σF of n as follows:

the points ai = (0 ; o, 2, ..., 2i−2, 2i+1, 2i+2, ..., 2n−2 ; 2n)F are pairwise

distinct, hence one can introduce σF by:

i < j ↔ aσF (i) > aσF (j) .

8.4.11. Theorem.

Assume that F is a prime dilator, with Tr(F ) = {(0, n)}; then in order

to compare two distinct denotations: t = (0 ; x0, ..., xn−1 ; x)F and t′ =

(0 ; x′0, ..., x
′
n−1 ; x)F , one can proceed as follows:

choose the smallest integer i0 such that xσF (i0) 6= x′σF (i0); then

t < t′ if xσF (i0) < x′σF (i0)

t > t′ if xσF (i0) > x′σF (i0) .
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Proof. Let q = σF (i0); one will assume that xq < x′q, and prove that t < t′;

(i) We assume that xq +ω ≤ inf (xq+1, x
′
q); then we prove that t < t′ by

induction on the number k of indices i such that x′i < xi:

– if k = 0, then xi ≤ x′i for all i, hence by 8.2.18 t ≤ t′, and since t 6= t′,

t < t′.

– if k 6= 0, then construct t′′, by replacing the coefficient xr of t by x′r and

xq by xq + 1, where r is the smallest integer such that x′r < xr.

If r < q, then the parameters in t and t′′ can be listed as follows: x0, ..., xr−1,

x′r, xr, ..., xq, xq + 1, xq+1, ... , this list is to be compared with 0, ..., 2r −
2, 2r, 2r + 1, ..., 2q, 2q + 1, 2q + 2, ... , i.e. the order relations between t and

t′′ is the same as between: ar = (0 ; 0, 2, ..., 2r−2, 2r+1, 2r+2, ..., 2q, 2q+

2, ..., 2n − 2 ; 2n)F and aq = (0 ; 0, 2, ..., 2r − 2, 2r, 2r + 2, ..., 2q + 1, 2q +

2, ..., 2n − 2 ; 2n)F ; now, if one looks back at the way the integer q was

chosen, it is immediate that ar < aq, hence t < t′′. Similarly, one concludes

that t < t′′ in the case q < r. Now we can apply the induction hypothesis

to t′′ and t′, hence t′′ < t′, so t < t′.

(ii) In the general case, we only know that xq + 1 ≤ inf (xq+1, x
′
q); con-

sider the function f ∈ I(x, ω · x) defined by f : E1ωEx; the image under

f of the coefficients xi, x
′
j and such that f(xq) + ω ≤ inf

(
f(xq+1), f(x′q)

)
,

and by (i) above F (f)(t) < F (f)(t′), hence t < t′. 2

8.4.12. Theorem.

If σ is a permutation of n, there is a unique prime dilator F such that

σ = σF .

Proof. Once the permutation σF of n is known, we are able to compare

any two F -denotations (0 ; x0, ..., xn−1 ; x)F and (0 ; x′0, ..., x
′
n−1 ; x)F , and

this determines F completely. Hence the solution of the theorem is unique.

Consider now the dilator G = Idn (= Id · id · ... · Id); in G(x) = xn, we

consider all points xn−1 · xσ(0) + ...+ x0 · xσ(n−1), where x0, ..., xn−1 is any

strictly increasing sequence of ordinals < x. Clearly such a point can be

expressed as (z ; x0, ..., xn−1 ; x)G, with z = nn−1 · σ(0)+ ...+n0 · σ(n−1),

so there is a unique prime dilator F together with T ∈ I1(F,G) such that
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rg
(

Tr(T )
)

= {(z, n)}; in order to compare σF , we need to compare the

points: bi = 2nn−1 · ai,0 + ... + 2n0 · ai,n−1, with ai,j = 2σ(j) when i 6= j,

ai,i = 2σ(i) + 1. Everybody knows how to compare integers written in

number base 2n: we have bσ(n−1) < ... < bσ(0), hence σ = σF . 2

8.4.13. Corollary.

There are exactly n! prime dilators such that Tr(F ) = {(0, n)}.

Proof. Immediate from 8.4.12. 2

8.4.14. Definition.

Assume that F is a dilator (or a predilator); then one defines, when

(z0, n) ∈ Tr(F ) a permutation σFz0,n of n as follows: let ai = (z0 ; 0, ..., 2i−
2, 2i+ 1, 2i+ 2, ..., 2n− 2 ; 2n)F then i < j ↔ aσFz0,n(i) > aσFz0,n(j).

8.4.15. Remarks.

(i) We already know, by 8.2.20, that (z0 ; x0, ..., xn−1 ; x)F and (z0 ; x′0, ...,

x′n−1 ; x)F can be compared by means of finitary data. The per-

mutation σFz0,n gives some kind of uniform answer to the question:

“what is the particular process of comparing (z0 ; x0, ..., xn−1 ; x)F

and (z0 ; x′0, ..., x
′
n−1 ; x)F ?” The answer is: compare the coefficients

xσ(0) and x′σ(0), ..., xσ(i) and x′σ(i), ... until we find some integer i such

that xσ(i) 6= x′σ(i), then the two denotations compare exactly as their

coefficients xσ(i).

(Proof. We already know that this is true when F is a prime dilator,

hence it suffices to consider G prime and T ∈ I1(F,G) such that

rg
(

Tr(T )
)

= {(z0 ; n)}: if xσ(i) < x′σ(i), then (0 ; x0, ..., xn−1 ; x)G <

(0 ; x′0, ..., x
′
n−1 ; x)G, hence if one takes the images under T (f), one

gets (z0 ; x0, ..., xn−1 ; x)F < (z0 ; x′0, ..., x
′
n−1 ; x)F . 2)

(ii) In the proof just made, we have implicitly used the fact that σG0,n
(= σG) is equal to σFz0,n: this is a general property, immediate to

check: if U ∈ I1(H,H ′) and a ∈ Tr(H), then σH
′

Tr(U)(a) = σHa . The

permutation associated with a point in the trace of a dilator is there-

fore an invariant.
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(iii) The idea of listing the coefficients in “order of importance” in order

to be able to compare two denotations, is familiar from the practice of

decimal (or more generally: Cantor normal form) numeration. Here

we have established that this principle is in some sense universal.

However, we still don’t know how to compare (z0 ; x0, ..., xn−1 ; x)F

and (z1 ; x′0, ..., x
′
m−1 ; x)F when (z0, n) 6= (z1,m).

8.4.16. Proposition.

Assume that F is a dilator of dimension 2, and let (a, n), (b,m) be the

elements of its trace. Define p to be the greatest integer such that:

(P ) : ∀i∀j
(
i < p ∧ j < p→

(
σFa,n(i) < σFa,n(j)↔ σFb,m(i) < σFb,m(j)

))
assume that x0 < ... < xn−1 < x, y0 < ... < ym−1 < x, and that

xσ(0) = yτ(0), ..., xσ(p−1) = yτ(p−1), with σ = σFa,n, τ = σFb,m. Then the

order between (a ; x0, ..., xn−1 ; x)F and (b ; y0, ..., ym−1 ; x)F deos not de-

pend on the ordinals xσ(p), ..., xσ(n−1), yτ(p), ..., yτ(m−1).

Proof. Assume for instance that (a ; x0, ..., xn−1 ; x)F < (b ; y0, ..., ym−1 ; x)F

and let x′0 < ... < x′n−1 < x, y′0 < ... < y′m−1 < x be such that x′σ(0) =

xσ(0), ..., x
′
σ(p−1) = xσ(p−1), y

′
τ(0) = yτ(0), ..., y

′
τ(p−1) = yτ(p−1); we prove that

(a ; x′0, ..., x
′
n−1 ; x)F < (b ; y′0, ..., y

′
m−1 ; x)F

(i) if n = p, then the mutual orders of the xi’s and the yj’s are the same

as the mutual orders between the xi’s and the yj’s. By 8.2.20 one

gets (a ; x′0, ..., x
′
n−1 ; x)F < (b ; y′0, ..., y

′
m−1 ; x)F .

(ii) if m = p: similar to (i).

(iii) if p < inf (n,m), let k = σ(p), k′ = τ(p); since p is maximum such

that (P ) holds, it follows that, for some i < p:

either: xk < xσ(i) = yτ(i) < yk′ (subcase a)

or : yk′ < yτ(i) = xσ(i) < xk (subcase b)

Subcase a: Since obviously x′k < x′σ(i) = y′τ(i) < y′k′ , we get
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1. if x′k < xk, yk′ < y′k′ , then, by 8.4.15 (i): (a ; x′0, ..., x
′
n−1 ; x)F <

(a ; x0, ..., xn−1 ; x)F < (b ; y0, ..., ym−1 ; x)F < (b ; y′0, ..., y
′
m−1 ;

x)F .

2. in general, it is possible to construct an ordinal x′, functions

f.g ∈ I(x, x′) such that f(xσ(i)) = g(xσ(i)) for all i < p and

f(x′k) < g(xk), g(yk′) < f(y′k′). (The existence of x′, f , g is imme-

diate from x′k, xk < y′k′ , yk′ .) We get (a ; f(x′0), ..., f(x′n−1) ; x′)F <

(b ; f(y′0), ..., f(y′m−1) ; x′)F , by applying 1 to (a ; g(x0), ..., g(xn−1) ;

x′)F < (b ; g(y0), ..., g(ym−1) ; x′)F . Hence (a ; x′0, ..., x
′
n−1 ; x)F <

(b ; y′0, ..., y
′
m−1 ; x)F .

Subcase b: Symmetric to subcase a. 2

8.4.17. Proposition.

Let F be a dilator of dimension 2, with Tr(F ) = {(a, n), (b,m)}, and

let p be an integer enjoying (P ) (see 8.4.16). Let k < p, and assume

that, for some sequences x0 < ... < xn−1 < x, y0 < ... < ym−1 < x

enjoying xσ(0) = yτ(0), ..., xσ(k−1) = yτ(k−1), we have: (a ; x0, ..., xn−1 ; x)F <

(b ; y0, ..., ym−1 ; x)F ; then given any sequences x′0 < ... < x′n−1 < x, y′0 <

... < y′m−1 < y, with x′σ(o) = y′τ(0), ..., x
′
σ(k−1) = y′τ(k−1), x

′
σ(k) < y′τ(k) we

have:

(a ; x′0, ..., x
′
n−1 ; x)F < (b ; y′0, ..., y

′
m−1 ; x)F .

Proof. (i) Iff xσ(0) = x′σ(0), ..., xσ(k−1) = x′σ(k−1), and x′σ(k) < xσ(k), yτ(k) <

y′τ(k), then by 8.4.15 (i): (a ; x′0, ..., x
′
n−1 ; x)F < (a ; x0, ..., xn−1 ; x)F <

(b ; y0, ..., ym−1 ; x)F < (b ; y′0, ..., y
′
m−1 ; x)F .

(ii) In general, one easily constructs an ordinal x′ together with func-

tions f, g ∈ I(x, x′), such that f(xσ(0)) = g(x′σ(0)), ..., f(xσ(k−1)) = g(xσ(k−1)),

and g(x′σ(k)) < f(xσ(k)), f(yτ(k)) < g(y′τ(k)). (The existence of x′, f ,

g is immediate from the hypothesis x′σ(k) < y′τ(k).) The case (i) yields

(a ; g(x′0), ..., g(x′n−1) ; x′)F < (b ; g(y′0), ..., g(y′m−1) ; x′)F , which in turn

implies (a ; x′0, ..., x
′
n−1 ; x)F < (b ; y′0, ..., y

′
m−1 ; x)F . 2
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8.4.18. Definition.

Assume that F is a dilator (or a predilator) and let (a, n), (b,m) be two

elements of Tr(F ), with (a, n) 6= (b,m); one defines §F (a(a, n ; b,m) as

follows: §(a, n ; b,m) is a pair (p, ε), where:

(i) p is the smallest integer enjoying property (P ) of 8.4.16, and such

that for all sequences x0 < ... < xn−1 < x and y0 < ... < ym−1 < x

such that xσ(i) = yτ(i) for i = 0, ..., p − 1, the order between t =

(a ; x0, ..., xn−1 ; x)F and u = (b ; y0, ..., ym−1 ; x)F does not depend

on xσ(p), ..., xσ(n−1), yτ(p), ..., yτ(n−1).

(ii) ε = +1 when, under the conditions of (i), one has t < u.

(iii) ε = −1 when, under the conditions of (i), one has t > u.

8.4.19. Remarks.

(i) The existence of an integer p such that 8.4.18 (i) holds is an im-

mediate consequence of 8.4.16 applied to G such that there is a

T ∈ I1(F,G), with rg
(

Tr(T )
)

= {(a, n), (b,m)}.

(ii) If §F (a, n ; b,m) = (p, ε), then §F (b,m ; a, n) = (p,−ε); it will be

convenient to set §F (a, n ; a, n) = (n, 0). We shall use the abbrevia-

tion |§F (a, n ; b,m)| for the first component p of the pair.

(iii) The definition of §F (a, n ; b,m) is perfectly finitistic and effective: if

§F (a, n ; b,m) = (p, ε), then it will be possible to compute p as fol-

lows: by 8.2.20, (a ; x0, ..., xn−1 ; x)F and (b ; y0, ..., ym−1 ; x)F are or-

dered in the same wau as (a ; p0, ..., pn−1 ; n+m)F and (b ; q0, ..., qm−1 ; n+

m)F , where the sequences pi and qj are such that pi < qj ↔ xi < yj

and pi > qj ↔ xi > yj: so, in order to compute p, it will suffice to

look at the value x = n+m: the same process yields ε.

8.4.20. Theorem.

Assume that (a, n) and (b,m) are distinct elements of Tr(F ), with §F (a, n ;

b,m) = (p, ε); then t = (a ; x0, ..., xn−1 ; x)F < (b ; y0, ..., ym−1 ; x)F = u iff

one of the following conditions holds:
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(i) either ε = +‘, and xσ(0) = yτ(0), ..., xσ(p−1) = yτ(p−1).

(ii) or for some q < p, xσ(0) = yτ(0), ..., xσ(q−1) = yτ(q−1), xσ(q) < yτ(q).

Proof. If (i) holds, then this means that for any sequences x0 < ... <

xn−1 < x and y0 < ... < ym−1 < x such that xσ(0) = yτ(0), ..., xσ(p−1) =

yτ(p−1), we have always (a ; x0, ..., xn−1 ; x)F < (b ; y0, ..., ym−1 ; x)F .

If (ii) holds, then it is possible (since the order between (a ; x′0, ..., x
′
n−1 ;

x′)F and (b ; y′0, ..., y
′
m−1 ; x′)F is < or > according to the choice of the

sequences x′0 < ... < x′n−1 < x′ and y′0 < ... < y′m−1 < x′ such that

x′σ(0) = y′τ(0), ..., x
′
σ(q−1) = y′τ(q−1)) to find sequences x′0 < ... < x′n−1 < x′,

y′0 < ... < y′m−1 < x′ such that x′σ(0) = y′τ(0), ..., x
′
σ(q−1) = y′τ(q−1), and

(a ; x′0, ..., x
′
n−1 ; x′)F < (b ; y′0, ..., y

′
m−1 ; x′)F , hence, with x′′ = sup(x, x′),

(a ; x0, ..., xn−1 ; x′′)F < (b ; y′0, ..., y
′
m−1 ; x′′)F ; by 8.4.16 (a ; x0, ..., xn−1 ;

x′′)F < (b ; y0, ..., ym−1 ; x′′)F , hence (a ; x0, ..., xn−1 ; x)F < (b ; y0, ..., ym−1 ;

x)F .

Assume now that (i) and (ii) are false; then either (i)′: ε = −1, and

xσ(0) = yτ(0), ..., xσ(p−1) = yτ(p−1) or (ii)′: there exists q < p, such that

xσ(0) = yτ(0), ..., xσ(q−1) = yτ(q−1) and xσ(q) > yτ(q).

Clearly (i)′ and (ii)′ imply (a ; x0, ..., xn−1 ; x)F > (b ; y0, ..., ym−1 ; x)F .

2

8.4.21. Theorem.

Assume that §F (a, n ; b,m) = (p,+1) and §F (b,m ; c, l) = (q,+1); then

§F (a, n ; c, l) = (inf (p, q),+1).

Proof. Assume that §F (a, n ; c, l) = (r, ε), then

(i) r ≥ inf (p, q): let σ = σFa,n, τ = σFb,m, ρ = σFc,l, let s = inf (q, p) and

assume s 6= 0; choose sequences x0 < ... < xn−1, y0 < ... < ym−1,

z0 < ... < zl−1 bounded by x = n + m + l such that: xσ(0) = yτ(0) =

zρ(0), ..., xσ(s−2) = yτ(s−2) = zρ(s−2) and:

1. xσ(s−1) < yτ(s−1) < zρ(s−1): by 8.4.20 (variant (ii)) one gets (a ; x0,

..., xn−1 ; x)F < (b ; y0, ..., ym−1 ; x)F < (x ; z0, ..., zl−1 ; x)F .

2. xσ(s−1) > yτ(s−1) > zρ(s−1): by 8.4.20 one gets (a ; x0, ..., xn−1 ; x)F

> (b ; y0, ..., ym−1 ; x)F > (c ; z0, ..., zl−1 ; x)F .
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This shows that the order between (a ; x0, ..., xn−1 ; x)F and (c ; z0,

..., zl−1 ; x)F depends on the order between xσ(s−1) and zτ(s−1) and

from that r ≥ s.

(ii) r ≤ inf (p, q): assume that x0, ..., xn−1, z0, ..., zl−1 are such that xσ(0) =

zρ(0), ..., xσ(s−1) = zρ(s−1); we shall prove that (a ; x0, ..., xn−1 ; x)F <

(c ; z0, ..., zl−1 ; x)F ; necessarily ε = +1, and r ≤ s. By 8.2.20,

there is no loss of generality in supposing that x0, ..., xn−1, z0, ..., zl−1,

x are limit ordinals. This makes the construction of the sequence

y0, ..., ym−1 possible;

– if p = q, choose a sequence y0, ..., ym−1 with xσ(0) = yτ(0), xσ(p−1) =

yτ(p−1); by 8.4.20 (variant (i)) one gets: (a ; x0, ..., xn−1 ; x)F <

(b ; y0, ..., ym−1 ; x)F < (c ; z0, ..., zl−1 ; x)F .

– if p < q, choose a sequence y0, ..., ym−1 with xσ(0) = yτ(0), ..., xσ(p−1) =

yτ(p−1), yτ(p) < zρ(p); again by 8.2.20: (a ; x0, ..., xn−1 ; x)F < (b ; y0,

..., ym−1 ; x)F < (c ; z0, ..., zl−1 ; x)F .

– if q < p, choose a sequence y0, ..., ym−1 with xσ(0) = yτ(0), ..., xσ(q−1) =

yτ(q−1), xσ(q) < yτ(q): once again, by 8.2.20: (a ; x0, ..., xn−1 ; x)F <

(b ; y0, ..., ym−1 ; x)F < (c ; z0, ..., zl−1 ; x)F . 2

8.4.22. Remarks.

(i) If one defines ≤F , a binary relation on Tr(F ), by (a, n) ≤F (b,m) iff

the second component ε of §F (a, n ; b,m) is 6= −1,then ≤F is clearly

an order relation, (and better: a linear order) on Tr(F ). However,

there are dilators F such that ≤F is not a well-order.

(ii) It is possible to define a metric dF on Tr(F ), by dF (a, n ; b,m) =

2−|§
F (a,n ; b,m)| when (a, n) 6= (b,m), = 0 otherwise. This metric enjoys

the ultrametric inequality:

dF (a, n ; c, l) ≤ sup
(
dF (a, n ; b,m), dF (b,m ; c, l)

)
.

(iii) §F is the other invariant of dilators: if T ∈ I1(F,G), then §G
(

Tr(T )(a),

Tr(T )(b)
)

= §F (a, b). A description of dilators by means of their in-

variants is possible, see 8.4.23.
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(iv) 8.4.20 gives us the effective way of comparing t = (z0 ; x0, ..., xn−1 ; x)F

and u = (z1 ; y0, ..., ym−1 ; x)F when (z0, n) 6= (z1,m): one looks for

the smallest i0 such that xσ(i) 6= yτ(i) (i0 = inf (n,m), if there is

no such i); then, if i0 < |§F (z0, n ; z1,m)|, t < u iff xσ(i) < yτ(i);

if i0 ≥ |§F (z0, n ; z1,m)|, then t < u iff the second component of

§F (z0, n ; z1,m) is +1. Hence, we have found a universal algorithm

corresponding to 8.2.20: this completes 8.4.15 (i).

8.4.23. Theorem.

Assume that X is a set, together with the following data:

(i) a linear order ≤ on X.

(ii) a function f from X2 to IN such that:

– f(x, y) = f(y, x) for all x, y ∈ X.

– f(x, z) = inf
(
f(x, y), f(y, z)

)
for all x, y, z ∈ X such that x ≤ y ≤

z.

(iii) for all x ∈ X a permutation Σx of f(x, x); the permutations Σx have

the property that:

∀i < f(x, y) ∀j < f(x, y)
(
Σx(i) < Σx(j)↔ Σy(i) < Σy(j)

)
.

Then there is a predilator F (unique up to isomorphism) together with

a bijective function ϕ from Tr(F ) to X, such that:

1. if §F (a, n ; b,m) = (p,+1), then ϕ(a, n) ≤ ϕ(b,m) and f
(
ϕ(a, n), ϕ(b,m)

)
= p.

2. σFa,n = Σϕ(a,n).

Conversely, every predilator can be obtained in that way.

Proof. Let u be a linear order; then F (u) consists by definition of all formal

expressions: (z ; u0, ..., un−1 ; u) with z ∈ X, u0, ..., un−1 a strictly increas-

ing sequence of length n = f(z, z). By definition, (z ; u0, ..., un−1 ; u) ≤u

(z′ ; u′0, ..., u
′
m−1 ; u) iff either (i): z ≤ z′ and uΣz(i) = u′Σz′ (i) for i =
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0, ..., f(z, z′) − 1, or (ii) there exists an integer i < f(z, z′) such that

uΣz(j) = u′Σz′ (j) for all j < i, and uΣz(i) < u′Σz′ (i).

It is immediate that ≤u is a linear ordering of F (u); if f ∈ I(u, v), then

it is immediate that the function F (f) defined by:

F (f)
(
(z0 ; u0, ..., un−1 ; u)

)
= (z ; f(u0), ..., f(un−1) ; v)

is strictly increasing. One easily checks that F is a predilator. (By 8.2.23 F

preserves direct limits and pull-backs; F ≤ g → F (f) ≤ F (g) is immediate

... .) It is immediate that Tr(F ) =
{(
z, f(z, z)

)
; z ∈ X

}
, that σFz,f(z,z) =

Σz, and that §F
(
z, f(z, z) ; z′, f(z′, z′)

)
= (f(z, z′), ε) with ε = +1 if z ≤

z′, ε = −1 if z′ ≤ z, ε = 0 if z = z′: hence the theorem holds with

ϕ
((
z, f(z, z)

))
= z.

Conversely, every dilator F can be written in this form, with X =

Tr(F ), ≤=≤F , Σa,n = σFa,n, f(a, n ; a′,m) = |§F (a, n ; a′,m)|. 2

8.4.24. Corollary.

There is a prim. rec. function which enumerates all finite dimensional dila-

tors.

Proof. It suffices to enumerate all 4-uples (X,≤, f,Σ) of Theorem 8.4.23,

with X equals some integer. The unique finite dimensional dilator defined

by the data (X,≤, f,Σ) is obtained from these data in a prim. rec. way.2

8.4.25. Remarks.

(i) Another equivalent formulation is possible: instead of considering

the permutations Σx of f(x, x), one could introduce a linear order

Rx of f(x, x) by

i Rx j ↔ Σx(i) ≤ Σx(j) .

8.4.23 (iii) shows that Rx and Ry coincide when restricted to f(x, y):

let Rxy = Rx|̀ f(x, y) = Ry|̀ f(x, y).

We obtain the following alternative formulation of predilators: a

set X, together with

1. a linear order ≤ on X.
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2. for all x, y ∈ X s.t. x ≤ y, a linear order R(x, y) of some integer

f(x, y).

These data must satisfy:

∀x∀y∀z x ≤ y ≤ z → R(x, z) = R(x, y) ∩R(y, z) .

This formulation is easily shown to be equivalent to 8.4.20: this

is the abstract construction of predilators.

(ii) Let us see how the abstract construction (i) enables us to determine

all predilators.

1. We can construct all dilators of finite dimension n, as follows: Let

X = n, ordered as usual, and choose, for all i < n a linear order

R(i, i) of some integer f(i, i); then choose for all i s.t. i + 1 < n

a linear order R(i, i+ a) such that R(i, i+ 1) is the restriction of

R(i, i) ∩ R(i + 1, i + 1) to some integer f(i, i + 1). Then we can

define

R(i, j) = R(i, i+ 1) ∩ ... ∩R(j − 1, j) for i < j < n ,

and clearly R(i, j) ∩R(j, k) = R(i, k).

2. A morphism of predilators is clearly represented by a function

g ∈ I(X,≤ ; X ′,≤′) such that

R′
(
g(x), g(y)

)
= R(x, y) for all x, y s.t. x ≤ y .

Since we know how to construct finite dimensional dilators and

their morphisms, the direct limits enable us to construct all predila-

tors.

(iii) The abstract construction of predilators is a way of obtaining them

from a set of “independent data”, just like the matricial representa-

tion of endomorphisms of a vector space enables us to describe them

by “independent” data.

(iv) It is quite remarkable that this abstract construction was obtained

by piecing together:
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1. the characterization of dilators of dimension 1 (8.4.11).

2. the characterization of dilators of dimension 2 (8.4.12).

3. the characterization of dilators of dimension 3 by means of 8.4.24,

which expresses in which way the three 2-dimensional subdilators

of a 3-dimensional dilator behave w.r.t. one another.

(v) the interest of the abstract construction is that it enables us to see

rather subtle aspects of the theory. For instance one can imagine a

notion of morphism of predilator not satisfying

R′
(
g(x), g(y)

)
= R(x, y) ,

for instance we are given h(x, y) ∈ I
(
R(x, y), R

(
g(x), g(y)

))
, to-

gether with compatibility conditions... . These morphisms have no

obvious interpretation in terms of the associated functors, but are

rather natural objects... . The direct limits along these morphisms

could produce objects which are not any longer dilators or predila-

tors, but which must play a role at a certain stage... .

(vi) We have succeeded in characterizing in a complete way the concept

of predilator; all this was done in the bulk of elementary mathemat-

ics. Now, no such elementary (or algebraic) approach is possible for

dilators, since the concept of dilator is Π1
2-complete. There is another

part of the theory, where the algebraic features are less prominent,

and in which we turn our attention towards well-foundedness prop-

erties of dilators: this will be done in Chapter 9.
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Annex 8.A. A theory of ordinal denotation

This is not the first attempt to analyze the act of denoting ordinals by

means of expressions involving other (in general strictly smaller) ordinals.

However, compared to other approaches, e.g. Feferman [77], this theory

seems to be more general, and mathematically of greater interest, since

it enables us to identify systems of ordinal denotations with dilators, and

the mathematical structure of dilators is rather subtle. (Whereas former

authors were rather concerned with normal functions, i.e. strictly increas-

ing and continuous function from 0n to 0n; normal functions are of very

limited theoretical interest: if f(x) is any function from 0n to 0n, then

x ;
∑
y<x

(f(y) + 1) is a normal function. Normal functions were thought

to be of interest because of their continuity property, but the example

given above shows that, except at limit points, the behaviour of a normal

function is completely inpredictible. Dilators are another conception of

“continuity”, which is mathematically interesting, since the behaviour of

the functor is completely determined by its behaviour on finite objects and

morphisms, i.e. on ON < ω. When F is a dilator, the function x ; F (x)

is not necessarily continuous at limits (but this is the case when F is a

flower), but the “inner” continuity of a dilator is anyhow more real than

the superficial continuity of normal functions... .)

8.A.1. Examples.

Practice gives us example of ordinal denotation:

(i) The Cantor Normal Form of base, say, 10:

any ordinal can be uniquely written

z = 10x0 · a0 + ...+ 1−xn−1 · an−1 ,

where 0 < a0, ..., an−1 < 10, and x0 >, , , > xn−1.

(ii) any ordinal < x2 can be uniquely written

z = x · x0 + x1 ,
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with x0, x1 < x.

8.A.2. Discussion.

We must now find out in these examples what are the inherent and the

contingent features: of course one cannot pay too much attention to the

two-dimensional way of representing the denotation; on the other hand,

the list of the “ordinal parameters” is obviously crucial. As to the ordinal

parameters, there is an important difference between (i) and (ii): the de-

notation (ii) depends on the choice of an x such that z < x2, and this x is

present in the denotation. In Example (i), the denotation is universal: it

does not depend on the choice of an x such that z < 10x. We shall unify

the two situations by deciding that (ii) is the natural case, whereas (i) is

exceptional, and that this is only an abuse of notations which allowed us

to get rid of an x such that z < 10x. (The distinction between (ii) and (i)

is exactly the distinction between general dilators and flowers.)

Given a denotation d, then the basic distinction is to divide it into two

parts:

– a dynamic part: the ordinal parameters.

– a static part: what is “independent” of the ordinal parameters, we shall

call it skeleton or configuration.

For example, in 8.A.1 (i), the ordinals x0, ..., xn−1 are ordinal param-

eters, whereas a0, ..., an−1 are part of the skeleton. (x0, ..., xn−1 can be

changed arbitrarily, provided x0 > ... > xn−1, whereas the coefficients

a0, ..., an−1 are bound to stay in the interval ]0, 10[.) In 8.A.1 (ii) all ordi-

nals x, x0, x1 are parameters.

Up to now, this distinction between skeletons and parameters is not

very precise; we shall ask conditions later on.

If we have a denotation d, we shall represent it in an abstract form as

d = (S ; y0, ..., yk−1 ; x), where

(i) y0, ..., yk−1, x are the ordinal parameters of d, listed in strictly increas-

ing order (recall that x may be absent from the “actual” d).

(ii) S is the skeleton of the denotation.
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This gives the following representation for 8.A.1 (i)–(ii):

(i) z = (S ; xn−1, ..., x0 ; x), where S is the skeleton: S = 10Pn−1 · a0 +

...+10P0 · an−1 (P0, ..., Pn−1 are just extra symbols: Pi stands for “the

ith parameter”).

(ii) Here we have three cases:

1. If x0 < x1, then z = (S ; x0, x1 ; x) with S = P · P0 + P1, P being

an extra symbol for “the parameter x”.

2. If x0 = x1, then z = (S ; x0 ; x) with S = P · P0 + P0.

3. If x1 < x0, then z = (S ; x1, x0 ; x) with S = P · P1 + P0.

We are now in a position to give a general definition:

8.A.3. Definition.

A system of ordinal denotation D consists of the following data:

(i) a set of configurations (skeletons): a configuration is a pair (X0, n):

n is the number of parameters 6= x.

(ii) a function | |D which associates to any D-denotation, i.e. any

formal expression (C0 ; x0, ..., xn−1 ; x) with (C0, n) skeleton in D and

x0 < ... < xn−1 < x (x ∈ 0n) an ordinal z = |(C0 ; x0, ..., xn−1 ; x)|D;

one will say that (C0 ; x0, ..., xn−1 ; x) denotes z in D, and we shall

use the notation z = (C0 ; x0, ..., xn−1 ; x)D.

We require a certain number of properties to hold:

(iii) two distinct denotations with the same x denote distinct ordinals.

(iv) the set of ordinals of the form (C0 ; x0, ..., xn−1 ; x), x being fixed,

forms an initial segment of 0n, i.e. an ordinal D(x).

(v) the order between |(C0 ; x0, ..., xn−1 ; x)|D and |(C1 ; y0, ..., ym−1 ; x)|D

depends only on the relative orders of the xi’s and the yj’s.
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Properties (iii) and (iv) state that any point < D(x) is uniquely deno-

table by means of a D-denotation ending with x, whereas (v) stresses the

local character of the order between denotations.

8.A.4. Examples.

It is immediate that our Examples 8.A.1 (i) and (ii) are systems of ordinal

denotation in the sense of 8.A.3. This is completely immediate.

8.A.5. Theorem.

Assume that D is a system of ordinal denotation, and define D∗ by:

– D∗(x) = D(x) when x ∈ 0n; if f ∈ I(x, y), then

– D∗(f)
(
(C0 ; x0, ..., xn−1 ; x)D

)
= (C0 ; f(x0), ..., f(xn−1) ; y)D.

Then D∗ is a dilator.

Proof. We first show that D∗ is a functor from ON to ON; the crucial

condition is that D∗(f) ∈ I
(
D∗(x), D∗(y)

)
, i.e. D∗(f) is strictly increasing.

But, if (C0 ; x0, ..., xn−1 ; x)D < (C1 ; y0, ..., ym−1 ; x)D, the order between

the xi’s and the yj’s is the same as the order between the f(xi)’s and

the f(yj)’s, hence, by Condition 8.A.3 (v): (C0 ; f(x0), ..., f(xn−1) ; y)D <

(C1 ; f(y0), ..., f(ym−1) ; y)D. In order to prove that D∗ is a dilator, it

suffices, by Theorem 8.2.3, to show the existence of uniquely determined

z0, n, f such that 8.2.3 (i)–(ii) hold; but if z = (C0 ; x0, ..., xp−1 ; x)D,

let n = p, f ∈ I(n, p) be defined by f(0) = x0, ..., f(p − 1) = xp−1, and

z0 = (C0 ; 0, ..., p − 1 ; p)D. Then by 8.A.3 (iii), z0, n, f are uniquely de-

termined. 2

8.A.6. Examples.

(i) If D is the denotation system 8.A.1 (i), then

D∗ is the dilator 10Id (= (1 + g)Id)

10Id(x) = 10x

10Id(f)(10x0 · a0 + ...+ 10xn−1 · an−1) =

10f(x0) · a0 + ...+ 10f(xn−1) · an−1 .
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(ii) If D is the denotation system 8.A.1 (ii), then

D∗ is the dilator Id2

Id2(x) = x2

Id2(f)(x · x0 + x1) = y · f(x0) + f(x1) (f ∈ I(x, y)) .

8.A.7. Theorem.

Assume that F is a dilator; then one can construct (by 8.2.4) a denotation

system F+.

Proof. 8.2.4 enables us to construct a denotation system F+, with:

(i) the skeletons are the pairs (z0, n) with (z0, n) ∈ Tr(F ).

(ii) the meaning of (z0 ; x0, ..., xn−1 ; x)F+ is by definition (z0 ; x0, ..., xn−1 ;

x)F .

Properties (iii) and (iv) are fulfilled because of the Normal Form The-

orem 8.2.3, whereas Property (v) follows from 8.2.20. 2

8.A.8. Theorem.

The operations ∗ and + are inverse.

Proof. This is practically immediate: if F is a dilator, then F+∗ = F ; if D

is a denotation, then D∗+ is a denotation system isomorphic to D. (The

notion of isomorphism of denotation systems is clear.) 2

8.A.9. Discussion.

(i) Finally, the concept of dilator is perfectly equivalent to the concept

of system of ordinal denotation. Hence the idea of “representing

ordinals by means of expressions involving ordinals” is universally

solved by the concept of dilator.

(ii) However, this is a typical situation where one must be cautious: the

danger is to find an ad hoc solution. For instance in that case, we

found the concept of dilator before thinking about ordinal denota-

tions. The conditions on systems of ordinal denotations are very

simple and general (8.A.3) and correspond to practice, but it is still
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possible to have a doubt as to the adequacy of the mathematical

solution we have found w.r.t. the general idea of ordinal denotation,

although in that case we must confess that we are rather convinced

by this solution.

(iii) Ordinal notations, i.e. representation of ordinals by means of no-

tations in a given language, do not lead to any interesting theory.

The natural concept corresponding to the concept of system of ordi-

nal notations is that of a recursive well-order, whose mathematical

structure is limited. In practice people have been mainly interested

in constructing many notation systems. A closer look would show

that these systems are indeed denotation systems (in which the or-

dinals parameters have been replaced by integers < ω). This remark

gives us a way of associating dilators with various constructions con-

nected with the subject labelled as “ordinal notations”, and gives a

general framework for a part of mathematical logic where theoretical

considerations were particularly missing!

(iv) One will find another exposition of the results of this section in [83].
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Annex 8.B. Categories of sequences

Most of the results of this section are without proof; a certain number

of functors considered here are introduced in Chapter 9.

8.B.1. Definition.

Let C be a category; then one defines the category CON as follows:

(i) The objects of CON are families (ai)i<x of objects of C, indexed by all

i < x, where x is an ordinal.

(ii) The set of morphisms from (ai)i<x to (bi)i<y consists of all families

(ti)i<f such that: f ∈ I(x, y) and for all i < x, ti is a C-morphism from

ai to bf(i). This set is denoted by I
(
(ai)i<x, (bi)i<y

)
; the composition

of (ti)i<f with (ui)i<g is by definition (tg(i)ui)i<fg.

8.B.2. Theorem.

Assume that
(
(ali)i<xl , (t

lm
i )i<flm

)
is a direct system in CON and that

(
(ali)i<x,

(tli)i<fl
)

enjoys 8.1.11 (i)–(iii) w.r.t. this direct system; then 8.1.11 (iv)

holds (i.e. this is a direct limit) iff:

(i) (x, fl) = lim
−→
L

(xl, flm).

(ii) Given z ∈ x, define a subset Lz of L by: l ∈ Lz ↔ z ∈ rg(fl), and a

direct system (blz, g
lm
z ) indexed by Lz, by: blz = alz (if z = f + l(zl))

glmz = tlmzl . Define a family (b, gl) by b = az and gl = tlzl . Then

(b, gl) = lim
−→
Lz

(bl, glm).

Proof. This is a good exercise... . 2

8.B.3. Theorem.

Assume that (tji )i<fj (j = 1, 2, 3) are morphisms in CON with a common

target (ai)i<y; then (t3i )i<f3 = (t1i )i<f1 ∧ (t2i )i<f2 iff:

(i) f3 = f1 ∧ f2.
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(ii) given z ∈ y, define i1, i2, i3 by z = f1(i1) = f2(i2) = f3(i3); then

t3i3 = t1i1 ∧ t
2
i2

.

Proof. Another exercise. 2

8.B.4. Definition.

We define the functor
∑

from ONON to ON:
∑
i<x

yi is the usual sum of

the family yi,(∑
i<f

gi
) (∑

i<i0

yi + z
)

=
∑

i<f(i0)

y′i + gi0(z)

when (gi)i<f ∈ Iset
(
(yi)i<x, (y

′
i)i<x′

)
and i0 < x, z < yi0 .

8.B.5. Theorem.

The functor of 8.B.4 preserves direct limits and pull-backs.

Proof. Easy consequence of 8.B.2 and 8.B.3... . 2

8.B.6. Remark.

The sum of dilators, as defined in 9.1.1, appears as a functor from DILON

to ON. Obviously, this functor preserves direct limits and pull-backs. The

two functors
∑

are related by:(∑
i<x

Fi
)
(y) =

∑
i<x

Fi(y)

(∑
i<x

Fi
)
(f) =

∑
i<Ex

Fi(f)

(∑
i<g

Ti
)
(y) =

∑
i<g

Ti(y) .

8.B.7. Remark.

Another example of functor from a category of sequences to ON is given

by Π (see 9.5).
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Annex 8.C. Dendroids

Dendroids are an alternative description of dilators in terms of well-

trees (in Greek τ ò δένδρoν means “true”). This concept is reminiscent of

a former attempt, made by Jervell to handle the concepts of Π1
2-logic by

means of homogeneous trees ([78]). Unfortunately, homogeneous trees are

not sufficiently general, and it was necessary to consider this more complex

notion. We follow our exposition in [5], Chapter 6.

8.C.1. Definition.

A dendroid of type x is a pair (x,D), where x is an ordinal and D is a

set of sequences (a0, ..., ap) of ordinals, such that:

(i) if s = (a0, ..., ap) ∈ D, then p is even.

(ii) if s = (a0, ..., ap) ∈ D and q < p, then (a0, ..., aq) 6∈ D.

In order to state the remaining properties, we introduce D∗ : s ∈ D∗

iff s = ( ) or s ∗ s′ ∈ D for some s′ (∗ denotes as usual concatenation).

(iii) if s = (a0, ..., a2p) ∈ D∗, if s ∗ (t), s ∗ (u) ∈ D∗ and t ≤ u, then

a2i+1 < t ≤ u or t ≤ u < a2i+1 for all i < p. (As a consequence,

a1, a3, ..., a2p−1 are pairwise distinct.) Moreover, for all i < p, a2i+1 <

x.

(iv) if s = (a0, ..., a2p−1) ∈ D∗, then the set {a ; s ∗ (a) ∈ D∗} is an

ordinal, i.e. (a0, ..., a2p−1, b) ∈ D∗ and a < b→ (a0, ..., a2p−1, a) ∈ D∗.

(v) there is no sequence (an) such that, for all n, (a0, ..., an−1) ∈ D∗.

8.C.2. Remarks.

(i) Usually, when the context is clear, we shall identify a dendroid (x,D)

with the second component D.

(ii) Condition (v) is a well-foundedness condition for D∗.

(iii) Observe that D is not an abstract tree; D∗ is of course a well-founded

abstract tree.
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8.C.3. Definition.

Assume that (x,D) and (x′, D′) are dendroids; then I(x,D ; x′, D′) is the

set of all pairs (f, g) such that:

(i) f ∈ I(x, x′).

(ii) g is a function from D to D′ such that g(s) has the same length as

s.

(iii) if s = (a0, ..., ap) ∈ D∗ and s ∗ t, s ∗ u ∈ D, then one can find s′ ∈ D′∗,
s′ = (a′0, ..., a

′
p) such that g(s ∗ t) = s′ ∗ t′, g(s ∗ u) = s′ ∗ u′ for

some t′ and u′; s′ will be denoted by g∗(s); we define g∗
(
( )
)

= ( ):

g∗ maps D∗ into D′∗.

(iv) g∗
(
s ∗ (a)

)
= g∗(s) ∗

(
f(a)

)
when s = (a0, ..., a2p) ∈ D∗.

(v) assume that s = (a0, ..., a2p−1) ∈ D∗ and that g∗
(
s ∗ (a)

)
= g∗(s) ∗ (b)

and g∗
(
s ∗ (a′)

)
= g∗(s) ∗ (b′), and that a < b (and s ∗ (a) ∈ D∗,

s ∗ (b) ∈ D∗); then a′ < b′.

8.C.4. Remark.

If (f, g) ∈ I(x,D ; x′, D′) and (f ′, g′) ∈ I(x′, D′ ; x′′, D′′), then (f ′f, g′g) ∈
I(x,D ; x′′, D′′).

8.C.5. Example.

Given a dendroid (y,D′) and f ∈ I(x, y), we shall define a new dendroid

(x,D) = f−1(y,D′) (we shall also write D = f−1(D′)) by:

(i) In D′, remove all sequences (a0, ..., a2p) such that a2i+1 6∈ rg(f) for

some i < p; one obtains a set D′′ of sequences enjoying all properties

of dendroids, except perhaps (iv); we define D′′∗ as in 8.C.1; the

process of construction of D′′ and D′′∗ is mutilation (w.r.t. f).

(ii) There exists one and only one dendroid D and one and only one

function f from D to D′ such that (f, g) ∈ I(x,D ; x′, D′), and
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rg(g) = D′′. In fact we shall define the associated function g∗. We

define the members s = (a0, ..., an−1) of D∗ and g∗(s) by induction

on n. The case n = 0 is trivial: obviously ( ) ∈ D∗ and g∗
(
( )
)

= ( );

if n 6= 0, two subcases; let us write s = t ∗ (a):

1. If n is even, then s ∈ D∗ iff t ∈ D∗ and g∗(t) ∗
(
f(a)

)
∈ D′′∗; in

that case, g∗(s) = g∗(t)×
(
f(a)

)
.

2. If n is odd, then s ∈ D∗ iff t ∈ D∗ and the order type of the

set X = {u ; g∗(t) ∗ (u) ∈ D′′∗} is > a; if ϕ is the isomorphism

between ‖X‖ and X, let g∗(s) = g∗(t) ∗
(
ϕ(a)

)
.

(iii) The function g just defined is the mutilation function, and is de-

noted by mD′
f (or simply mf ). (f,mf ) ∈ I(x,D ; x′, D′).

8.C.6. Definition.

The category DEN of dendroids is defined by

objects: dendroids (x,D)

morphisms from (x,D) to (x′, D′): the elements of I(x,D ; x′, D′) .

8.C.7. Remark.

In DEN, there are only trivial isomorphisms: if (f, f ′) ∈ I(x,D ; x′, D′),

(g, g′) ∈ I(x′, D′ ; x,D) are such that (fg, f ′g′) = (Ex′ , idD′) and (gf, g′f ′)

= (Ex, idD), then x = x′ and f = g = Ex. Using condition (iv) of den-

droids, one easily proves that D = D′ and f ′ = g′ = idD.

8.C.8. Definition.

The functor type from DEN to ON is defined by: t(x,D) = x, t(f, g) = f .

8.C.9. Proposition.

In DEN (x,D ; fi, gi) = lim
−→

(xi, Di ; fij, gij) iff 8.1.11 (i)–(iii) hold and

(i) x =
⋃
i

rg(fi) (i.e. (x, fi) = lim
−→

(xi, fij)).
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(ii) D =
⋃
i

rg(gi) (equivalently: D∗ =
⋃
i

rg(g∗i )).

Proof. Left to the reader (see also [5], 6.2.2). 2

8.C.10. Corollary.

(i) The functor t preserves direct limits.

(ii) In DEN, (x,D ; fi,m
D
fi

) = lim
−→

(xi, Di ; fij,m
Dj
fij

) iff 8.1.11 (i)–(iii)

hold and (x, fi) = lim
−→

(xi, fij).

Proof. (i) is immediate from 8.C.9.

(ii): If 8.1.11 (i)–(iii) hold and (x, fi) = lim
−→

(xi, fij), take s ∈ D, s =

(a0, ..., a2k, a2k+1, ...), and choose i such that a1, a3, a5, ... ∈ rg(fi). Then

s ∈ rg(mD
fi

), hence conditions 8.C.9 (i)–(iii) hold, hence (x,D ; fi,m
D
fi

) =

lim
−→

(xi, Di ; fij,m
Dj
fij

). The converse implication is exactly (i). 2

8.C.11. Proposition.

In DEN, given (fi, gi) ∈ I(xi, Di ; x,D) (i = 1, 2, 3); then (f1, g1) ∧
(f2, g3) = (f3, g3) iff

(i) rg(f1) ∩ rg(f2) = rg(f3) (i.e. f1 ∧ f2 = f3).

(ii) rg(g1) ∩ rg(g2) = rg(g3) (equivalently rg(g∗1) ∩ rg(g∗2) = rg(g∗3)).

Proof. Left to the reader, see also [5], 6.2.4. 2

8.C.12. Corollary.

(i) The functor t preserves pull-backs.

(ii) If (xi, Di) = f−1
i (x,D) (i = 1, 2, 3), then (f1,m

D
f1

) ∧ (f2,m
D
f2

) =

(f3,m
D
f3

) iff f1 ∧ f2 = f3.

Proof. (i) is a trivial consequence of 8.C.11.

(ii): If f1 ∧ f2 = f3, then rg(f1) ∩ rg(f2) = rg(f3); furthermore it is

immediate that rg(mD
f1

) ∩ rg(mD
f2

) = rg(mD
f3

), hence by 8.C.11 (f1,m
D
f1

) ∧
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(f2,m
D
f2

) = (f3,m
D
f3

). The converse implication is just (i). 2

8.C.13. Definition.

(i) If (x,D) is a dendroid, then the height of (x,D) is the ordinal iso-

morphic with the well-ordering of D defined by: if t 6= u, then

s ∗ (t) ∗ s′ <+ s ∗ (u) ∗ s′′ ↔ t < u .

(ii) The functor height from DEN to ON is defined by:

h(x,D) = ‖(D,≤+)‖

h(f, g) = ‖g‖ .

8.C.14. Remark.

≤+ is the restriction to D of (the analogue of) the Brouwer-König ordering

of finite sequences of ordinals. The (analogue of) the linearization princi-

ple (5.4.17) for ordinal trees, proves that D∗ is well-ordered by ≤+, and so

is its subset D.

8.C.15. Proposition.

The functor h preserves direct limits and pull-backs.

Proof. Immediate consequence of 8.C.9 and 8.C.11. 2

8.C.16. Definition.

A dendroid (x,D) is homogeneous iff:

∗ for all x′ ≤ x, f, g ∈ I(x′, x), f−1(D) = g−1(D).

∗∗ for all x′ ≤ x, f, g ∈ I(x′, x), and s = (x0, ..., x2k) ∈ f−1(D)∗, if

f(x1) = g(x1), f(x3) = g(x3), ..., f(x2k−1) = g(x2k−1), then mD∗
f (s) =

mD∗
g (s).
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8.C.17. Examples.

(i) The following dendroid of type 10 is not homogeneous:

0 0 0 1 0 0 1 2

| | | |
3 4 5 6 7

0 1

·

This denotes the dendroid D = {(0, 3, 0), (0, 4, 0), (0, 5, 0), (0, 5, 1),

(0, 6, 0), (0, 7, 0), (0, 7, 1), (0, 7, 2), (1)}. Take f ∈ I(3 cdot 10) defined

by f(0) = 1, f(1) = 2, f(2) = 9; then rg(mD
f ) is the set {(1)},

hence f−1(D) = {(0)}. If one considers now f ′ ∈ I(3, 10) defined by

f ′(0) = 4, f ′(1) = 5, f ′(2) = 6, then rg(mD
f ′) is

0 0 1 0

| |
4 5 6

0 1

·

and f ′−1(D) is therefore

0 0 1 0

| |
0 1 2

0 1

·
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Clearly f−1(D) 6= f ′−1(D): Condition (∗) is violated.

(ii) The following dendroid of type 5 is not homogeneous:

0 0 0 0 0

| | | | |
0 1 2 3 4

| | | | |
0 1 2 3 4

·

Condition (∗) of homogeneity is fulfilled, but not the subtler con-

dition (∗∗): define for instance f, f ′ ∈ I(1, 5) by f(0) = 2, f ′(0) = 4;

then f−1(D) and f ′−1(D) are both equal to:

0

|
0

|
0

|
·

but mD∗
f

(
(0)
)

= (2) 6= mD∗
f ′

(
(0)
)

= (4), and this contradicts con-

dition (∗∗).

(iii) The following dendroid of type 5 is homogeneous:
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0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0
| | | | | | | | | |

1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3
| | |

0 0 1 0 1 0 1 0
| |
0 1 2 3 4

|
0
|
·

For instance, when f ∈ I(3, 5), f−1(D) is always equal to

0 1 0 1 0 0 1 0 0

| | |
1 2 0 2 0 1

| |
0 0 1 0

| |
0 1 2

|
0

|
·

8.C.18. Proposition.

In Definition 8.C.16, (∗) and (∗∗) can be weakened in (∗)′ and (∗∗)′ by

replacing “∀x′ ≤ x” by “∀x′ finite ≤ x”.

Proof. Left to the reader (see [5], 6.3.3). 2

8.C.19. Proposition.

Assume that (x,D) is homogeneous; then there is a functor F from ON ≤
x to DEN such that:

(i) for all x′ ≤ x, F (x′) is a dendroid of type x′.
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(ii) for all x′, x′′ ≤ x and f ∈ I(x′, x′′), F (f) = (f,m
F (x′′)
f ).

(iii) F (x) = (x,D).

Proof. Assume that (x,D) is homogeneous; then define F (x′) = (Ex′x)
−1 ·

(x,D); it is immediate that, when f ∈ I(x′, x′′), then (f,m
F (x′′)
f ) ∈ I

(
f−1 ·(

F (x′′)
)

; F (x′′)
)
; but f−1

(
F (x′′)

)
= f−1E−1

x′′x

(
F (x)

)
= (Ex′′xf)−1

(
F (x)

)
;

by homogeneity (Ex′′xf)−1
(
F (x)

)
= E−1

x′x

(
F (x)

)
= F (x′). The fact that

F is a functor follows from the equality

mD
fg = mD

f m
f−1(D)
g . 2

8.C.20. Proposition.

Let (x,D) be a homogeneous dendroid and let F be the functor associated

with (x,D) by 8.C.19; then F preserves direct limits and pull-backs.

Proof. F preserves lim
−→

: if (x′, fi) = lim
−→

(xi, fij), then by 8.C.10 (ii),(
F (x′), F (fi)

)
= lim

−→

(
F (xi), F (fij)

)
.

F preserves ∧: if f1∧f2 = f3, then, by 8.C.12 (ii) F (f1)∧F (f2) = F (f3).

2

8.C.21. Definition.

A dendroid D of type ω is strongly homogeneous (in short: D is a sh.

dendroid) iff for all x ≥ ω there is a homogeneous dendroid (x,D′) such

that D = E−1
ωx(D′).

8.C.22. Proposition.

D is strongly homogeneous, iff there is a functor D0 from ON to DEN

such that:

(i) for all x, D0(x) is a homogenous dendroid of type x.

(ii) for all x, y and f ∈ I(x, y), D0(f) = (f,m
D0(y)
f ).

(iii) D0(ω) = (ω,D).
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Proof. (1) If such a functor exists, then E−1
x

(
D0(x)

)
= D0(ω) = D, hence

D is strongly homogeneous.

(2) Conversely, assume that D is strongly homogeneous; then (x,D′) =

D0(x) is uniquely determined by the condition E−1
ωx(D′) = D: since D′ is

homogeneous, there is a functor F from ON ≤ x to DEN enjoying 8.C.19

(with D′ instead of D). If (x, fi) = lim
−→

(xi, fij), with all xi’s finite, then(
F (x), F (fi)

)
= lim

−→

(
F (xi), F (fij)

)
. But F (xi) and F (fij) are uniquely

determined by: F (xi) = E−1
xiω

(D) and F (fij) = m
F (xj)
fij

. In DEN, since we

have no non-trivial isomorphisms, then the direct limit is unique, when it

exists: hence F (x) is uniquely determined. We define D0 to be the union

of all functors F defined as above, when x varies through 0n. By Property

8.C.19 of these functors, we get (i), (ii) and (iii). 2

8.C.23. Remark.

We have seen in the proof of 8.C.22, that 8.C.22 determines D0 uniquely.

Also, observe that D0 preserves lim
−→

and ∧, by 8.C.20.

8.C.24. Definition.

The following data define a category SHD:

objects: strongly homogeneous dendroids.

morphisms from D to D′: the set Ish(D,D′) of functions g

from D to D′ such that (Eω′g) ∈ I(ω,D ; ω,D′) and

mD′
h g = gmD

h for all h ∈ I(ω, ω) .

8.C.25. Proposition.

Assume that D and D′ are sh. dendroids; then

(i) If T is a natural transformation from D0 to D′0, then for all x, T (x) =

(Ex, Tx) for some Tx. (Hence Tω ∈ Ish(D,D′).)

(ii) Conversely, given g ∈ Ish(D,D′), there is a unique natural transfor-

mation g0 ∈ I1(D0, D′0) such that g0(ω) = (Eω′g).
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Proof. (i) t ◦ T is a natural transformation from t ◦ D0 to t ◦ D′0; but

t ◦ D0 = t ◦ D′0 = Id, hence t ◦ T ∈ I1(Id, Id). Hence t ◦ T = E1
Id.

(For instance observe that Tr(f)
(
(0, 0)

)
= (0, 0), if f = t ◦ T .) Hence

t
(
T (x)

)
= Ex for all x. The condition mD′

n T (ω) = T (ω)mD
n is immediate.

(ii) Let µn = mD
Enω , let µ′n = mD′

Enω . Let Xn ⊂ D and X ′n ⊂ D′

be the respective ranges of µn and µ′n: Xn (resp. X ′n) is the set of all

sequences (a0, ..., a2p) ∈ D (resp. D′) and such that a1, a3, a5, ... < n. It

is immediate that g maps Xn into X ′n, hence there is a unique function

Tn from D0(n) to D′0(n) such that µ′nTn = gµn, and it is immediate that

(En, Tn) ∈ I
(
D0(n), D′0(n)

)
; if f ∈ I(n,m), choose h ∈ I(ω, ω) such that

hEnω = Emω · f ; then

µ′mm
D′0(m)
f Tn = mD′

h µ
′
nTn = mD′

h gµn = gmD
h µn =

gµmm
D0(m)
f = µ′mTmm

D0(m)
f ,

hence m
D′0(m)
f Tn = TD

0(m)
m . From that, it follows that T (n) = (En, Tn)

defines a natural transformation from D0|̀ON < ω to D′0|̀ON < ω. By

general category-theoretic results (for instance see [5], 2.1.5 (ii)) T can be

uniquely extended into a natural transformation from D0 to D′0. 2

8.C.26. Remark.

The monstruous condition mD′
h g = gmD

h for all h ∈ I(ω, ω) can obviously

be replaced by the condition: m
D′0(m)
f Tn = Tmm

D0(m) for all n, m and

f ∈ I(n,m); this enables us to replace the quantification over the non-

denumerable set I(ω, ω) by a denumerable quantifier.

8.C.27. Theorem.

One can define a functor LIN (linearization) from SHD to DIL by:

(i) IfD is a sh. dendroid, then LIN(D)(x) = h
(
D0(x)

)
and LIN(D)(f) =

h
(
D0(f)

)
.

(ii) If g ∈ Ish(D,D′), then LIN(g)(x) = h
(
g0(x)

)
.

Proof. D0 preserves direct limits and pull-backs, as well as h (8.C.22 and

8.C.15), hence LIN(D) is a dilator... . 2
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8.C.28. Definition.

Assume that F is a dilator; then one defines for x an ordinal and p an

integer, a binary relation ∼F,xp on the ordinal F (x), as follows:

z = (a ; x0, ..., xn−1 ; x)F ∼F,xp (b ; y0, ..., ym−1 ; x) = z′

iff z = z′ or

(i) |§F (a, n ; b,m)| > p/2 and

(ii) if σ = σFa,n, τ = σFb,m, then, for all i < p/2, xσ(i) = yτ(i).

8.C.29. Proposition.

∼F,xp is an equivalence relation.

Proof. By Remark 8.4.22 (ii). 2

8.C.30. Theorem.

For all p, the equivalence classes modulo ∼F,xp are intervals.

Proof. We prove the result by induction on p: assume that A = (a ; x0, ...,

xn−1 ; x)F , B = (b ; y0, ..., ym−1 ; x)F , C = (c ; z0, ..., zl−1 ; x), and that

A ∼F,xp C and A < B < C. We prove that A ∼F,xp B: assume for

contradiction that A 6∼F,xp B:

(i) If p = 0, then §F (a, n ; b,m) = (0, ε), §F (b,m ; c, l) = (0, ε′) (8.C.28

(i)); since A < B < C, we must have ε = ε′ = +1, hence by 8.4.21

§F (a, n ; c, l) = (0,+1), so A 6∼F,x0 C.

(ii) If p = 2q + 1, the induction hypothesis yields A ∼F,x2q B; since

we assume that A 6∼F,x[ B 6∼F,xp C, we get xσ(q) 6= yτ(q) 6= zρ(q).

If yτ(q) < xσ(q), then since xσ(0) = yτ(0), ..., xσ(q−1) = yτ(q−1) and

|§F (a, n ; b,m)| > q, it would follow that B < A; hence xσ(q) < yτ(q)

and similarly yτ(q) < zρ(q), hence we get xσ(q) < zρ(q), contradiction

with A ∼F,xp C.

(iii) If p = 2q+ 2, the induction hypothesis yields A ∼F,x2q+1 B, and so the

hypothesis A 6∼F,xp B 6∼F,xp C implies §F (b,m ; c, l) = (q + 1, ε) and

§F (b,m ; c, l) = (q+1, ε′); since xσ(0) = yτ(0), ..., xσ(q) = yτ(q) it follows
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that ε = +1, similarly ε′ = +1. By 8.4.21, we get §F (a, n ; c, l) =

(q + 1,+1), a contradiction with A ∼F,xp C. 2

8.C.31. Proposition.

(i) If f ∈ I(x, y) and z ∼F,xp z′, then F (f)(z) ∼F,yp F (f)(z′).

(ii) If T ∈ I1(F,G) and z ∼F,xp z′, then T (x)(z) ∼G,xp T (x)(z′).

(iii) The equivalence class of (a ; x0, ..., xn−1 ; x)F modulo ∼F,x2n consists

of exactly one point.

Proof. (i) and (ii) are immediate. For (iii) observe that |§F (a, n ; b,m)| ≤
inf (n,m) ≤ 2n/2, hence the only possibility left in Definition 8.C.28, when

z = (a ; x0, ..., xn−1 ; x)F ∼F,x2n z′ is z = z′. 2

8.C.32. Notation.

We shall use the notation Ik to denote the pair (Ik, k) where Ik is an

equivalence class modulo ∼F,xk . (F and x are assume to be clear from the

context; if not, we shall say “Ik in F (x)”.) Ik is an interval, and observe

that there is a unique sequence I0, ..., Ik−1 such that I0 ⊃ ... ⊃ Ik−1 ⊃ Ik

(for i ≤ k, Ii is the equivalence class modulo ∼F,xi containing Ik). Define

Ik � Jk by ∀z ∈ Ik ∀z′ ∈ Jk z < z′, and Ik � Jk: Ik = Jk or Ik � Jk. Define

the ordinals |Ik| as follows:

(i) |I0| is the order type of the set of predecessors of I0 for �.

(ii) |I2k+1| = the ordinal b defined by: if (a ; x0, ..., xn−1 ; x)F ∈ I2k+1

then b = xσFa,n(k) if k < n, b = 0 otherwise.

(iii) |I2k+2| = the order type of the set of predecessors of I2k+2 for � which

are included in I2k+1.

Assume that Ik is an interval in F (x), f ∈ I(x, y); we shall denote by

F̄ (f)(Ik) the interval Jk in F (y) containing the image of Ik under F (f).

Similarly, if Ik in F (x), T ∈ I1(F,G), we shall denote by T (x)(Ik) the

interval Jk in G(x) containing the image of Ik under T (x).

8.C.33. Definition.
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(i) If F is a dilator, one defines the function ϕF,x from F (x) to the class

of finite sequences of ordinals by:

ϕF,x
(
(a ; x0, ..., xn−1 ; x)F

)
= (|I0|, ..., |I2n|)

with I2n = {(a ; x0, ..., xn−1 ; x)F} and I0 ⊃ ... ⊃ I2n.

(ii) If F is a dilator, one defines the function ψF,f , when f ∈ I(x, y),

from rg(ϕF,x) to rg(ϕF,y):

ψF,f (|I0|, ..., |I2n|) = (|F̄ (f)(I0)|, ..., |F̄ (f)(I2n)|) .

(iii) If T ∈ I1(F,G), one defines a functionψT,x from rg(ϕF,x) to rg(ϕG,x)

by:

ψT,x(|I0|, ..., |I2n|) = (|T̄ (f)(I0), ..., |T̄ (f)(I2n)|) .

8.C.34. Theorem.

(i) rg(ϕF,x) is a dendroid of type x.

(ii) (f,ψF,f ) ∈ I
(
x, rg(ϕF,x) ; y, rg(ϕF,y)

)
; furthermore ψF,fϕF,x =

ϕF,yF (f).

(iii) (Ex,ψT,x) ∈ I
(
x, rg(φF,x) ; x, rg(ϕG,x)

)
; furthermore ψT,xϕF,x =

ϕG,xT (x).

Proof. First of all, remark that the sequence (|I0|, ..., |Ip|) determines Ip in

a unique way.

(Proof. By induction on p: |I0| determines I0, since I0 is the |I0|th equiv-

alence class modulo ∼F,x0 ; if p = 2q + 1, then by the induction hypothesis,

I2q is uniquely determined; the ordinal |I2q+1| gives the common value xσ(q)

of all points in I2q+1: (a ; x0, ..., xn−1 ; x)F ∈ I2q+1 iff it belongs to I2q and

xσ(q) = |I2q+1|. Finally, if p = 2q + 2, and if I2q+1 is well-determined (in-

duction hypothesis), then I2q+2 is the |I2q+2|th equivalence class modulo

∼F,x2q+2 included in I2q+1. 2)
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(i): We check properties 8.C.1 (i)–(v): (i)–(iv) are immediate, for in-

stance (ii): if z 6= z′, then the associated sequences (I0, ..., I2n) and (I ′0, ...,

I ′2n′) are such that I2n = {z} 6= {z′} = I2n′ , hence by our preliminary

remark one can find p ≤ inf (n, n′) such that |Ip| 6= |I ′p|... . Property (v)

is much more delicate: by our preliminary remark a s.d.s. in rg(ϕF,x)
∗ for

≤∗ is the same thing as a decreasing sequence

I0 ⊃ ... ⊃ Ip ⊃ ... .

Define f ∈ I(x, ω · x) by f(z) = ω · z, and let Jp = F̄ (f)(Ip); then

J0 ⊃ ... ⊃ Jp ⊃ ... .

Write Jp = [ap, bp[; the ordinals bp form a decreasing sequence, hence bp =

b = constant for all p ≥ N . But, if c = (z ; p0, ..., pn−1 ; ω · x)F ∈ J2N+1,

define q0, ..., qn−1: qσ(0) = pσ(0), ..., qσ(N)−1 = pσ(N)−1, qσ(N) = pσ(N)+1,

qσ(n−1) = pσ(n−1) + 1; with σ = σFz,n. Such a definition is possible because

pσ(0) = |J1|, ..., pσ(N−1) = |J2N−1| are in rg(f), i.e. are limit. If d =

(z ; q0, ..., qn−1 ; ω · x), then x ∼2N d, hence d < b2N ; but c 6∼2N+1 d and

c < d, hence b2N+1 ≤ d; a contradiction with b2N = b2N+1.

(ii): ψF,fϕF,x = ϕF,yF (f) is exactly the definition; so we need only

show that (f,ψF,f ) is a morphism of dendroids. This is completely evident;

observe that

ψ∗F,f (|I0|, ..., |Ip−1|) = (|F̄ (f)(I0)|, ..., |F̄ (f)(Ip−1)|) .

(iii): Similar to (ii), left to the reader... . 2

8.C.35. Theorem.

It is possible to define a functor BCH (branching) from DIL to SHD

by:

BCH(F ) = rg(ϕF,ω)

BCH(T ) = ψT,ω .

BCH enjoys the following properties:
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(i) BCH(F )◦(x) =
(
x, rg(ϕF,x)

)
.

(ii) BCH(F )◦(f) = (f,ψF,f ) (= (f,m
rg(ϕF,y)

f )).

(iii) BCH(T )◦(x) = (Ex,ψT,x).

Proof. Essentially we need to prove that BCH(F ) is a sh. dendroid for all

dilators F , and that BCH(T ) ∈ Ish

(
BCH(F ),BCH(G)

)
. It will suffice to

show that (i)–(ii) define a functor BCH(F )◦ from ON to DEN enjoying

Conditions 8.C.22 (i)–(iii), and (by 8.C.25 (i)) that (iii) defines a natural

transformation from BCH(F )◦ to BCH(G)◦.

1. We claim that (|I0|, ..., |I2n|) ∈ rg(ψF,f ) iff (|I0|, ..., |I2n|) ∈ rg(ϕF,y)

and I1, I3, I5, ... ∈ rg(f).

(Proof. Assume that I2n = {(z ; x0, ..., xn−1 ; x)F}; then (|I0|, ..., |I2n|) ∈
rg(ψF,f ) iff I2n = F̄ (f)(I2n) for some J2n (= {(z ; f−1(x0), ..., f−1(xn−1) ;

x)F}, this is equivalent to x0, ..., xn−1 ∈ rg(f), in other terms |I1|, ..., |I2n−1|
∈ rg(f). 2)

Hence rg(ψF,f ) is equal to the range of the mutilation function m
rg(ϕF,y)

f ,

hence ψF,f = m
rg(ϕF,y)

f : this establishes 8.C.22 (ii). The homogeneity of

rg(ϕF,x) is left to the reader.

2. By 8.C.33 (ii), (iii) we get:

ψG,fψT,xϕF,x = ψG,fϕG,xT (x) = ϕG,yG(f)T (x) =

ϕG,yT (y)F (f) = ψT,yϕF,yF (f) = ψT,yψF,fϕF,x .

This clearly proves that ψG,fψT,x = ψT,yψF,f hence BCH(T )◦ is a natural

transformation... . 2

8.C.36. Theorem.

(i) LIN ◦ BCH = IDDIL.

(ii) BCH ◦ LIN = IDSHD.

Proof. (i): The function ϕF,x is strictly increasing: if z < z′, and ϕF,x(z) =

(|I0|, ..., |I2n|), ϕF,x(z′) = (|I ′0|, ..., |I ′2n′ |), choose i minimum such that Ii 6=
I ′i; then Ii � I ′i (since z ∈ Ii, z′ ∈ I ′i), hence |I0| = |I ′0|, ..., |Ii−1| = |I ′i−1|,
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|Ii| < |I ′i|, andϕF,x(z) <+ ϕF,x(z
′); hence the order type of bfBCH(F )◦(x)

is equal to F (x): LIN
(
BCH(F )

)
(x) = h

(
BCH(F )◦(x)

)
= F (x). Now, if

f ∈ I(x, y), the formula

ψF,fϕF,x = ϕF,yF (f)

means exactly that h(f,ψF,f ) = F (f), so

LIN
(
BCH(F )

)
(f) = h

(
BCH(F )◦(f)

)
= F (f) .

If T ∈ I1(F,G), the formula

ψT,xϕF,x = ϕG,xT (x)

means that (Ex,ψT,x) = T (x), hence

LIN
(
BCH(T )

)
(x) = h

(
BCH(T )◦(x)

)
= T (x) .

We have proved that LIN
(
BCH(F )

)
= F and LIN

(
BCH(T )

)
= T .

(ii): If D is a sh. dendroid, then we shall first study the dilator F =

LIN(D):

1. If s ∈ D, then let z be the order type of the set of predecessors of s w.r.t.

<+, and write z = (a ; x0, ..., xn−1 ; ω)F , s = (u0, ..., u2m); from the

equality F (f) = h
(
D◦(f)

)
it follows that z ∈ rg

(
F (f)

)
if s ∈ rg(mD

f ),

for all f ∈ I(x, ω), and all x ≤ ω: from this it follows that m = n, and

that {x0, ..., xn−1} = {u1, ..., u2n−1}. Define a permutation τ of n by:

τ(i) = j iff u2i+1 = xj; we claim that τ = σFa,n; we shall compare the

points zf = F (f)(z) when f ∈ I(ω, ω); obviously zf < zg iff sf <+ sg,

with sf = mD
f (s). Here we use property (∗∗) of homogeneous dendroids:

assume that f(u1) = g(u1), ..., f(u2k−1) = g(u2k−1), then sf|̀ 2k + 1 =

sg|̀ 2k + 1; now, if f(u2k+1) < g(u2k+1), it follows that sf <+ sg: zf <

zg iff f(u1) = g(u1), ..., f(u2k−1) = g(u2k−1), f)u2k+1) < g(u2k+1) for

some k < n, equivalently f(xτ(0)) = g(xτ(0)), ..., f(xτ(k−1)) = g(xτ(k−1)),

f(xτ(k)) < g(xτ(k)). Hence τ = σFa,n.

2. We shall now compute the relations∼F,ωk : assume that s′ = (v0, ..., v2n′) ∈
D, and that z′ = (b ; y0, ..., yn′−1 ; ω)F is the order type of the set of pre-

decessors of s′ w.r.t. <+; then we claim that (we assume that z 6= z′)
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z ∼F,ωk z′ iff u0 = v0, ..., uk = vk .

Assume that z ∼F,ωk z′: hence xσ(i) = yτ(i) for all i < k/2, i.e. u2i+1 =

v2i+1 for all i such that 2i + 1 ≤ k. Let r = [k/2] (the greatest integer

≤ k/2); then σ(i) < σ(r) iff τ(i) < τ(r) for all i < r (with σ = σFa,n,

τ = τFb,n), hence one can find functions f, g, h ∈ I(ω, ω) such that:

f(xσ(i)) = g(yτ(i)) = h(xσ(i)) for all i < r and f(xσ(r)) < g(yτ(r)) <

h(xσ(r)). Now, observe that |§F (a, n ; b, n′)| > k/2 ≥ r (easy exercise

for the reader; this can be obtained on the model of Part 1. above),

hence, if z′f = F (f)(z′), one gets:

zf < z′g < zh ,

and write s′f = mD
f (s′): sf <+ s′g <+ sh. Now we apply once more

property (∗∗) of homogeneous dendroids, since f(2i+ 1) = g(2i+ 1) =

h(2i+ 1) for all i s.t. 2i+ 1 < 2r:

mD∗
f

(
(u0, ..., u2r)

)
= mD∗

g

(
(u0, ..., u2r)

)
= mD∗

h

(
(u0, ..., u2r)

)
(= A)

mD∗
f

(
(v0, ..., v2r)

)
= mD∗

g

(
(v0, ..., v2r)

)
= mD∗

h

(
(v0, ..., v2r)

)
(= B)

and the inequalities sf <+ sf <+ sh will be rewritten as:

A ∗ tf <+ B ∗ t′g <+ A ∗ th ,

and so A = B. This forces ui = vi for all i < 2r, and this establishes

u0 = v0, ..., uk = vk when k is even; but when k is odd, we know that

uk = vk... .

Conversely, assume that u0 = v0, ..., uk = vk; observe that u2i+1 <

u2r+1 iff v2i+1 < v2r+1 for i < r: if k is odd, then k = 2r + 1, and this

is simply trivial; if k is even, then by Property 8.C.1 (iii) of dendroids,

the point u2i+1 = v2i+1 cannot belong to the interval [u2r+1, v2r+1] (or

[v2r+1, u2r+1]). Hence it will be possible to define functions f , g, h

exactly as above, and it is immediate that sf <
+ s′g <

+ sh, hence zf <

z′g < zh; the definition of §F (a, n ; b, n′) shows that |§F (a, n ; b, n′)| > r

hence |§F (a, n ; b, n′)| > k/2. The hypothesis yields
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xσ(i) = yτ(i) for all i < k/2 ,

so z ∼F,ωk z′.

3. Let us compute the ordinals |Ik|: assume that z ∈ Ik, and choose s as

above; we claim that |Ik| = uk:

– If k is odd, then |Ik| = xσ(k−1/2) = uk.

– If k = 0, then z ∼F,ω0 z iff u0 = v0: I0 is the uth
0 class, hence |I0| = u0.

– If k = 2p+ 2, then z ∼F,ω2p+1 z′ iff u0 = v0, ..., u2p+1 = v2p+1, hence uk

enables us to distinguish between the various classes modulo ∼F,ω2p+2

which are included in I2p+1, and from this, again |Ik| = uk.

4. From 3, it becomes possible to compute BCH
(
LIN(D)

)
: this dendroid

is the range of the function which associates to s ∈ D, the sequence

(|I0|, ..., |I2n|), with I2n = {z}. Clearly BCH
(
LIN(D)

)
= D.

5. Finally, we compute BCH
(
LIN(g)

)
when g ∈ Ish(D,D′): if g(s) = s′′

and if z′′ is the order type of the set of predecessors of s′′ w.r.t. <+ in

D′, then

BCH
(
LIN(g)

)
(s) = (|T̄ (ω)(I0)|, ..., |T̄ (ω)(I2n)|) ,

with T = LIN(g); but, by definition, T (ω)(z) = z′′, and we know by 3

that (if z′′ ∈ Jk in D′) |Jk| = wk, (if s′′ = (w0, ..., w2n)), hence

BCH
(
LIN(g)

)
(s) = s′′ = g(s) . 2

8.C.37. Corollary.

The functors BCH and LIN preserve direct limits and pull-backs.

Proof. Trivial. 2
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Annex 8.D. Quasi-dendroids

The concept of quasi-dendroid is akin to the concept of dendroid; its

main interest lies in its greater flexibility and its direct relation to β-proofs

(Chapter 10). But the category of strongly homogeneous quasi-dendroids

is no longer isomorphic to DIL. A certain number of results will be listed

without proof, especially those who duplicate results of 8.C.

8.D.1. Definition.

A quasi-dendroid of type x is a pair (x,D) where x is an ordinal and:

(i) D is a set of finite sequences s = (x0, ..., xn) such that, for all i < n:

– either xi is an ordinal,

– or xi is a pair (ai,−), with ai < x; such a pair will be denoted by

ai.

(For instance s = (0, ω, 5, ω + 1, ω2 + ω).)

(ii) If s = (x0, ..., xn) ∈ D and m < n, then (x0, ..., xm) 6∈ D.

(iii) Let D∗ = {( )}∪{s ; s ∗ s′ ∈ D for some s′}, then:if x, x′ are ordinals

and s ∗ (x) ∈ D∗, then s ∗ (x′) 6∈ D∗.

(iv) There is no sequence xn such that, for all n:

(x0, ..., xn−1) ∈ D∗ .

8.D.2. Remarks.

(i) We shall abbreviate “quasi-dendroid” into “qd”.

(ii) Dendroids will be identified with particular qd’s: if D is a dendroid,

define D′:

D′ = {(x0, x1, x2, ..., x2n−1, x2n) ; (x0, x1, x2, ..., x2n−1, x2n) ∈ D} .

Then we identify D with the qd D′.



86 8. Dilators: algebraic theory

(iii) The height h(D) is its order type for the order <+, defined as usual.

(Of course s ∗ (a) <+ s ∗ (b) iff a < b.) There is a bijective function

ϕD from D to h(D), such that s <+ s′ ↔ ϕD(s) < ϕD(s′).

8.D.3. Definition.

Assume that (x,D) and (x′, D′) are qd’s; then Iq(x,D ; x′, D′) is the set of

all pairs (f, g) such that:

(i) f ∈ I(x, x′).

(ii) g is a function from D to D′ such that g(s) has the same length as

s.

(iii) If s = (a0, ..., ap) ∈ D∗ and s ∗ t, s ∗ u ∈ D, then one can find s′ ∈ D′∗,
s′ = (a′0, ..., a

′
p) such that g(s ∗ t) = s′ ∗ t′, g(s ∗ u) = s′ ∗ u′ for

some t′ and u′; s′ will be denoted by g∗(s); we define g∗
(
( )
)

= ( ):

g∗ maps D∗ into D′∗.

(iv) g∗
(
s ∗ (a)

)
= g∗(s) ∗

(
f(a)

)
if s ∗ (a) ∈ D∗.

(v) If a is an ordinal, then g∗
(
s ∗ (a)

)
= g∗(s) ∗ (b) for some ordinal

b, depending on s and a; moreover, if a < a′ and g∗
(
s ∗ (a′)

)
=

g∗(s) ∗ (b′), then b < b′.

8.D.4. Definition.

The following data define a category QDN

objects: quasi-dendroids (x,D)

morphisms from (x,D) to (x′, D′): Iq(x,D ; x′, D′) .

8.D.5. Remark.

It is possible to define functors type and height from QDN to ON. It is

also possible to establish for QDN the exact analogue of 8.C.8–15. (But

the mutilation functions mD
f are replaced by µDf ..., see 8.D.6.)

8.D.5. Definition.



Quasi-dendroids 87

Assume that D′ is a qd of type y and let f ∈ I(x, y); we shall define a new

qd (x,f D) by:

(i) In D′ remove all sequences (a0, ..., ap) such that ai = z and z 6∈ rg(f)

for some i < p; one obtains a set D′′ of sequences which is still a qd

of type y. The process of construction of D′′ is called mutilation

w.r.t. f .

(ii) Define a function µf as follows

µf
(
( )
)

= ( )

µf
(
s ∗ (a)

)
= µf (s) ∗ (a) if a ∈ 0n

µf
(
s ∗ (a)

)
= µf (s) ∗

(
f(a)

)
if a < x .

We define fD′ = {s ; µf (s) ∈ D′}, i.e.

fD′ = µ−1
f (D′) = µ−1

f (D′′) .

(iii) Define a function µD
′

f from fD′ to D′ by:

µD
′

f (s) = µf (s) for all s ∈ fD′ .

Clearly (f, µD
′

f ) ∈ Iq(x,f D′ ; y,D′).

8.D.7. Remark.

The mutilations µDf are simpler than the mutilations mD
f ; when D is a

dendroid, then fD 6= f−1(D) in general: fD is not necessarily a dendroid:

for instance, in the Example 8.C.17 (iii) fD is (if f(0) = 1, f(1) = 2,

f(2) = 4)
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0 1 0 1 0 0 1 0 0

| | |
1 2 0 2 0 1

| |
1 0 1 0

| |
0 1 2

|
0

|
·

and fD differs from f−1(D) by the choice of the non-underlined ordinals.

8.D.8. Definition.

A qd D of type x is homogeneous iff the following property holds

(∗) for all x′ ≤ x and f ∈ I(x′, x), f ′ ∈ I(x′, x), then fD =f ′ D.

8.D.9. Remarks.

(i) A good surprise is that the technical condition (∗∗) has disappeared.

(ii) The analogues of 8.C.18–20 hold.

(iii) One defines in a similar way strongly homogeneous qd; they form

a category SHQ whose morphisms are denoted by Iqsh(D,D′)... .

The analogues of 8.C.22–26 hold for shqd’s (strongly homogeneous

quasi-dendroids).

(iv) One defines the functor LINq from SHQ to DIL by LINq(D)(x) =

h
(
D◦(x)

)
, LINq(D)(f) = h

(
D◦(f)

)
and LINq(T )(x) = h

(
T ◦(x)

)
.

The main problem is to define a functor BCHq from DIL to SHQ;

one cannot expect that BCHq

(
LINq(D)

)
= D (for instance, if D =

{(0)} and D′ = {(0)}, then LINq(D) = LINq(D
′) = 1).



Quasi-dendroids 89

8.D.10. Definition.

(i) Assume that F is a dilator and let D = BCH(F ); let D′ = D◦(ω2),

and let f ∈ I(ω, ω2): f(n) = ω · (1+n). We define BCHq(F ) =f D′.

(ii) If T ∈ I1(F,G), let g = BCH(T ) and g′ = g◦(ω2); we define

BCHq(T ) by:

BCHq(T )µD
′

f = µE
′

f g
′ (if E ′ = BCH(G)◦(ω2)) .

8.D.11. Theorem.

(i) BCHq is a functor from DIL to SHQ.

(ii) LINq ◦ BCHq = IDDIL.

Proof. (i): Let D′β = D◦
(
ω(1 + β)

)
and D′′β =fβ D′β, with fβ ∈ I

(
β, ω(1 +

β)
)
: fβ(z) = ω(1 + z). We show that if g ∈ I(β, β′), then gD′′β′ = D′′β;

since D′′ω = BCHq(F ), this will establish that BCHq(F ) is strongly ho-

mogeneous.

We establish the following property: let g′ = Eω · (E1 + g); then if

s = (x0, x1, x2, ..., x2n−1, x2n) ∈ D′β and x1, x2, ..., x2n−1 are limit, then

m
D′
β′

g′ (s) = (x0, g
′(x1), x2, ..., g

′(x2n−1), x2n) (= µg′(s)).

(Proof. Looking back at the definition of m
D′
β′

g′ we see that it suffices

to show that (with X = rg(m
D′
β′

g′ )): if t = (y0, y1
, ..., ...) ∈ D′β′

∗, with

y1, y3, y5, ... limit, then t ∈ X∗ ↔ y1, y3, y5, ... ∈ rg(g′). Clearly, if t ∈ X∗

then y1, y3, y5, ... are in rg(g′); conversely, if y1, y3, y5, ... ∈ rg(g′), choose

t′ such that t ∗ t′ ∈ D′β′ ; if t ∗ t′ = (y0, y1
, ..., y2n), choose a function

g′′ ∈ I
(
ω · (1+β), ω · (1+β′)

)
such that: y1, y3, y5, ..., y2n−1 ∈ rg(g′′), and

consider mD′
g′

(
(m

D′
β′

g′′ )(t ∗ t′)
)
. Using (∗∗) this point is of the form t ∗ t′′

and all its odd coefficients y′1, y
′
3, y
′
5, ..., y

′
2n−1 are in rg(g′): this proves that

t ∗ t′′ ∈ X and so t ∈ X∗. 2)

Using the property, one easily shows that gD′′β′ = D′′β.

(ii) is left as an exercise to the reader... . 2
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8.D.12. Definition.

A dilator is finitistic iff the associated shqd BCHq(F ) = D has the

following property:

∀n ∃m ∀s ∈ D∗
(
lh(s)

)
= 2n→ {x ; s ∗ (x) ∈ D∗} ⊂ m .

8.D.13. Examples.

(i) Finite dimensional dilators are finitistic. (In 8.D.12 takem = dim(F )).

(ii) Finitistic dilators are weakly finite: since D(n) has finite branchings,

F (n) is finite.

(iii) But there are weakly finite dilators which are not finitary, for instance

F =
∑
n<ω

Dn, with Dn a prime dilator with Tr(Dn) = {(0, n)}.

8.D.14. Comments.

Finitistic dilators are closer to our intuition of a dilator than other con-

cepts so far introduced: a dilator is a way to describe ordinals by means

of “finitary data”. Of course the dilator must itself be “finitary” in some

sense. Finite dimensional dilators form a very small class which cannot

fit our intuition, whereas weakly finite dilators contain objects that can-

not be accepted as “finitary”, for instance the dilator of Example 8.D.13

(iii) which is of kind ω ! Observe that it was necessary to make a rather

complex definition (leading to BCHq(F )) in order to find the concept of

a finitistic dilator; dendroids and quasi-dendroids are useful because they

help us to visualize the “algebraic” structure of dilators... . Another use of

qd’s can be found in the

8.D.15. Corollary.

The ordering≤F (8.4.22) has the following property: let Trn(F ) = {(z0, n) ;

(z0, n) ∈ Tr(F )}; then ≤F |̀Trn(F ) is a well-order when F is a dilator.

Proof. If (z0, n) ∈ Tr(F ), then we associate to this point a sequence

(x0, ..., xn) = g(z0, n) as follows: If ϕ is the order-preserving isomorphic

between F (ω) and (D,<+) (with D = BCHq(F )), consider ϕ
(
(z0 ; y0, ...,
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yn−1 ; ω)F
)
: this is a point of D of the form (x0, y0

, x1, ..., yn−1
, xn); we

observe now that x0, ..., xn are independent of the choice of the integers

y0 < ... < yn−1.

(Proof. If ϕ
(
(z0 ; y′0, ..., y

′
n−1 ; ω)F

)
is equal to (x′0, y

′
0
, x′1, ..., y

′
n−1

, x′n), then

since the diagram

F (f)
F (ω) F (ω)

ϕ ϕ

D D
µDf

is commutative for all f ∈ I(ω, ω), we get, if we choose f , f ′ such that

f(y0) = f ′(y′0), ..., f(yn−1) = f ′(y′n−1):

(x0, f(y0), x1, ..., f(yn−1), xn) = µDf ϕ
(
(z0 ; y0, ..., yn−1 ; ω)F

)
=

ϕF (f)
(
(z0 ; y0, ..., yn−1 ; ω)F

)
= ϕ

(
(z0 ; f(y0), ..., f(yn−1) ; ω)F

)
and

(x′0, f
′(y′0), x′1, ..., f

′(yn−1), xn) =
(
(z0 ; f ′(y′0), ..., f ′(y′n−1) ; ω)F

)
by symmetry. Hence z0 = x′0, ..., xn = x′n. 2)

Now observe that the function g is strictly increasing: if (z0, n) <F (z1, n)

let p = |§F (z0, n ; z1, n)|; choose integers y0 < ... < yn−1 and y′0 < ... <

y′m−1 such that

yσ(0) = y′σ(0), ..., yτ(p−1) = y′τ(p−1) ,

with σ = σFz0,n, τ = σFz1,n. Then (z0 ; y0, ..., yn−1 ; ω)F < (z1 ; y′0, ..., y
′
n−1 ;

ω)F ; let s = ϕ
(
(z0 ; y0, ..., yn−1 ; ω)F

)
, s′ = ϕ

(
(z0 ; y′0, ..., y

′
n−1 ; ω)F

)
; then

s <+ s′. If s = (x0, y0
, ..., y

n−1
, xn), s′ = (x′0, y

′
0
, ..., y′

n−1
, x′n), then either

(x0, ..., xp) <+ (x′0, ..., x
′
p) hence g(z0, n) <+ g(z1, n), or (x0, ..., xp) =

(x′0, ..., x
′
p). But this case is impossible: since D obviously enjoys Condition

8.C.1 (iii) of dendroids, then yp and y′p lay in the same of the intervals

determined by y0, ..., yp−1, and we can assume that y′p < yp: but this would

entail (x′0, ..., x
′
p) <+ (x0, ..., xp).

The existence of a strictly increasing function from Trn(F ) to 0n implies

that Trn(F ) is a well-order. 2
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8.D.16. Remarks.

(i) The set Tr≤n(F ) = {(z0, p) ∈ Tr(F ) ; p ≤ n} is well-ordered by <F :

this is an easy consequence of 8.D.15.

(ii) But Tr(F ) is not necessarily well-ordered by <F . For instance the

points (2,1),(12.2),(112,3),(1112,4),... form a s.d.s. in Tr(10Id).

One can define an equivalence relation � between quasi-dendroids of

the same type. This relation has the property that all equivalence classes

contain one and only one dendroid: to each quasi-dendroid one can asso-

ciate the unique dendroid N(D) such that D � N(D). The definition of

the equivalence relation � and its immediate properties are rather long to

establish, and the reader will find all necessary information in [5], Chapter

7.

The equivalence relation� is very useful because the conditions defining

quasi-dendroids are not as drastic as the conditions defining dendroids. It

is therefore possible to define operations on dendroids as follows:

+ define the operation on quasi-dendroids.

+ then “normalize”, i.e. apply N(·).

Of course the operations one defines, must be compatible with the

equivalence relations � ..., see [5], 7.2 for a list of such operations..., see

also 8.G.4.
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Annex 8.E. Π1
2-completeness of dilators

This is one of the very first results of Π1
2-logic, that I proved a few

months before the β-completeness theorem. The original proof is too ar-

chaic to be presented here; moreover, the β-completeness theorem yields

Π1
2-completeness of β-proofs, and by linearization, of dilators, see for in-

stance 10.1.27; hence the only interest of this annex is to present a simple

and direct argument. The proof which follows is due to Normann.

8.E.1. Theorem (Girard, 1978).

The set of all indices of prim. rec. dilators is Π1
2-complete; more precisely

(i) the formula expressing that “e is the index of a prim. rec. dilator” is

Π1
2.

(ii) if A is a closed Π1
2 formula, then one can construct (primitive recur-

sively in A) a prim. rec. predilator P such that:

A↔ “P is a dilator” .

Furthermore this equivalence is provable in PRA2 + Σ0
1 − CA∗.

Proof. (i) is left to the reader (for a proof, see 10.1.26).

(ii): We start with a Π1
2 formula A, and we assume that A is

∀f ∃g ∀n R
(
f ∗(n), g∗(n)

)
with R prim. rec.; this is made possible by the general result of 5.1. If f

is a function, we define Tf by:

s ∈ Tf ↔ Seq(S) ∧ ∀n < lh(s) R(f ∗(n), s̀|n) .

Then clearly: A↔ ∀f ¬WTR(Tf ).

If α is an ordinal, we define an abstract tree D(α) as consisting of all

sequences

s = (a0, ..., an−1)

such that:
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(i) a2i is an integer, for all i s.t. 2i < n; let t = 〈a0, ..., a2i, ...〉 (2i < n).

(ii) a2i+1 is an ordinal < α, for all i s.t. 2i+ 1 < n.

(iii) For all s1 and s2 such that 2s1 + 1, 2s2 + 1 < n, s1 <∗ s2 and

∀p < lh(si), R(t̀| p, sì| p) (i = 1, 2), we have:

a2s1+1 < a2s2+1 .

8.E.2. Lemma.

A ↔ ∀α ∈ 0n D(α) is well-founded w.r.t. the familiar ordering of se-

quences.

Furthermore this result is provable in PRA2 + Σ0
1 − CA∗.

Proof. (i): Assume A, and for contradiction that sn = (a0, ..., an−1) is a

s.d.s. in some D(α); then let f(n) = a2n, and, when s ∈ Tf , h(s) = a2s+1;

clearly h is a strictly increasing function from Tf to α, and this forces Tf

to be a wf-tree, contradiction.

(ii): Conversely, assume ¬A, hence there is an f such that WTR(Tf ).

Now there is a strictly increasing function h from Tf to some α 6= 0, and

we define h(n) = 0 when n 6∈ Tf ; the sequence sn = (a0, ..., an−1), with

a2i = f(i), a2i+1 = h(i) is a s.d.s. in D(α), contradiction.

As to the formalization, observe that ordinals must be interpreted by

well-orders. Everything is immediate, except in Part (ii), the existence of

a strictly increasing function from Tf to a well-order, which follows from

the linearization principle, a consequence of Σ0
1 − CA∗ (see 5.4). 2

We define a predilator Q by:

Q(α) = the set D(α, equipped with the Brouwer-Kleene ordering of se-

quences; Q(f) is by definition equal toD(f): D(f)
(
(..., x2i, ..., x2j+1, ...)

)
=

(..., x2i, ..., f(x2j+1), ..).

Hence we obtain

8.E.3. Lemma.

A↔ Q is a dilator.

This result is provable in PRA2 + Σ0
1 − CA∗.
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Proof. Immediate use of the linearization principle. 2

However, Q is not necessarily weakly finite; we introduce P as follows:

P (α) is the set of all pairs (z, 2u0 + ...+ 2un−1) such that:

(i) z = (z0, ..., ak−1) ∈ D(α); let t = 〈a0, ..., a2i, ...〉 (2i < k).

(ii) un−1 < ... < u0 < α and n = t.

The pairs are lexicographically ordered, and

P (f)
(
(z, 2u0 + ...+ 2un−1)

)
= (D(f)(z), 2f(u0) + ...+ 2f(un−1)) .

8.E.4. Lemma.

The predilator P is weakly finite and prim. rec.

Proof. In P (n), an element (z, 2u0 + ...+ 2um−1) is such that m ≤ n, hence

if z = (a0, ..., ak−1), the value of t = 〈a0, ..., a2i, ...〉 is bounded by n. We

have only finitely many choices for the ordinal parameters: hence F (n) is

finite. Looking back at the definition of Q and P , we immediately see that

P is prim. rec. 2

8.E.5. Lemma.

P is a dilator ↔ Q is a dilator.

This result is provable in PRA2 + Σ0
1 − CA∗.

Proof. (i): If (zn) is a s.d.s. in Q(α), we may assume that α is infinite; write

zn = (an0 , ..., a
n
i , ...) and let tn = 〈an0 , ..., an2i, ...〉; then (zn, 2

tn−1 + ...+ 20) is

a s.d.s. in P (α).

(ii): P (α) appears as a subset of the product 2α · Q(α), with induced

order; if Q(α) is a well-order so is P (α).

Σ0
1 − CA∗ is clearly needed in Part (ii). 2

The lemma concludes the proof of 8.E.1. 2
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8.E.6. Remarks.

(i) Of course, if A contains second order parameters, then the construc-

tion is still valid and all we have to do is to remark that P is then

prim. rec. in these parameters.

The proof of the equivalence can still be carried out in PRA2.

(ii) A typical application of 8.E.1 can be found in next annex (8.F.4).
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Annex 8.F. The basis theorems

Basis theorems are results of the kind: “if the class C of functions is

non-void, then it contains a function of D”, i.e.: C 6= ∅ → C ∩ D 6= ∅.
There are three main basis theorems, which are connected to the logical

complexities Σ0
1, Π1

1, Π1
2.

8.F.1. Theorem (Kreisel basis theorem, [79]).

Let A(X) be of Π0
1 formula of L2 depending on a variable X of type s;

then, if ∃X A(X), X can be chosen ∆0
2, i.e. there is a ∆0

2 set X s.t. A(X).

Proof. ReplaceX by its characteristic function f ; then A(X) can be rewrit-

ten A′(f), and the hypothesis is that ∃f
(
∀x(f(x) = 0̄∨f(x) = 1̄)∧A′(f)

)
.

In other terms, there is an infinite branch in a prim. rec. tree T associated

with A′, and consisting of 0’s and 1’s:

s ∈ T ↔ Seq(s) ∧ ∀i < lh(s)
(
(s)i = 0̄ ∨ (s)i = 1̄

)
∧

∀n ≤ lh(s)R(s̀|n)

where the prim. rec. predicate R is such that:

A′(f)↔ ∀n R
(
f ∗(n)

)
(see 5.2.4 for more details).

If T is not a wf-tree, then we explicitly define a s.d.s. 〈f(0), ..., f(n −
1)〉 = sn in T as follows: observe that T cannot be finite, and let s0 = 〈 〉;
if sn has been defined and ∈ T , and Tsn is infinite, then

– either Tsn ∗ 〈0〉 is infinite: let sn+1 = sn ∗ 〈0〉.

– or Tsn ∗ 〈0〉 is finite: let sn+1 = sn ∗ 〈1〉.

Now, observe that “Ts is infinite” can be expressed by a Π0
1 formula:

let ϕ be the prim. rec. function defined by:

ϕ(n) = sup {s ; lh(s) = n ∧ ∀i < n(s)i ≤ 1} .

Then Ts infinite ↔ ∀n ∃t ≤ ϕ(n)(Seq(t) ∧ lh(t) = n ∧ s ∗ t ∈ T ). Now,

there is a formula B(s, n) which holds iff s is sn:
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B(s, n) ↔ Seq(s) ∧ lh(s) =

n ∧ ∀i < n
(
(s)i = 0̄↔ T

s̀| i ∗ 〈0〉 infinite) .

Observe that B can be put in both of Σ0
2 and Π0

0 forms; hence the

function f such that sn = f ∗(n) can be expressed by:

f(n) = m ↔ ∀s(B(s, n+ 1)→ (s)n = m) (Π0
2)

↔ ∃s(B(s, n+ 1)→ (s)n = m) (Σ0
2)

Hence the graph of f is Σ0
2 and Π0

2, i.e. f is a ∆0
2 function, i.e. if f = XX ,

X is ∆0
2. 2

8.F.2. Theorem (Kleene basis theorem, [80]).

Let A(f) be a Π0
1 formula of L2

pr, and assume that ∃f A(f)l then such a f

can be chosen among the set of functions which are recursive in some Π1
1

predicate.

Proof. Write ∃f A(f) as “R is not a well-order”, for some recursive linear

order R; then, by 5.6.7, if ∃f A(f), one can find a s.d.s. in R which is

recursive in the Π1
1 set |Acc(R)|. 2

8.F.3. Theorem (Novikoff-Kondo-Addison, [82]).

Let A(f) be a Π1
1 formula of L2

pr, and assume that ∃f A(f); then such a f

can be chosen among ∆1
2 functions.

Proof. This basis theorem is a standard corollary to the Novikoff-Kondo-

Addison uniformization lemma; the reader can find a proof in [7], pp.

188–189; dilators enable us to give a rather elegant proof of a result which

is slightly weaker than the uniformization lemma, but which contains 8.F.3:

8.F.4. Theorem.

Let P be a prim. rec. predilator; there is a Π1
1 predicate B(h), with the

following properties:

(i) B(h) ∧B(h′)→ h = h′.

(ii) ∃h B(h)↔ P is not a dilator.
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(iii) If P is not a dilator, then the unique h s.t. B(h) encodes a pair

〈f1, f〉 such that: f1 is the characteristic function of a denumerable

well-order ≤, f is a s.d.s. in P (�).

Proof. A priori, there is some trouble in defining � uniquely (because �
is an order between integers); but the ordinal α = ‖ � ‖ can be chosen

unambiguously: α = inf {x ∈ 0n ; P (x) is not a well-order}. We shall

not bother about the representation of α as an order between integers,

and we turn to the problem of choosing a specific s.d.s. in P (α). Let I

be the inaccessible part of P (α), i.e. the set {y ∈ P (α) ; P (α)̀| y is not a

well-order}; we shall construct a s.d.s.

g(n) = (in ; xn1 , ..., x
n
rn ; α)P

in P (α): g(n + 1) < g(n) (≤ is the order of P (α)). Assume that g(0) >

... > g(n−1) have already been constructed, and let In = {z ∈ I ; z < g(i)

for all i < n}; then In is non void, because I has no smallest element.

Consider the set

Sp(In) =
{

(z0 ; p) ∈ Tr(P ) ; ∃α0, ..., αp−1(α0 < ... < αp−1 < α ∧

(z0 ; α0, ..., αp−1 ; α)P ∈ In)
}
.

Define 〈in, rn〉 = inf {〈z0, n〉 ; (z0 ; n) ∈ Sp(In)}; now we consider the sub-

set Jn of P (α) defined by:

Jn =
{

(in ; α1, ..., αrn ; α)P ; α1 < ... < αrn < α} ,

i.e. Jn is the set of all points of P (α) whose denotation w.r.t. P has the

“skeleton” (in ; rn). Observe that

8.F.5. Lemma.

Jn is a well-ordered subset of P (α).

Proof. Define Q and T ∈ I1(Q,P ) by rg
(

Tr(T )
)

= {(in ; rn)}; then Q is

a finite dimensional predilator, and is therefore (isomorphic to) a dilator

(8.4.3), hence Jn, which is isomorphic to Q(α) is a well-order. 2
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Hence Jn∩In, which is non void, has a smallest element: (in ; xn1 , ..., x
n
rn ;

α)P ; this element is by definition g(n).

First observe that:

8.F.6. Lemma.

α = {xni ; n ∈ IN ∧ 1 ≤ i ≤ rn} .

Proof. Let Y = {xni ; n ∈ IN ∧ 1 ≤ i ≤ rn}; define β and h ∈ I(β, α) by

rg(h) = Y . Then the sequence g′(n) = (in ; h−1(xn1 ), ..., h−1(xnrn) ; α)P is a

s.d.s. in P (β). By the choice of α, it follows that β = α; since h−1(xni ) ≤ xni ,

it follows that g′(n) ≤ g(n) for all n; g′(n) is a point in Jn ∩ In which is ≤
g(n), hence g′(n) = g(n) for all n: this forces h(y) = y for all y ∈ Y ; but

since rg(h) = Y , this is only possible if Y = α. 2

8.F.6 enables us to define a surjection from the set X = {〈n, i〉 ; n ∈
IN ∧ 1 ≤ i ≤ rn} onto α:

ϕ(〈n, i〉) = xni .

We define 〈n, i〉 � 〈m, j〉 by xni ≤ xmj . (X,�) is a preorder, and the asso-

ciated order is a well-order isomorphic to α; let � be the associated equiv-

alence, and N(〈n, i〉) = inf (〈m, j〉 ; 〈n, i〉 � 〈m, j〉); then Y = {〈n, i〉 ∈
X ; N(〈n, i〉) = 〈n, i〉} is well ordered by �.

We define the s.d.s. f in P
(
(Y,≤)

)
:

f(n) = 〈in, N(〈n, 1〉), ..., N(〈n, rn〉)〉

(the last component is not indicated...).

Now we show that Y , � |̀Y , and f are the only solution of a Π1
1 prop-

erty; the property is a conjunction (i) ∧ ... ∧ (vi):

(i) For all n, f(n) is a sequence 〈in, pn1 , ..., pnrn〉, with:

– (in, tn) ∈ Tr(P ).

– pji ∈ Y .

– pn1 ≺ ... ≺ pnrn .
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(ii) (Y,�) is a well order; moreover

Y =
{
〈i, j〉 ; 1 ≤ j ≤ ri ∧ pij = 〈i, j〉 ∧

∀i′ < i ∀j′(1 ≤ j′ ≤ ri′ → pij 6= pi
′
j′)
}
.

In order to state the remaining properties, let us order the set S of all

formal sequences 〈i, a0, ..., an−1〉 such that (i ; n) ∈ Tr(P ) and a0, ..., an−1 ∈
Y and a0 ≺ ... ≺ an−1:

〈i, a0, ..., an−1〉 < 〈j, b0, ..., bm−1〉 iff

(i ; c0, ..., cn−1 ; n+m〉P < (j ; d0, ..., dm−1 ; n+m)P ,

where c0 < ... < cn−1 < n+m, and d0 < ... < dm−1 < n+m are such that:

ci < dj ↔ ai < bj (resp. ci > dj ↔ ai > bj).

(iii) If z ∈ Y , then the set of all points 〈i, a0, ..., an−1〉 in S such that

an−1 < z, is well ordered by <.

(iv) For all n, f(n+ 1) < f(n).

(v) If z = 〈i, a0, ..., ap−1〉 < f(n), then

– either 〈i, p〉 > 〈in, rn〉.

– or the set of the predessors of Y w.r.t. � is a well-order.

(vi) Let z = 〈i, a0, ..., ap−1〉 ∈ S; then

– z ≥ f(0)→ 〈i, p〉 ≥ 〈i0, r0〉.

– f(n+ 1) ≤ z < f(n)→ 〈in+1, rn+1〉 ≤ 〈i, p〉.

Y , � |̀Y , and f are solutions of this Π1
1 property; if Y ′, �′, f ′ is another

solution, observe that:

– ‖(Y ′,�′)‖ = α: this follows from (ii) and (iii); let ψ be the order-

preserving isomorphism from (Y,�′) to α; define g′(n) = (in ; ψ(pn1 ), ..., ψ(pnrn) ; α)P ;

then, by (iv), (v), (vi), we obtain

– g′ = g.
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Finally observe that (ii) forces Y ′ = Y , �′=� |̀Y , and f ′ = f .

The final solution of 8.F.4 is obtained by expressing (i) ∧ ... ∧ (vi) as a

Π1
1 predicate depending on a code h = 〈f1, f〉 for 3-uple (y,� |̀Y, f)... . 2

Proof of 8.F.3. If A(f) is Π1
1, and ∃f A(f), then, by Π1

2 completeness

of dilators, we can construct a prim. rec. predilator P such that P is not

a dilator. Using 8.F.4, we obtain ∃!f B(f); this unique f0 such that B(f0)

is ∆1
2, i.e. its graph is both Σ1

2 and Π1
2:

f0(n) = m ↔ ∃f(B(f) ∧ f(n) = m)

↔ ∀f(B(f)→ f(n) = m) .

Now, an inspection of the proof of Π1
2-completeness of dilators shows the

existence of an arithmetical g = T (f) (g is defined arithmetically in f)

such that B(f) → A(g); hence if g0 = T (f0) it is clear that A(g0); finally

observe that g0, which is arithmetical in a ∆1
2 function, is ∆1

2 as well. 2

8.F.7. Remarks.

(i) The three basis theorems can be restated as:

– the class of all ∆0
2 sets is a basis for Π0

1 classes of sets.

– the class of all functions which are recursive in a Π1
1 set, is a basis

for Π0
1 classes of functions.

– the class of all ∆1
2 functions is a basis for Π1

1 classes of functions.

(ii) The three basis theorems are still valid when A is modified into

A′ = ∃Y A (in 8.F.1) and A′ = ∃g A′ (in 8.F.2–3); in particular:

– the class of all functions which are recursive in a Π1
1 set, is a basis

for ∆1
1 classes of functions.

– the class of all ∆1
2 functions is a basis for Σ1

2 classes of functions.

Hence 8.A.1, and 8.A.2, 8.A.3 modified as above, give us the

logical complexity of models of consistent theories in:

Σ0
1-logic: the model can be chosen ∆0

2.



Exercises 103

Π1
1-logic: the model can be chose recursive in Π1

1.

Π1
2-logic: the model can be chosen ∆1

2.

(iii) In the proof of 8.F.4, one fact was absolutely essential: ordinals are

linearly ordered; hence it is possible to make a unique choice of ‖Y ‖.
If we try to adopt 8.F.4 to Π1

3-logic (i.e., if we start with a preptyx

P of type (O→ O)→ O, which is not a ptyx), there will be no way

of choosing a particular dilator F such that P (F ) is not an ordinal,

because dilators are not “naturally” linearly ordered. But, as soon as

this F is given (it may be part of the data), the descending sequence

g(n) can be uniquely constructed, exactly as in the proof of 8.A.4,

mutatis mutandis... .

(iv) Of course, the three basis theorems can be relativized: if A depends

on an extra function parameter g, then the basis must be relativized

w.r.t. g.

(v) Concerning the formal provability of 7.A.1–3:

• 7.A.1 is clearly provable in PRA2 + Σ0
1 − CA∗.

• 7.A.2 and 7.A.3 are provable in PRA2 + Σ0
1 − CA∗ + Π1

1 − CA.
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Annex 8.G. Exercises

8.G.1. Preservation of pull-backs.

Let F be a functor from ON to ON preserving direct limits. We consider

the functor

F ′(x) = 2x · F (x) F ′(f) = 2f · F (f) .

(i) Show that F ′ preserves direct limits.

(ii) Define, for all x ∈ 0n, a subset Ax of F ′(x) as follows: Ax consists of

all z = 2x · a+2b0+...+2bn−1 , with: a < F (x), x > b0 >, , , > bn−1, and

a ∈ rg
(
F (f)

)
, where f ∈ I(n, x) is defined by rg(f) = {b0, ..., bn−1}.

Show the existence of a functor G from ON to ON, together with

a natural trnasformation T from G to F ′, such that rg
(
T (x)

)
= Ax

for all x. Prove that G preserves direct limits and pull-backs.

(iii) Show that F (x) ≤ G(x) for all x.

(Remark. The meaning of 8.G.1 is that preservation of pull-backs can be

easily obtained by a slight modification of the functors... . See 8.G.15 for a

better result... .)

8.G.2. Paleodilators.

Consider functors from OL to OL preserving direct limits and pull-backs;

we call then paleodilators.

(i) First we study paleodilators of dimension 1: if F is a paleodilator of

dimension 1, such that F (n) = 1 show the existence of two disjoint

subsets X+ and X− of n = {0, 1, ..., n − 1} such that X+ ∪ X− =

n, and with the property that: if i0, ..., in−1, j0, ..., jn−1 are strictly

increasing sequences of integers < p, and such that ∀k ∈ X+ ik ≤ jk,

∀k ∈ X− jk ≤ ik, then

(0 ; i0, ..., in−1 ; p)F ≤ (0 ; j0, ..., jn−1 ; p)F .

Show the existence of a permutation σ of the integers 0, ..., n−1, with

the following property: if i0 < ... < in−1 < p, j0 < ... < jn−1 < p,

iσ(0) = jσ(0), ..., iσ(k−1) = jσ(k−1) and iσ(k) < jσ(k) then:
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– if σ(k) ∈ X+, then (0 ; i0, ..., in−1 ; p)F < (0 ; j0, ..., jn−1 ; p)F .

– if σ(k) ∈ X−, then (0 ; i0, ..., in−1 ; p)F > (0 ; j0, ..., jn−1 ; p)F .

(ii) Next we study paleodilators of dimension 2: assume that Tr(F ) =

{(a, n), (b,m)}, dim(F ) = 2; assume that X+, X−, σ have been

associated to (a, n), and that Y +, Y −, τ have been associated with

(b,m); show the existence of a pair (p, ε), such that: ε = +1 or

−1, p ≤ n,m and for all i < p: σ(i) ∈ X+ ↔ τ(i) ∈ Y +, for all

i, j < p: σ(i) < σ(j) ↔ τ(i) < τ(j) with the following property: if

i0 < ... < in−1 < q, j0 < ... < jm−1 < q, then:

• if iσ(0) = jτ(0), ..., iσ(p−1) = jτ(p−1), then

(a ; i0, ..., in−1 ; q)F < (b ; j0, ..., jn−1 ; q)F iff ε = +1 .

• if iσ(0) = jτ(0), ..., iσ(k−1) = jτ(k−1), iσ(k) < jτ(k) for some k < p, then

+ if σ(k) ∈ X+, then (a ; i0, ..., in−1 ; q)F < (b ; j0, ..., jm−1 ; q)F .

+ if σ(k) ∈ X−, then (a ; i0, ..., in−1 ; q)F > (b ; j0, ..., jm−1 ; q)F .

(iii) Finally, we study paleodilators of dimension 3: assume that dim(F ) =

3 and Tr(F ) = {(a, n), (b,m), (c, p)}; assume that §(a, n ; b,m) =

(r,+1), §(b,m ; c, p) = (s,+1); show that §(a, n ; c, p) = (inf (r, s),

+1).

(iv) Consider paleodendroids, i.e. the same thing as quasi-dendroids, ex-

cept that two colours (+,−) are possible when we underline elements;

we assume of course that all branchings are homogeneous in colour,

i.e. that s ∈ D∗ ∧ s ∗ ( x
+

) ∈ D∗ → s ∗ ( y
−

) 6∈ D∗, etc... . The the-

ory of paleodendroids is developed in a way akin to quasi-dendroids,

except that:

– we do not bother about any kind of well-foundedness assumptions.

– when we define the order <+, we say that

s ∗ (x) ∗ s′ <+ s ∗ (y) ∗ s′′ if x < y

s ∗ ( x
+

) ∗ s′ <+ s ∗ ( y
+

) ∗ s′′ if x < y s ∗ ( x
−

) ∗ s′ <+

s ∗ ( y
−

) ∗ s′′ if x > y .
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Show that if D is a homogeneous paleodendroid of type ω, then one

can construct a paleodilator F = LINp(D), by F (x) = ordertype of

D◦(x) w.r.t. <+.

(v) Using (iv) shows that:

• given n = X+ ∪ X−, X+ ∩ X− 6= ∅, given σ permutation of n,

there is a paleodilator F of dimension 1 corresponding to the data

X+, X−, σ.

• given n = X+∪X−, X+∩X− = ∅, given σ permutation of n, given

m = Y +∪Y −, Y +∩Y − = ∅, given τ permutation of m, given p such

that: ∀i < p σ(i) ∈ X+ ↔ τ(i) ∈ X+, ∀i∀j < p σ(i) < σ(j) ↔
τ(i) < τ(j) show the existence of a paleodilator F of dimension 2

corresponding to the data X+, X−, σ, Y +, Y −, τ , p, +.

(One would show that paleodilators and homogeneous paleodendroids

of type ω form equivalent categories.)

8.G.3. Study of some dilators.

We define a category C (very close to ONON):

objects: families (xi)i<y where y ∈ 0n and (xi) is a family of nonzero

ordinals.

morphisms: families (fi)i∈g (g ∈ I(g, y′), fi ∈ I(xi, x
′
g(i))).

Consider the full subcategory C ′ of DIL consisting of linear dilators:

D ∈ |C ′| ↔ Tr(D) = D(1)× {1} .

Prove that the categories C and C ′ are isomorphic.

(Remark. This shows that DIL is a very big category! ONON is practi-

cally a subcategory of DIL!)

8.G.4. Normalization of quasi-dendroids.

If s = (a0, ..., an) is a sequence consisting of ordinals and of underlined

ordinals, one defines Occ(s) by:

Occ(s) = (x0, ..., xp−1) ,
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where

• xi are pairwise distinct ordinals.

• there is a function f ∈ I(p, n + 1) such that, for all j < n + 1, if aj is

underlined, there exists i < p such that aj = xi = af(i), and f(i) ≤ j.

If D is a quasi-dendroid, then we define a function OccD on the ordinal

h(D), as follows:

OccD(z) = Occ
(
ϕ−1
D (z)

)
.

If D is a quasi-dendroid, and p is an integer, define equivalence relations

∼p on D by:

• if s ∈ D, then s ∼p s.

• if s, s′ ∈ D and s 6= s′, then: s ∼2p+1 s′ if one can write s = t ∗ u,

s′ = t ∗ u′, and Occ(t) has p + 1 elements (i.e. Occ(t) = (x0, ..., xp))

s ∼2p s
′ if one can write s = t ∗ (x) ∗ u, s′ = t ∗ (x′) ∗ u′, and Occ(t)

has p elements, and for all z ∈ Occ(t), z 6∈ [x, x′].

These equivalences are transferred to h(D) by

z ∼Dp z′ ↔ ϕ−1
D (z) ∼p ϕ−1

D (z′) .

We define an equivalence relation � between quasi-dendroids of the

same type by: D � D′ iff

1. h(D) = h(D′).

2. the functions OccD and OccD
′

coincide.

3. the equivalence relations ∼Dp and ∼D′p are equal.

(i) Show that the equivalence classes modulo ∼Dp are intervals.

(ii) Prove that in any equivalence class modulo � there is exactly one

dendroid N(D). Hence D � D′ iff N(D) = N(D′).

(Hint. Construct the dendroid N(D) by adapting the construction

of the functor BCH to this new context... . For the unicity of the

dendroid D′ such that D � D′, observe that: N(D′) = D′, and N(D)

is completely determined by the data h(D), OccD, ∼Dp .)
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(iii) If D is a dendroid, show that:

f−1(D) = N(fD) .

(iv) Assume that (Di)i<a is a family of quasi-dendroids of the same type;

then define a new quasi-dendroid D =
∑
i<a

Di of the same type, by:

D = {(i) ∗ s ; s ∈ Di} .

Prove that
∑

is compatible with �.

(v) Assume that (Di)i<a is a family of quasi-dendroids of type a; then

define a new quasi-dendroid D =
∑
i<a

Di of type a by:

D = {(i) ∗ s ; s ∈ Di} .

Prove that
∑∗

is compatible with �.

(vi) Prove the following principle of induction; this principle has nothing

to do with induction on dilators! Assume that P (·) is a property

of quasi-dendroids of type x, which is compatible with � (i.e. D �
D′ →

(
P (D)→ P (D′)

)
). Suppose that the following hold:

• P (0) (0 is the void dendroid).

• P (1) (1 is a quasi-dendroid {(a)} for some a ∈ 0n).

• if P (Di) for all i < z, then P
(∑
i<z

Di

)
.

• if P (Di) for all i < x, then P
(∑
i<x

∗Di

)
.

Conclude that P (·) holds for all D of type x.

(Further information can be found in [5], 7.2.)

8.G.5. Dendra.

Let K be a finite or denumerable set (the set of colours), let (xk)k∈K be

a family of ordinals. A dendron (plural: dendra) of type (xk) is a pair(
(xk, D

)
such that D is a set of finite sequences (a0, ..., an) and:



Exercises 109

1. (a0, ..., an) ∈ D ∧m < n→ (a0, ..., am) 6∈ D.

2. If a0, ..., an) ∈ D, then for all i ≤ n, ai is either an ordinal or a pair

(x, k), x ∈ 0n, k ∈ K; such a pair will be dnoted by
x

k
. One says that

x

k
is of colour k.

3. If s ∗ (t) ∈ D∗ and s ∗ (u) ∈ D∗ and t is of colour k, then u is of colour

k.

4. There is no sequence (an) such that, for all n, (10, ..., an) ∈ D∗.

A dendron
(
(xk), D

)
is a multi-dendroid iff the following extra con-

ditions hold:

5. (a0, ..., an) ∈ D → n is even.

6. (a0, ..., an) ∈ D ∧ 2i ≤ n→ a2i is not coloured.

(a0, ..., an) ∈ D ∧ 2i+ 1 ≤ n→ a2i+1 is coloured.

7. If s ∗ (x) ∈ D∗, x ∈ 0n and x′ < x, then s ∗ (x′) ∈ D∗.

8. If
(
a0, ..., a2i,

x

k

)
∈ D∗,

(
a0, ..., a2i,

x′

k

)
∈ D∗, and if for some j < 2i,

aj =
x′′

k
, then x′′ 6∈ [x, x′].

(i) Define an equivalence relation � between dendra of the same type,

in such a wau that each equivalence class contains one and only one

multi-dendroid.

(ii) Assume that (fk)k∈K is such that: fk ∈ I(xk, yk); if D is a dendron

of type (gk), define a dendron (fk)D of type (xk) by:

(
..., (

z

k
), ..., z′, ...

)
∈ (fk)D ↔

(
...,
(fk(z)

k

)
, ..., z′, ...) ∈ D .

Show that (fk)· is compatible with the equivalence �; from this de-

duce an operation (fk)
−1· defined between multi-dendroids.

(iii) Let D be a dendron of type (xk)k∈K , and let K ′ ⊂ K; D is said to be

K ′-homogeneous iff given any families (yk)k∈K , (fk)k∈K , (gk)k∈K

such that fk, gk ∈ I(yk, xk) for all k ∈ K, and xk = yk, fk = gk = Ek

for all k ∈ K ′, then
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(fk)D = (gk)D .

Assume that D is K ′-homogeneous and that hk ∈ I(zk, xk) for all

k ∈ K; show that D is K ′-homogeneous.

(iv) Let D be a dendron of type (xk)k∈K , and let K ′ ⊂ K; D is strongly

K ′-homogeneous iff for all k ∈ K ′, xk = ω, and if for all (yk)k∈K

with yk ≥ ω for all k ∈ K ′ and yk = xk for all k ∈ K −K ′, one can

find a K ′-homogeneous dendron D′ of type (yk) such that

D = (Exkyk)
−1D′ .

When considered as a strongly K ′-homogeneous dendron (K ′-sh.

dendron), the type of D is the family (xk)k∈K−K′ . If (zk)k∈K′ is

a family of ordinals, give the definition of a dendron denoted by

F ◦
(
(zk)

)
, when D is an arbitrary K ′-sh. dendron. From this show

that, if D is a K ′-sh. dendron, one can associate to D a functor

LINK′(D) from ONK′ to ON, preserving direct limits and pull-

backs. Show that if (fk)k∈K−K′ is such that fk ∈ I(xk, yk), and

D is a K ′-sh. dendron of type (yk), show the existence of a K ′-sh.

dendron (fk)D of type (xk), together with a natural transformation

LINK′

D

(
(fk)

)
∈ I1

(
LINK′((fk)D),LINK′(D)

)
.

(Remark. Here lies the interest of dendra; they enable us to get rid of

the category-theoretic framework. Precisely if D is strongly homoge-

neous w.r.t. K ′ ⊂ K, then the “homogeneous” colours ∈ K ′ represent

a certain “K ′-ary dilator”, whereas the “non homogeneous” ones ∈
K−K ′ represent certain natural transformations... . It is possible to

give a non category-theoretic description of Λ and related operations;

see [5].)

8.G.6. Homogeneous trees (Jervell, [78], 1979).

Let α be an ordinal; a Jervell tree is a set S of finite sequences 〈ξ0, ..., ξn−1〉,
enjoying the following properties:

1. for i < n, ξi ∈ {−1} ∪ α ∪ {+∞}.
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2. S is nonempty.

3. s ∈ S ∧ t∗ > s→ t 6∈ S; let S∗ = {t ; ∃s ∈ S s ≤∗ t}.

4. s ∗ 〈u〉 ∈ S∗ → {x ; s ∗ 〈x〉 ∈ ∗} = {−1} ∪ β ∪ {+∞} for some β ≤ α.

5. s ∗ 〈−1〉 ∈ S∗ → s ∗ 〈−1〉 ∈ S.

6. there is no sequence (ξi)i∈IN s.t., for all n, 〈ξ0, ..., ξn〉 ∈ S∗.

(i) Define a linear order ≤+ on S, and prove that S is a well-order, with

a topmost element Ŝ. Let ‖S‖ = order type of S − {Ŝ}. When f ∈
I(α, β) and S is a jervell tree of type β, define a Jervell tree f−1(S)... .

Define the concepts of homogeneous, strongly homogeneous Jervell

trees ... in a way similar to dendroids; of course the definition of

dendroids is a reformulation of Jervell trees... .

(ii) If x is a denumerable ordinal ≥ ω, build a family of Jervell trees

(Sx′)x′<x with the properties that:

• f ∈ I(x′, x′′), x′ ≤ x′′ < x→ f−1(SX′′) = Sx′ .

• there is no way of defining Sx s.t. f−1(Sx) = Sx′ for all f ∈ I(x′, x)

and x′ < x, in such a way that x is a Jervell treel more precisely

Condition 6 fails. (Hint. Let f : IN → x be an enumeration of x;

if y is any ordinal, define S ′y as follows: (a0, ..., an−1) ∈ S ′y ↔ n 6=
0∧(an−1 = −1∨an−1 = +∞∧∀i, j < n−1(f(i) < f(j)↔ ai < aj).

Then modify S ′y to ensure Condition 4; observe that the resulting Sy

enjoys 1–5, and enjoys 6 iff y < x... .)

(Many operations, including a variant of Λ, and a proof of the hier-

archy theorem, can be performed by means of strongly homogeneous

Jervell trees... .)

8.G.7. Homogeneous trees and ladders (Masseron, [81], 1980).

(i) Assume that S is a Jervell tree of type α; we define a structure of rung

R of type α and height ‖S‖: define, when s ∈ S∗, ZS(s) = s∗〈−1〉 if

s ∈ S, Z(s) = s, ∗ 〈−1〉 otherwise; if s ∈ S, write s = ZS(s0) with s0
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not ending by {−1}; if s0 = 〈 〉, then T (s) = 0; if s0 6= 〈 〉, let s0 =

s1 ∗ 〈a〉 and let β be such that {x ; s1 ∗ 〈x〉 ∈ S∗} = {−1}∪β∪{+∞};
we define T (s) = inf (β, a), and for ξ < T (s): [s] ξ = ZS(s ∗ 〈ξ〉).
Show that this defines a structure of rung of the form 1 + R′, or of

the form 0α (see 9.A for all these notions...).

(ii) Assume conversely that R is a rung of type α, and of the form 1+R′;

if x ≤ ‖R‖, we define [x] (+∞ = 1) by: [x] (+∞ + 1) = inf {[y] (η +

1) ; [y] η < x < [y] (η + 1) for some y, η} (if this set is void, let

[x] (+∞) = x+1). We define [x] (+∞) = the greatest y s.t. [y]T (x) =

x. Show that any two intervals
[
[xi] ξi, [xi] ξi + 1

[
, with i = 1, 2, and

ξi ∈ α ∪ {+∞} are either disjoint or comparable for inclusion. We

define [x] (−1) = inf
{

[y] (η) ; [y] η < x < [y] (η + 1) for some y and

η ∈ α ∪ {+∞}
}

(if this set is void, let [x] (−1) = 0). Prove that

[x] (−1) = ([x] 0) − 1 when x 6= 0. Given x ≤ ‖R‖ consider all

intervals of the form I =
[
[y] η, [y] (η+1)

[
s.t. x ∈ I; show that these

intervals form a finite linearly ordered set. Write

x ∈ In 6= ... 6= I0 , with Ii =
[
[yi] ηi, [yi] (ηi + 1)

[
.

To x we associate x∗ = 〈η0, ..., ηn〉. Show that {x∗ ; x ∈ ‖R‖ + 1} is

a Jervell tree... .

(iii) Show that the operations defined in (i) and (ii) are inverse isomor-

phisms identifying Jervell trees 6= {〈 〉} with rungs of the form 1+R′.

(iv) Extend (iii) into an isomorphisms between homogeneous Jervell trees

and ladders; from this we can for instance transfer Λ on homogeneous

Jervell trees... .

8.G.8. The category SETtr

We define a category SETtr as follows:

– objects: sets x which are transitive (i.e. t ∈ t′ ∧ t′ ∈ x→ t ∈ x).

– morphisms from x to y: functions from x to y s.t.:
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∀t, t′
(
t ∈ t′ ↔ f(t) ∈ f(t′)

)
.

(i) Prove that, in SETtr, every set is a direct limit of finite sets.

(Hint. The result is non trivial, because of the extensionality axiom

that must be fulfilled by the finite substructures of x that we construct

... if X ⊂ x we say that X is extensional if ∀a∀b ∈ X
(
a 6= b→ ∃c ∈

X ¬(c ∈ a↔ c ∈ b)
)
. Then show that, if X ⊂ x and x is finite, there

is an extensional Y s.t. X ⊂ Y ⊂ x, and which is finite. We work by

induction on max rk(X) = sup {rk(t) ; t ∈ X}, and we consider the

closure X ′ of X under boolean operations (x ∪ y, x ∩ y, x− y); them

max rk(X ′) = max rk(X). Write X ′ = X1∪Y , where Y consists of all

points of X ′ of maximal rank. Let a1, ..., ap be elements of Y minimal

for inclusion, and choose c1, ..., cp in a1, ..., ap... . Apply the induction

hypothesis to X ′ ∪ {c1, ..., cp}... .)

(ii) Assume that (xi, fij) is a direct system in SETtr, and that its direct

limit, as a system of orders, is well-founded; conclude that the system

has a direct limit in SETtr.
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8.G.9. Exercise.

Find two finite dimensional dilators D and D′ such that D(x) = D′(x) for

all x ∈ 0n, but D 6= D′.

8.G.10. Abstract description of predilators (see 8.4.25).

(i) Show that the following concept is equivalent to the concept of

predilator:

1. A linear oder X.

2. For any two x, y ∈ X s.t. x ≤ y, an integer nxy, together with a

linear order on σxy on nxy = |σxy|.

3. If x ≤ y ≤ z, then nxz = inf (nxy, nyz) and σxz = σxy|̀nxz =

σyz|̀nxz (denoted by σxz = σxy ∧ σyz).

(ii) Show how finite dimensional predilators can be generated by induc-

tion on their dimension, as in (i).

(iii) Find the analogue of the concepts of two variable predilators, prebi-

lators.

(Hint. nxy is equipped with two linear orders, σ1
xy, σ

2
xy, with: |σ1

xy| ∩
|σ2
xy| = ∅, |σ1

xy| ∪ |σ2
xy| = nxy; in the case of prebilators, we require

that 0 is the topmost element in |σ2
xy|.)

(iv) Express separation and unification of variables (Chapter 9), by means

of operations on the representations (i) and (iii)... . This is the most

elegant description of SEP and ON.

8.G.11. Decreasing permutations.

Let F be a predilator such that:

1. all permutations relative to F are of the form

σ(0) = n− 1, ..., σ(n− 1) = 0 .

2. F (ω2) is well-founded.
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Show that F is a dilator.

(Hint. Use BCHq(F )... .)

8.G.12. Differential equations for dilators (Boquin).

Let H be a dilator; show that the “differential equation”

F (x+ 1) = F (x) +H(F (x), x)

F (f + E1) = F (f) +H(F (f), f)

F flower

F (0) = a

admits a unique solution.

8.G.13. Amalgamation in DIL

Assume that T1 ∈ I1(A,B1, T2 ∈ I1(A,B2); show the existence of B,

U1 ∈ I1(B1, B), U2 ∈ I2(B2, B) such that the diagram

B1

T1 U1

A B

T2 U2

B2

is commutative and cartesian (i.e. U1 ∧ U2 = U1T1 = U2T2).

(Hint. One can directly work on an abstract description of dilators

(8.G.10), and obtain a solution B which is a predilator ... then show that

the B constructed must be a dilator... . Another possibility is to imitate

what is done in Chapter 12.)

8.G.14. About traces.

If Y is a finite set, what can be ascertained as to the cardinality of the set:

{D ; D ∈ |DIL| ∧ Tr(D) = Y } .

In particular, if X is a finite set of finite dimensional dilators, define

X ′ by:
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D ∈ X ′ ↔ ∃D1, D2, D3 ∃T1, T2, T3 s.t. Ti ∈ I1(Di, D)

(i = 1, 2, 3) ∧ Tr(D) = rg
(

Tr(T1)
)
∪ rg

(
Tr(T2)

)
∪ rg

(
Tr(T3)

)
.

Prove that X ′ is a finite set.

8.G.15. Preservations of pull-backs.

Let F be a functor from ON to ON preserving direct limits.

(i) Prove a “normal form theorem”: z = F (f)(z0) with rg(f) minimal;

notation: z = (z0 ; x0, ..., xn−1 ; x)F , with rg(f) = {x0, ..., xn−1}.
Prove that 8.2.20 still holds for F .

(ii) Define Tr(F ) = {(z0, n) ; z0 = (z0 ; 0, ..., n − 1 ; nF}; define ai (i =

0, ..., n − 1) when (z0, n) ∈ Tr(F ) as in 8.4.10; consider Iz0,n = {i <
n ; ai 6= (z0 ; 0, 2, ..., 2n− 2 ; 2n)F}; prove that

(z0 ; x0, ..., xn−1 ; x)F = (z0 ; x′0, ..., x
′
n−1 ; x)F

iff xi = x′i ∀i ∈ Iz0,n .

Show that, if (z0 ; x0, ..., xn−1 ; x)F = (z1 ; y0, ..., ym−1 ; x)F , then

{xi ; i ∈ Iz0,n} = {yj ; j ∈ Iz1,m} .

(iii) Prove that F0

(
ω(1 + Id)

)
is a dilator.

Conclude that there is a natural transformation from F into a

dilator.

(This result expresses, in a more satisfactory way than 8.G.1, the

fact that “preservation of pull-backs costs nothing”; this is precisely

a reason to restrict to functors with this preservation property: we

are essentially at the same level of generality, but the theory is really

simpler... .)
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CHAPTER 9

DILATORS AS WELL-ORDERED CLASSES

Here again the basic reference is [5], especially Chapters 3 and 5.

9.1. Classification of dilators

The purpose of this section is to extend the familiar classification of

ordinals in zero, successors, limits to dilators:

9.1.1. Proposition.

(i) Let x be an ordinal, and let (Fz)z<x be a family of dilators; then one

can define a new dilator G =
∑
z<x

Fz by

G(a) =
∑
z<x

Fz(a) ,

and when f ∈ I(a, b):

G(f)
(∑
z<z′

Fz(a) + u
)

=
∑
z<z′

Fz(b) + Fz′(f)(u) .

(ii) Let y be another ordinal, let (Hz)z<y be another family of dilators,

let f ∈ I(x, y) and (Tz) be a family of natural transformation from

Fz to Hf(z), (z < x); then one can define a natural transformation

T =
∑
z<f

Tz from
∑
z<x

Fz to
∑
z<y

Hz by:

T (a)
(∑
z<z′

Fz(a) + u
)

=
∑

z<f(z′)

Gz(a) + Tz′(a)(u) .

Proof. (i) It is immediate that G is a functor from ON to ON. The fact

that G preserves direct limits and pull-backs is easy to establish; let us

see how the denotations w.r.t. G look like: if t =
∑
z<z′

Fz(x) + u with u <
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Fz′(x) write u = (u0 ; x0, ..., xn−1 ; x)Fz′ ; then one has: t =
(∑
z<z′

Fz(n) +

u0 ; x0, ..., xn−1 ; x)G.

(ii) is immediate as well; observe that Tr(T )
((∑

z<z′
Fz(n) + u0, n

))
=(∑

z<z′
Gz(n) + Tr(Tz′)(u0), n

)
. 2

9.1.2. Remark.

An important case is x = 2 (or f = E2), which enables us to define the

sum of two dilators, or of two natural transformations:

(F + F ′)(a) = F (a) + F ′(a)

(F + F ′)(f) = F (f) + F ′(f)

(T + T ′)(a) = T (f) + T ′(f) .

9.1.3. Proposition.

The following conditions are equivalent:

(i) ∃F ′ G = F + F ′.

(ii) For all a ∈ 0n F (a) ≤ G(a) and the family (EF (a)G(a))a∈0n defines a

natural transformation from F to G.

Proof. Immediate, left to the reader. 2

9.1.4. Definition.

If the equivalent properties of 9.1.3 hold, one will denote this situation by

F v G; and the natural transformation T (a): EF (a)G(a) will be denoted by

E1
FG. E1

FF is abbreviated into E1
F : E1

F is the identity of F .

9.1.5. Definition.

(i) If F is a nonzero dilator with the property that F = F ′+F ′′ → F ′ =

0 ∨ F ′′ = 0, then F is said to be connected.

(ii) If T ∈ I1(F,G) where F and G are connected dilators, then T is said

to be connected.
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9.1.6. Theorem.

(i) If F is a dilator, then F can be written as a sum: F =
∑
z<x

Fz, with

all dilators Fz connected. (The Fz’s are the connected components

of F ). The ordinal x and the dilators Fz are unique.

(ii) If F , G are dilators, and T ∈ I1(F,G), then T can be written as a

sum: T =
∑
z<f

Tz, with all natural transformations Tz (the connected

components of T ) connected. The function f , and the Tz’s are

unique.

Proof. We first establish a lemma.

9.1.7. Lemma.

A non zero dilator F is connected if ∀(a, n) ∈ Tr(F ) ∀(b,m) ∈ Tr(F )

|§F (a, n ; b,m)| > 0.

Proof. If F = F ′ + F ′′, with F ′, F ′′ 6= 0, let T = E1
F ′F , T ′ = E1

0F ′ + E1
F ′′ ,

and let (a, n) ∈ rg
(

Tr(T )
)
, (b,m) ∈ rg

(
Tr(T ′)

)
; it is immediate that

(a ; x0, ..., xn−1 ; x)F < (b ; y0, ..., ym−1 ; x)F for all strictly increasing se-

quences x0 < ... < xn−1 < x, y0 < ... < ym−1 < x, and this implies that

§F (a, n ; b,m) = 0. (The converse of the lemma holds, but is of no need

here.) 2

We define an equivalence relation ∼F0 on the set Tr(F ) by:

(a, n) ∼F0 (b,m)↔ |§F (a, n ; b,m)| > 0 ∨ (a, n) = (b,m) .

(This is an equivalence because |§F (a, n ; c, l)| ≥ inf (|§F (a, n ; b,m), §F (b,

m ; c, l)|); this is proved by 8.4.31 (i).) This equivalence is compati-

ble with the order ≤F , in other terms the equivalence classes C mod-

ulo ≤F are such that x, y ∈ C and x ≤F z ≤F y → z ∈ C (if

x ∼F0 y and x ≤F z ≤F y, we know that inf (|§F (x, z)|, |§F (z, y)|) =

|§F (x, y)| > 0...). Hence it is possible to define a linear order ≤F / ∼F0 .

We claim that this is a well-order: if (ai, ni) is a strictly decreasing se-

quence in Tr(F ) for ≤F , such that |§F (ai, ni ; aj, nj)| = 0 for i 6= j, it
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is immediate that zi = (ai ; 0, ..., ni − 1 ; ω)F is a s.d.s. in F (ω). Let

x = ‖ ≤F / ∼F0 ‖, and let z ; Cz be the order-preserving isomorphism

from x to ≤F / ∼F0 . Define a dilator Fz, together with a natural trans-

formation Uz ∈ I1(Fz, F ) by the condition rg
(

Tr(Uz)
)

= Cz. We claim

that Fz is connected: this is immediate from 9.1.7, since all elements of

its trace are equivalent modulo ∼F0 . Given u ∈ Fz(z), we prove, by in-

duction on z, that Uz(x)(u) =
∑
z′<z

Fz′(x) + u; this is immediate from the

following remark: v < Uz(x)(u) ↔ (v = Uz(x)(u′) for some u′ < u or

v = Uz′(x)(u′) for some u′ and some z′ < z). From that it easily fol-

lows that F =
∑
z<x

Fz. Now assume that F =
∑
z<x′

Gz, with the Gz’s con-

nected. Then the sets Dz =
{(∑

z′<z

Gz′(n) + u ; n
)

; (u, n) ∈ Tr(Gz)
}

must

be equivalence classes modulo ∼F0 , hence Cz = Dz, x = x′, Gz = Fz. In

order to prove (ii), observe that Tr(T ) is a strictly increasing function from

(Tr(F ),≤F ) to (Tr(G),≤G), compatible with the equivalences ∼F0 and ∼G0 ;

hence Tr(T ) induces a strictly increasing function f from ‖ ≤F / ∼F0 ‖
to ‖ ≤F / ∼G0 ‖. If (Dz)z<y are the equivalence classes modulo ∼G0 , it

is clear that Tr(T ) maps Cz into Df(z), for all z < x. Define Gz and

Vz ∈ I1(Gz, G) by rg
(

Tr(Vz)
)

= Dz; then one can define Tz ∈ I1(Fz, Gf(z))

by: Vf(z)Tz = TUz (this definition is possible because of Remark 8.3.11

(ii), since rg
(

Tr(TUz)
)
⊂ rg

(
Tr(Vf(z))

)
). Then Tz is obviously connected,

and clearly T =
∑
z<f

Tz. The unicity of the decomposition is immediate. 2

9.1.8. Corollary (“splitting lemma”).

Assume that T ∈ I1(F,G′ + G′′); then one can define F ′ and F ′′, T ′ ∈
I1(F ′, G′), T ′′ ∈ I1(F ′′, G′′), such that F = F ′ + F ′′, T = T ′ + T ′′. This

decomposition is unique.

Proof. Write F =
∑
z<x

Fz, G
′ =

∑
z<y′

Gz; G
′′ =

∑
z<y′′

Gy′+z; then there

exists f ∈ I(x, y′ + y′′) and a family (Tz), Tz ∈ I1(Fz, Gf(z)) such that

T =
∑
z<f

Tz. Define x′, x′′, f ′ ∈ I(x′, y′), f ′′ ∈ I(x′′, y′′), by the con-

dition f = f ′ + f ′′ (for instance x′ is the smallest ordinal z such that

z = x or (z < x and f(z) ≥ y′)...). Define F ′ =
∑
z<x′

Fz, F
′′ =

∑
z<x′′

Fx′+z,
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T ′ =
∑
z<f ′

Tz, T
′′ =

∑
z<f ′′

Tx′+z: then F = F ′+F ′′, T = T ′+T ′′. The unicity

of the solution is immediate. 2

9.1.9. Remarks.

(i) One would easily verify that F ′ v F , where F =
∑
z<x

Fz iff F ′ =
∑
z<x′

Fz

for some x′ ≤ x.

(ii) One can define a functor LH (length) from DIL to ON by:

LH
(∑
z<x

Fz
)

= x

LH
(∑
z<f

Tz
)

= f .

It is easy to verify that LH preserves direct limits. Bug LH does

not preserve pull-backs (a remark by Daniel Boquin): if G is a two-

dimensional connected dilator, with rg(G) = {a, b}, define Ta and Tb

by rg
(

Tr(Ta)
)

= {a}, rg
(

Tr(Tb)
)

= {b}; LH(Ta) = LH(Tb) = E1;

but Ta ∧ Tb = E1
0G; LH(Ta ∧ Tb) = E01 6= E1 ∧ E1.

9.1.10. Definition.

(i) The dilator F is of kind

– 0 iff F = 0.

– 1 iff F = F ′ + 1 for some F ′.

– ω iff F =
∑
z<x

Fz, with x limit and Fz 6= 0 for all z < x.

– Ω iff F = F ′ + F ′′ for some F ′, F ′′, with F ′′ connected and 6= 1.

(ii) The natural transformation T ∈ I1(F,G) is deficient if T = T ′+E1
0G′

for some G′ 6= 0; otherwise F and G are of the same kind and T is of

kind 0 (resp. 1, ω, Ω) iff F and G are of kind 0 (resp. 1, ω, Ω).
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9.1.11. Theorem.

(i) If F is a dilator, then F is of one (and only one) of the kinds 0, 1, ω,

Ω.

(ii) If T is a non deficient natural transformation, then T is of one of the

kinds 0, 1, ω, Ω).

Proof. (i) Write F =
∑
z<x

Fz; then

– if x = 0, F = 0 hence F is of kind 0.

– if x is limit, then F is of kind ω.

– if x = x′ + 1, and Fx′ = 1, F is of kind 1.

– if x = x′ + 1, and Fx′ 6= 1, F is of kind Ω.

(ii) Write G =
∑
z<y

Gz, T =
∑
z<f

Tz; if f̂(x) < y, then f = f ′ + E0y′ for

some y′ 6= 0, and T =
∑
z<f ′

Tz + E1
0G′ with G′ 6= 0, hence T is deficient.

If f̂(x) = y, then T is not deficient; if x = 0, then y = f̂(x) = 0, hence

F and G are both of kind 0. If x = x′ + 1, then y = f(x′) + 1: if

Tx′ ∈ I1(Fx′ , Gf(x′)), then:

– if Fx′ = 1, then Gx′ = 1: F and G are both of kind 1.

– if Fx′ 6= 1, then Gx′ 6= 1: F and G are both of kind Ω.

(If (z, 0) ∼H0 (z′, n), then (z, 0) = (z′, n); hence a connected dilator H

such that (z, 0) ∈ Tr(H) is necessarily 1; so if I1(F,G) 6= ∅ and F = 1 or

G = 1, then F = G.) If x is limit, then y is limit as well: F and G are

both of kind ω.

9.1.12. Remark.

If x is an ordinal, then x is of kind

(i) 0 if x = 0.

(ii) 1 if x is a successor.
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(iii) ω if x is limit.

The kind Ω is something new, with no analogue in the case of ordinals.
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9.2. Flowers

9.2.1. Definition. A flower is a dilator which enjoys the property (FL) for

all x, y in 0n with x ≤ y, F (Exy) = EF (x)F (y).

9.2.2. Proposition.

A dilator F is a flower iff for all denotation (z0 ; x0, ..., xn−1 ; x)F and all

y ≥ x:

(z0 ; x0, ..., xn−1 ; x)F = (z0 ; x0, ..., xn−1 ; y)F .

Proof. This equality exactly expresses that

F (Exy)
(
(z0 ; x0, ..., xn−1 ; x)F

)
= (z0 ; x0, ..., xn−1 ; x)F

i.e. F (Exy)(z) = z for all z < F (x). 2

9.2.3. Theorem.

If F is a flower, then the function x ; F (x) is topologically continuous.

Proof. If x is a limit ordinal, then x = lim
−→
x′<x

∗
(x′,Ex′x′′), hence F (x) =

lim
−→
x′<x

∗
(F (x′),EF (x′)F (x′′)) = sup

x′<x

F (x′). 2

9.2.4. Remarks.

Assume that F is a flower; we shall use the notation (z0 ; x0, ..., xn−1)F to

mean (z0 ; x0, ..., xn−1 ; y)F for any y > xn−1. We assume that F is non

constant; then

(i) z = (z0 ; x0, ..., xn−1)F < F (x) ↔ x0, ..., xn−1 < x (because z <

F (x)↔ z ∈ rg
(
F (Ex)

)
).

(ii) Since F is non constant, there is a point (z,m) ∈ Tr(F ), with m 6= 0;

let z be the smallest point of the form (z0 ; x0, ..., xn−1)F for some

pair (z0, n), with n 6= 0; then x0 = 0, ..., xn−1 = n − 1, and by (i)

above z = F (0) = ... = F (n − 1) 6= F (n). If x ≥ n − 1, then

F (x) < F (x + 1), because (z0 ; 0, ..., n − 2, x) ∈ F (x + 1), but does

not belong to F (x).
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(iii) Another consequence of (i) is that if f ∈ I(x, y), z ≤ x, and f(z′) = z′

for all z′ < z, then F (f)(t) = t for all t < F (z).

(iv) Yet another consequence of (i) is that F (x) is the smallest z of the

form (z1 ; x0, ..., xp−1)F such that p 6= 0 and xp−1 ≥ x; if x ≥ n − 1

(n is the integer defined in (ii)), then it suffices to look for z =

(z1 ; x0, ..., xp−1)F with xp−1 = x. It is immediate that F (x) is of the

form: F (x) =
(
z1 ; 0, ..., p − 2, sup (x, p − 1)

)
F

. (But z1 and p may

depend on x.)

9.2.5. Theorem.

Let F be a connected dilator 6= 1; then F is a flower iff for all (z0, n) ∈
Tr(F ), σFz0,n(0) = n− 1.

Proof. If F is a connected dilator 6= 1 and (z0, n) ∈ Tr(F ), then n 6= 0.

Assume that F is a flower; then consider ai = (z0 ; 0, ..., 2i − 2, 2i +

1, 2i + 2, ..., 2n − 2)F , by 9.2.4 (i), a0, ..., an−2 < F (2n − 1), whereas

an−1 ≥ F (2n−1), hence σFz0,n(0) = n−1. Conversely assume that σFz0(0) =

n − 1 for all (z0, n) ∈ Tr(F ); since F is connected, |§(z0, n ; z1,m)| > 0

for all (z0, n), (z1,m) ∈ Tr(F ). Let t = (z0 ; x0, ..., xn−1 ; x)F , and let

t′ = (z0 ; x0, ..., xn−1 ; y)F with y ≥ x, i.e. t′ = F (Exy)(t); assume that

u′ = (z1 ; y0, ..., ym−1 ; y)F is such that u′ ≤ t′; then ym−1 > xn−1 (together

with |§(z0, n ; z1,m)| > 0, σFz0(0) = n − 1, σFz1(0) = m − 1) would imply

t′ < u′, hence ym−1 ≤ xn−1. This proves that y0, ..., ym−1 < x, hence

u′ = F (Exy)(u), with u = (z1 ; y0, ..., ym−1 ; x)F . We have proved that

t′ ∈ rg
(
F (Exy)

)
∧ u′ ≤ t′ → u′ ∈ rg

(
F (Exy)

)
: hence rg

(
F (Exy)

)
is an

ordinal (necessarily F (x)), i.e. F (Exy) = EF (x)F (y). 2

9.2.6. Remarks.

(i) One would easily check that, if F is a flower, F can be uniquely written

as F = x+F ′, with x = F (0), and F ′ is either 0 or a connected flower

6= 1.

(ii) One would easily prove that F is a flower iff F (Enm) = EF (n)F (m) for

all integers n ≤ m. (This is a simple direct limit argument: see [5],

2.4.2.)
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9.2.7. Examples.

(i) The functors Id, x, are flowers.

(ii) If F is one of the binary functors sum, product, exponential, then the

functors Fx defined by:

– Fx(y) = F (x, y)

– Fx(g) = F (Ex, g)

are flowers; on the other hand the functors F y defined by:

– F y(x) = F (x, y)

– F y(f) = F (f,Ey)

are not (in general) flowers.

In other terms these functors are flowers “in y”, but not “in x”;

this can be directly seen from the definition: for instance the Cantor

Normal Form of an element z < (1 + x)y mentions x explicitly, but

not y: this means that the Cantor Normal Form is independent of

y. This surely indicates (see 9.2.2) that the functor exponential is a

flower “in y”.

9.2.8. Definition.

(i) Assume that F is a dilator, and define G =
∫
F (y)dy by:

G(x) =
∑
y<x

F (y) ,

and when f ∈ I(x, x′), y < x and z < F (y):

G(f)
( ∑
y′<f(y)

F (y′) + z
)

=
∑

y′<f(y)

F (y′) + F (g)(z) ,

where g ∈ I
(
y, f(y)

)
is defined by g(t) = f(t) for all t < y.
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(ii) Assume that F ′ is another dilator, with G′ =
∫
F ′(y)dy, and that T ∈

I1(F, F ′); then one defines a natural transformation U =
∫
T (y)dy

by:

U(x)
(∑
y′<y

F (y′) + z
)

=
∑
y′<y

F ′(y′) + T (y)(z) .

9.2.9. Proposition.∫
F (y)dy is a flower.

Proof. We leave the precise proof to the reader; we only indicate how deno-

tations w.r.t. G =
∫
F (y)dy are computed: if z =

∑
y′<y

F (y′)+z′, with z′ =

(z0 ; y0, ..., yn−1 ; y)F then z =
(
sumn′<n F (n′) + z0 ; y0, ..., yn−1, y

)
G

; ob-

serve theat the sequence y0, ..., yn−1 ; y has been replaced by y0, ..., yn−1, y... .

2

9.2.10. Proposition.

(i) Assume that G is a flower; then one can define a dilator F =
dG(y)

dy
by:

F (x) = G(x+ 1)−G(x) , i.e. G(x+ 1) = G(x) + F (x)

F (f) = G(f + E1)−G(f) , i.e. G(f + E1) = G(f) + F (f) .

(ii) Assume that G′ is another flower with F ′ =
dG′(y)

dy
and that U ∈

I1(G,G′); then one can define a natural transformation T =
dU(y)

dy
∈

I1(F, F ′) by:

T (x) = U(x+ 1)− U(x) , i.e. U(x+ 1) = U(x) + T (x) .

Proof. (i) G(x) ≤ G(x+1), hence F (x) can be defined. If f ∈ I(x, y), then

G(f + E1)(z) = G(f + E1)G(Exx+1)(z) = G(f)(z) hence G(f + E1) can be

put in the form G(f)+F (f). F is easily shown to be a dilator: if z ∈ F (x),
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write G(x) + z = (z0 ; y0, ..., yn)G; then z = (z1 ; y0, ..., yn−1 ; yn)F , with

z1 = z0 −G(n).

(ii) is left to the reader. 2

9.2.11. Definition.

FL is the category of flowers, i.e. the full subcategory of DIL whose ob-

jects are flowers.

9.2.12. Theorem.

The following functors establish an isomorphism between the categories

FL and ON×DIL:

(i) Φ(F ) = F (0)⊗ dF (y)

dy

Φ(T ) = T (0)⊗ dT (y)

dy
.

(ii) Ψ(x⊗ F ) = x+
∫
F (y)dy

Ψ(f ⊗ T ) = f +
∫
T (y)dy .

Proof. Immediate. 2

9.2.13. Definition.

A bilator is a functor from ON×ON to ON, such that:

(i) F preserves direct limits and pull-backs.

(ii) For all x ∈ 0n, the partial functor Fx (= F (x, ·)) is a flower.

(iii) F actually depends on the second variable (i.e. there is no dilator G

such that F (x, y) = G(x), F (f, g) = G(f) for all x, y, f , g).

9.2.13. Remark.

With bilators, we are considering two-variable analogues of dilators. Most

of the results concerning dilators can be adapted, mutatis mutandis, to

their two-variable analogues; we shall adapt results without further justi-

fication, when needed.
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9.2.14. Definition.

The following data define a category BIL:

objects: bilators.

morphisms from F to G: the set Ib(F, b) of all natural transformations

from F to G.

9.2.15. Remark.

In BIL, pull-backs do not necessarily exist; the reader will easily find an

example. This is due to the fact that functors which do not depend on y

are not considered as elements of BIL. The same thing will be true for the

isomorphic category Ω DIL.

9.2.16. Examples.

The functors sum, product, and exponential are typical examples of bila-

tors. In general any non-constant flower can be considered as a bilator (if

F is a flower, associate to F the functor G(x, y) = F (y), G(f, g) = F (g)...).

9.2.17. Notation.

A Normal Form theorem holds for bilators, and it is therefore possible to

use denotations w.r.t. bilators; z = (z0 ; x0, ..., xn−1 ; x ; y0, ..., ym−1 ; y)F

will mean that z = F (f, g)(z0) where z0 < F (n,m) and f ∈ I(n, x), g ∈
I(m, y) are such that f(0) = x0, ..., f(n − 1) = xn−1, g(0) = y0, ..., g(m −
1) = ym−1 and z0 is uniquely defined by the condition: if f ′ ∈ I(n′, n),

g′ ∈ I(m′,m) are such that z0 ∈ rg
(
F (f ′, g′)

)
, then n′ = n and m′ = m.

In fact, since F is a flower in y, the datum y is redundant, and we use the

notation z = (z0 ; x0, ..., xn−1 ; x ; y0, ..., ym−1)F .

9.2.18. Definition.

The following data define a category Ω DIL:

objects: dilators of kind Ω.

morphisms from F to G: the set Ω I1(F,G) of all natural transformations

from F to G of kind Ω.
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9.2.19. Remark.

The essential achievement of the next section (and of this chapter) is to

establish an isomorphism between BIL and Ω DIL. Hence in Ω DIL pull-

backs do not necessarily exist: if one takes the Example 9.1.9 (ii): Ta and

Tb are morphisms in Ω DIL, but they have no pull-back in this category,

since 0 is not an object of Ω DIL.
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9.3. The functor SEP and UN

The results of this section are crucial: they establish the isomorphism

between the categories BIL and Ω DIL, and this will be used in the next

section to define a predecessor relation between dilators. Many equivalent

definitions of the isomorphisms are possible; I have chosen the one which

is the closest to practice, i.e. the one using denotations.

9.3.1. Definition.

Assume that F is a connected dilator 6= 1; if x and y are ordinals, we define

a subset F (x, y) of F (y + x) as follows: z = (z0 ; x0, ..., xn−1 ; y + x)F ∈
F (x, y) iff (with q = σFz0,n(0), remark that n 6= 0 !).

(i) xq < y.

(ii) if q < n− 1, then y ≤ xq+1.

9.3.2. Theorem.

(i) If F is a connected dilator 6= 1, then there exists a binary functor

SEP(F ) from ON2 to ON, together with a natural transformation

ΘF from SEP(F ) to the binary functor F+: F+(x, y) = F (y + z),

F+(f, g) = F (g + f) such that rg
(
ΘF (x, y)

)
= F (x, y).

(ii) If G is another connected dilator 6= 1, if T ∈ I1(F,G), then there is

a unique natural transformation SEP(T ) from SEP(F ) to SEP(G)

making the following diagram commutative:

ΘF
SEP(F ) F+

SEP(T ) T+

SEP(G) G+
ΘG

(with T+(x, y) = T (y + x)...).

Proof. It suffices to prove that:

(i) F (g + f) maps F (x, y) into F (x′, y′), when f ∈ I(x, x′), g ∈ I(y, y′).
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(ii) T (y + x) maps F (x, y) into G(x, y)

because it will be possible to define:

SEP(F )(x, y) = ‖F (x, y)‖ , SEP(F )(f, g) = ‖F (f, g)‖

where F (f, g) is the function from F (x, y) to F (x′, y′) obtained by restric-

tion of F (g + f), SEP(T )(x, y) = ‖T (x, y)‖ where T (x, y) is the function

from F (x, y) to G(x, y) obtained by restriction of T (x, y), and ΘF (x, y)

is the order-preserving isomorphism from SEP(F )(x, y) = ‖F (x, y)‖ to

F (x, y).

Now, Property (i) is immediate: if xq < y ≤ xq+1, then g(xq) <

y′ ≤ y′ + f(xq+1 − y). For (ii), if xq < y ≤ xq+1, then observe that

σFz0,n(0) = q = σGTr(T )(z0,n)(0). 2

9.3.3. Theorem.

If F is a connected dilator 6= 1, then SEP(F ) is a bilator; if x ∈ 0n, then

SEP(F )(x, 0) = 0.

Proof. (i) SEP(F ) preserves direct limits and pull-backs: if z < SEP(F )(x,

y), we show the existence of a unique normal form for z; consider the de-

notation of ΘF (x, y)(z) = (z0 ; x0, ..., xn−1 ; y + x)F , and let q = σFz0,n(0);

then z0 ∈ F (n− q − 2, q + 2), and if z0 = ΘF (n − q − 2, q + 2)(z1), then

one can write

z = (z1 ; xq+1 − y, ..., xn−1 − y ; x ; x0, ..., xq ; y)SEP(F ) .

From that preservation of lim
−→

and ∧ easily follows.

(ii) We prove that SEP(F )(x, ·) is a flower on the model of 9.2.5: as-

sume that z, z′ ∈ F (x, y′), z ≤ z′ and z′ ∈ rg
(
F (Eyy′+Ex)

)
; we show that

z ∈ rg
(
F (Eyy′ + Ex)

)
, and this will establish that SEP(F )(Ex,Eyy′) =

ESEP(F )(x,y)SEP(F )(x,y′): write z = (z0 ; x0, ..., xm−1 ; y′ + x)F , z′ = (z1 ; x′0,

..., x′n−1 ; y′ + x)F , let q = σFz0,m(0), r = σFz1,n(0); we havexq < y′, and

since z ∈ rg
(
F (Eyy′ + Ex)

)
, one gets xq < y. Now, since F is connected

|§F (z0,m ; z1, n)| > 0, and the hypothesis z′ ≤ z entails x′r ≤ xq; hence

x′r < y; if r < n− 1, then x′r+1 ≥ y] hence z′ ∈ rg
(
F (Eyy′ + Ex)

)
.
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(iii) F (x, y) is void when y = 0 (because xq 6< 0),hence SEP(F )(x, 0) =

0; but if F (n) 6= 0, one clearly gets F (n, n) 6= ∅, hence SEP(F )(n, n) 6= 0,

i.e. SEP(F ) actually depends on y.

(i), (ii) and (iii)prove that F is a bilator. 2

9.3.4. Remark.

In order to state the next theorem, it is necessary to extend the basic

concepts of Chapter 8 to a binary functor F ; we do it below, without

proof:

(i) If F is a binary functor from ON2 to ON preserving direct limits

and pull-backs, then Tr(F ) is the set of all 3-uples (z0, n,m) such

that z0 < F (n,m) and for all n′ ≤ n, f ∈ I(n′, n), all m′ ≤ m,

g ∈ I(m′,m), z0 6∈ rg
(
F (f, g)

)
. In the obvious normal form the-

orem w.r.t. F , one will number the coefficients as follows: z =

(z0 ; xm, ..., xm+n−1 ; x ; x0, ..., xm−1 ; y)F (with xm < ... < xm+n−1 <

x, x0 < ... < xm−1 < y).

(ii) To (z0, n,m) ∈ Tr(F ), it is possible to associate a permutation σFz0,n,m
of n+m as follows: consider ai = (z0 ; xim, ..., x

i
m+n−1 ; 2(m+m) ; xi0,

..., xim−1 ; 2m)F , with xij = 2j when j 6= i, xii = 2i+ 1. Then

ai < aj ↔ σFz0,n,m(i) > σFz0,n,m(j) .

One can prove in this context the exact analogue of 8.4.11.

(iii) To (z0, n,m) and (z′0, n
′,m′), distinct points in Tr(F ), it is possible

to associate §F (z0, n,m ; z′0, n
′,m′) = (p, ε), with p ≤ n + m and

ε = ±1, in such a way that the exact analogue of 8.4.20 holds.

9.3.5. Theorem.

Assume that F is a connected dilator 6= 1; then there exists a function

sepF from Tr(F ) to Tr
(
SEP(F )

)
, with the following properties:

(i) sepF is a bijection.

(ii) sepF
(
(z0, n)

)
= (z′0, n− q − 1, q + 1) with q = σFz0,n(0).
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(iii) σ
SEP(F )
sep(z0,n) = σFz0,n.

(iv) §SEP(F )
(

sepF (z0, n), sepF (z1,m)
)

= §F (z0, n ; z1,m).

(v) If T ∈ I1(F,G), then the following diagram is commutative:

sepF
Tr(F ) Tr

(
SEP(F )

)
Tr(T ) Tr

(
SEP(T )

)
Tr(G) Tr

(
SEP(G)

)
sepG

Proof. sepF is defined as follows: given (z0, n) ∈ Tr(F ), let q = σFz0,n(0);

then let z′0 be such that z0 = ΘF (n− q − 1, q + 1)(z′0), then sepF (z0, n) =

(z′0, n− q − 1, q + 1).

Properties (ii) and (v) are immediate. If ai is defined by: ai = (z′0 ; xim, ...,

xim+p−1 ; 2(m + p) ; xi0, ..., x
i
m−1 ; 2m)SEP(F ) with xij = 2j for j 6= i, xii =

2i + 1, and (z′0, p,m) = sepF (z0, n). Consider the points bi =
(
z0 ; xi0, ...,

xim+p−1 ; 2(m+ p)
)
F

; then ai < aj ↔ bi < bj: from that (iii) easily follows.

(iv) is proved in the same way. Finally sepF is a bijection; this is clear

from the way of passing from a F -denotation to a SEP(F )-denotation. 2

9.3.6. Definition.

One defines the functor + from DIL × BIL to BIL by:

(F +G)(x, y) = F (x) +G(x, y)

(F +G)(f, g) = F (f) +G(f, g)

(T + U)(x, y) = T (x) + U(x, y) .

9.3.7. Definition.

One defines the functor SEP (separation) from Ω DIL to BIL as follows:

(i) If F = F ′ + F ′′, with F ′′ connected, then SEP(F ) = F ′ + SEP(F ′′).

(ii) If T = T ′ + T ′′ with T ′′ connected, then SEP(T ) = T ′ + SEP(T ′′).
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9.3.8. Remark.

The results and constructions which were made for connected dilators 6= 1

easily extend to the case of dilators of kind Ω; let us mention:

(i) The subset F (x, y) of F (y + x) is defined to be rg
(
F ′(E0y + Ex)

)
∪

{F ′(x + y) + z ; z ∈ F ′′(x, y)}. One defines a natural transformation

ΘF from SEP(F ) to F+ by rg
(
Θ·F (x, y)

)
= F (x, y).

(ii) The bijection sepF is defined as follows: write Tr(F ) = S1∪S2, where

S2 is the “topmost” equivalence class modulo ∼F0 (w.r.t. ≤F / ∼F0 ),

(and if F = F ′ + F ′′, F ′′ connected, S1 = Tr(F ′)). Then sepF (z0, n)

is defined exactly as in 9.3.5 when (z0, n) ∈ S2, whereas sepF (z0, n) =

(z0, n, 0) when (z0, n) ∈ S1. The exact analogue of 9.3.5 holds.

9.3.9. Examples.

(i) Assume that F is a non constant flower; then F is of kind Ω; let

us look at the case F (0) = 0, i.e. F connected; now recall that

σFz0,n(0) = n − 1 by 9.2.5, hence F (x, y) = rg
(
F (Eyy+x)

)
, hence

ΘF (x, y) = F (Eyy+x); the commutativity of the diagram

F (Eyy+x)
F (y) F (y + x)

F (g) F (g + f)

F (y′) F (y′ + x)
F (Ey′y′+x)

implies that SEP(F )(x, y) = F (y), SEP(F )(f, g) = F (g). The

case F (0) 6= 0 is immediate: if F = x + F ′′, with a = F (0) then

SEP(F )(x, y) = a + F ′′(y) = F (y), SEP(F )(f, g) = Ea + F ′′(g).

Hence separation of variables on non-constant flowers is just a re-

naming of variables.

(ii) Suppose that F = Id · Id = Id2, then G = SEP(F ) satisfies the

following equations: (if f ∈ I(x, x′), g ∈ I(y, y′))

(1) G(x, 0) = 0 G(f,E0) = E0

(2) G(x, y + 1) = G(x, y) + y + 1 + x G(f, g + E1) =
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G(f, g) + g + E1 + f

(3) G(f, g + E01) =

G(f, g) + E0y′+1+x′

(4) G
(
x, sup(yi)

)
= sup

(
G(x, yi)

)
G(f,Ugi) = UG(f, gi) .

We only prove (1) and (2) since (3) and (4) are general properties

of bilators: (3) follows from (FL) and (4) from preservation of direct

limits and (FL).

It is immediate that F (x, 0) = ∅: this proves (1). Let us now

compute the permutations associated with the elements of Tr(F ) =

{(1, 2), (0, 1), (2, 2)}: σF0,1(0) = 0, and

(1 ; 0, 3 ; 4)F = 4 · 0 + 3 = 3 < (1 ; 1, 2 ; 4)F = 4 · 1 + 2 = 6:

σF1,2(0) = 0, σF1,2(0) = 1

(2 ; 1, 2 ; 4)F = 4 · 2 + 1 = 9 < (2 ; 0, 3 ; 4)F = 4 · 3 + 0 = 12:

σF2,2(0) = 1, σF2,2(1) = 0

F (x, y) = {(0 ; u ; y + x)F ; u < y} ∪

{(1 ; u, v ; y + x)F ; u < y ≤ v < y + x} ∪

{(2 ; u, v ; y + x) ; v < u < y} .

If z ∈ F (x, y), then F (Eyy+1 + Ex)(z) ∈ F (x, y + 1); if z ∈
F (x, y + 1), but z 6∈ rg

(
F (Eyy+1 + Ex)

)
, one easily sees that z =

(y + 1 + x)y + v for some v < y + 1 + x); conversely all points

z = (y + 1 + x) + v with v < y + 1 + x are in F (x, y + 1), but not in

rg
(
F (Eyy+1 + Ex)

)
: this is immediate from (1 ; u, v ; y + 1 + x)F =

(y + 1 + x) − u + v and (2 ; u, v ; y + 1 + x)F = (y + 1 + x)v + u,

and (0 ; u ; y + 1 + x)F = (y + 1 + x)u + u. Hence G(x, y + 1) =

G(x, y) + y + 1 + x.

Let f ∈ I(x, x′), g ∈ I(y, y′); if z ∈ F (x, y + 1) and

z ∈ rg
(
F (Eyy+1 + Ex)

)
, then

F (g + E1 + f)(z) = F (g + E1 + f)F (Eyy+1 + Ex)(t) =

F (Ey′y′+1 + Ex′)F (g + f)(t) .
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If z = (y+ 1 + x) + v, then F (g+ E1 + f)(z) = (y′+ 1 + x′)y′+ (g+

E1 + f)(v): hence G(f, g + E1) = G(f, g) + g + E1 + f .

(iii) There exists a dilator F such that G = SEP(F ) is the bilator

product: F is the prime dilator corresponding to the permutation

σ(0) = 0, σ(1) = 1 of 2: the bilator · has a trace consisting of

the only point (0,1,1) ((0 ; a ; x ; b ; y)· = x · b + a); clearly a1 =

(0 ; 3 ; 4 ; 0 ; 2)· < (0 ; 2 ; 4 ; 1 ; 2)· = g, hence the associated permu-

tation is the identity permutation, and the result follows from 9.3.5.

9.3.10. Definition.

If F is a bilator, define F (x) ⊂ F (x, x) by:

(z0 ; x0, ..., xm−1 ; x ; y0, ..., yn−1)F ∈ F (x) ↔(
nm = 0 ∨ (nm 6= 0 ∧ yn−1 < x0)

)
.

9.3.11. Theorem.

(i) If F is a bilator, then there is a functor UN(F ) from ON to ON (uni-

fication), together with a natural transformation ΞF from UN(F ) to

the dilator Fδ: Fδ(x) = F (x, x), Fδ(f) = F (f, f) such that rg
(
ΞF (x)

)
= F (x).

(ii) If G is another bilator, if T ∈ Ib(F,G), then there is a unique natu-

ral transformation UN(T ) from UN(F ) to UN(G) which makes the

following diagram commutative:

ΞF
UN(F ) Fδ

UN(T ) Tδ

UN(G) Fδ
ΞG

(with Tδ(x) = T (x, x)).

Proof. It suffices to prove that

(i) F (f, f) maps F (x) into F (y) when f ∈ I(x, y).
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(ii) T (x, x) maps F (x) into G(x).

Because if F (f) denotes the function from F (x) to F (y) obtained

by restriction of F (f, f), and if T (x) denotes the function from F (x)

to G(x) obtained by restriction of T (x, x), then UN(F )(x) = ‖F (x)‖,
UN(F )(f) = ‖F (f)‖, UN(T )(x) = ‖T (x)‖ are the solutions of the the-

orem, provided ΞF (x) is chosen to be the order-preserving isomorphism

from UN(F )(x) to F (x).

Property (i) is immediate: if nm = 0 or yn−1 < x0, then clearly nm = 0

or f(yn−1) < f(x0). For (ii) if nm = 0 or yn−1 < x0, observe that

T (x, x)(z0 ; x0, ..., xm−1 ; x ; y0, ..., yn−1)F = (T (m,n)(z0) ; x0, ..., xm−1 ; x ;

y0, ..., yn−1)G. 2

9.3.12. Theorem.

UN is a functor from BIL to Ω DIL.

Proof. We show that UN(F ) is a dilator, and as usual we need to express

denotations w.r.t. UN(F ); if z < UN(F )(x), let z′ = ΞF (z), and write

z′ = (z0 ; x0, ..., xn−1 ; x ; y0, ..., ym−1)F ; then the point z′0 = (z0 ; m, ...,m+

n + 1 ; m + n ; 0, ...,m − 1)F belongs to F (m+ n), hence z′0 = ΞF (m +

n)(z1) for some z1 ∈ UN(F )(m + n), and clearly one can write z =

(z1 ; y0, ..., ym−1, x0, ..., xn−1 ; x)UN(F ), and unicity of such a notation is eas-

ily established. From that it follows that UN is a functor from BIL to

DIL. It is necessary to show that UN(F ) and UN(T ) are of kind Ω. This

is a consequence of the following theorem:

9.3.13. Theorem.

Assume that F is a bilator; then there exists a function unF from Tr(F )

to Tr
(
UN(F )

)
, such that:

(i) unF is a bijection.

(ii) unF
(
(z0, n,m)

)
= (z′0, n+m).

(iii) σ
UN(F )
unF (z0,n,m) = σFz0,n,m.

(iv) §UN(F )
(

unF (z0, n,m), unF (z′0, n
′,m′)

)
= §F (z0, n,m ; z′0, n,m).
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(v) If T ∈ Ib(F,G) the diagram

unF
Tr(F ) Tr

(
UN(F )

)
Tr(T ) Tr

(
UN(T )

)
Tr(G) Tr

(
UN(G)

)
unG

is commutative.

Proof. If (z0, n,m) ∈ Tr(F ), then (z0 ; m, ...,m+ n− 1 ; m+ n ; 0, ...,m−
1)F ∈ F (m+ n), and define z′0 by z0 = ΞF (m+n)(z′0): then unF (z0, n,m) =

(z′0,m+ n). Properties (ii) and (v) are immediate; (i) is immediate if one

looks at the way UN(F )-denotations are obtained. (iii) and (iv) are left

as exercise for the reader... . 2

End of the proof of 9.3.12. – If F (x, 0) = 0 for all x, then |§F (z0, n,m ; z′0,

n′,m′)| 6= 0 for all (z0, n,m), (z′0, n,m) in Tr(F ) (since the comparison

between (z0 ; x0, ..., xn−1 ; x ; y0, ..., ym−1)F and (z′0 ; x′0, ..., x
′
n−1 ; x ; y′0, ...,

y′m′−1)F depends on the relative orders of the points ym−1 and y′m′−1). By

9.3.13 (iv) |§F (z1, p ; z′1, p
′)| 6= 0 for all (z1, p) and (z′1, p

′) in Tr
(
UN(F )

)
.

– In the general case one can observe that there is a maximum equiva-

lence class for ∼F0 in Tr(F ), and that this class is transferred into a maxi-

mum equivalence class for ∼(F )
0 in Tr

(
UN(F )

)
. 2

But one can also use the following proposition:

9.3.14. Proposition.

(i) If F ′ is a dilator, if F ′′ is a bilator, then UN(F ′+F ′′) = F ′+UN(F ′′).

(ii) If T ′ ∈ I1(F ′, G′), if T ′′ ∈ Ib(F ′′, G′′), then UN(T ′ + T ′′) = T ′ +

UN(T ′′).

Proof. Clearly (F ′ + F ′′)(x) consists of all points z < F ′(x) (because

z = (z0 ; x0, ..., xn−1 ; x)F ′+F ′′ , i.e. m = 0) and all points F ′(x) + z, with

z ∈ F ′′(x)... . 2
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9.3.15. Theorem.

SEP and UN are inverse functor.

Proof. (i) We show that SEP UN(F ) = F , and UN SEP(F ) = F , when

F is an object. The function sepUN(F )unF = g is a bijection from Tr(F )

to Tr
(
SEP UN(F )

)
which has the following properties: g

(
(z0, n,m)

)
=

(z′′0 , n,m), σ
SEPUN(F )
g(z0,n,m) = σFz0,n,m, §SEPUN(F )(z0, n,m ; z′0, n,m) = §F (z0, n,

m ; z′0, n,m). This means that F and SEP bfUN(F ) have the same in-

variants. By 8.4.23 (or rather its analogue for two-variable functors) F

and SEP UN(F ) are isomorphic functors, hence equal. Exactly the same

argument yields UN SEP(F ) = F .

(ii) In order to show that SEP UN(T ) = T , observe that the diagram

gF (= identity)
Tr(F ) Tr(F )

Tr(T ) Tr(SEP UN(T )
)

Tr(G) Tr(G)
gG (= identity)

is commutative by 9.3.5 (v) and 9.3.12 (v), hence T and SEP UN(T ) have

the same trace, and this implies T = SEP UN(T ). One gets UN SEP(T )

= T by a similar argument. 2

9.3.16. Corollary.

UN and SEP preserve direct limits and pull-backs.

Proof. Because they are isomorphisms. 2

The exceptional importance of SEP and UN in the theory of dilators

makes it necessary to give an alternative approach; most of the proofs will

be omitted; one can find some of these in [5], 3.6.

9.3.17. Definition.

(i) Assume that F is a bilator; then ∂F is the following functor from

ON2 to ON:

∂F (x, y) = F (x, y + 1)− F (x, y)
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∂F (f, g) = F (f, g + E1)− F (f, g)

(i.e. ∂F =
dF (·, z)
dz

; one easily checks that ∂F preserves direct limits

and pull-backs).

(ii) If G is another bilator and T ∈ Ib(F,G), then one defines a natural

transformation γT from ∂F to ∂G by:

∂T (x, y) = T (x, y + 1)− T (x, y) .

9.3.18. Theorem.

(i) If F is a bilator then G = UN(F ) can be defined by:

G(x) = F (x, 0) +
∑
y<x

∂F (x− (y + 1), y) ,

and if f ∈ I(x, x′)

G(f) = F (f,E0) +
∑
g<f

∂F (f − (g + E1), g)

(this means that

G(f)
(
F (x, 0) +

∑
y′<y ∂F (x− (y′ + 1), y′) + z

)
=

F (x′, 0) +
∑

y′<f(y)

∂F (x′ − (y′ + 1), y′) + ∂F (f y, fy)(z)

where f = fy + E1 + f y and fy ∈ I
(
y, f(y)

)
).

(ii) If T ∈ Ib(F, F ′), then UN(T ) is the natural transformation U defined

by:

U(x) = T (x, 0) +
∑
y<x

∂T (x− (y + 1), y) .

Proof. See [5], 3.6.2. 2

9.3.19. Proposition.
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(i) If F is a dilator of kind Ω and y is an ordinal, then F ◦ (y + Id) is

of kind Ω.

(ii) If F is a dilator of kind Ω, if g ∈ I(y, y′), then the natural transfor-

mation E1
F ◦ (g + E1

Id) from F ◦ (y + Id) to F ◦ (y′ + Id) is of kind

Ω.

(iii) If U ∈ Ω I1(F,G), then the natural transformation U ◦ (E1
y + E1

Id)

from F ◦ (y + Id) to G ◦ (y + Id) is of kind Ω.

(◦ denotes composition; composition is defined by (F ◦ F ′)(x) =

F
(
F ′(x)

)
, (F ◦ F ′)(f) = F

(
F ′(f)

)
, (T ◦ T ′)(x) = T

(
T ′(x)

)
).

Proof. This result can be established by computing the equivalence re-

lation ∼F ◦ (y+Id)

0 . But a more direct proof can be obtained by means of

the characterization: F is of kind Ω iff F (0n) is of cardinality 0n (9.4.6),

because y + 0n = 0n, hence F (0n) =
(
F ◦ (y + Id)

)
(0n)... . 2

9.3.20. Definition.

(i) If F is a dilator of kind Ω, if y is an ordinal, define a dilator ∗yF by:

F ◦ (y + Id) = ∗
yF + F ′ for some F ′ connected .

(ii) If F is a dilator of kind Ω, if g ∈ I(y, y′), define ∗gF ∈ I1(∗yF,
∗
y′ F ) by:

E1
F ◦ (g + E1

Id) = ∗
gF + T ′ for some T ′ connected .

(iii) If T ∈ Ω I1(F,G), define ∗yT ∈ I1(∗yF,
∗
y G) by:

T ◦ (E1
y + E1

Id) = ∗
yT + T ′ for some T ′ connected .
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9.3.21. Definition.

(i) If F is a dilator of kind Ω, define a two- variable functor from ON2

to ON, ∂ SEP(F ), by

∗
y+1F (x) = ∗

yF (1 + x) + ∂ SEP(F )(x, y)

∗
g+EF1

(f) = ∗
gF (E1 + f) + ∂ SEP(F )(f, g) .

(ii) If T ∈ Ω I1(F,G), define a natural transformation ∂ SEP(T ) from

∂ SEP(F ) to ∂ SEP(G) by:

∗
y+1T (x) = ∗

yT (1 + x) + ∂ SEP(T )(x, y) .

(Such a definition is made possible because, for instance, if F ◦ (y +

1 + Id) = ∗
y+1F + F ′ and F ◦ (y + Id) = ∗

yF + F ′′ for some F ′ and F ′′

connected, then F ◦ (y + 1 + Id) = ∗
yF ◦ (1 + Id + F ′′ ◦ (1 + Id), hence

∗
y+1F = ∗

yF ◦ (1 + Id) + F ′′ for some F ′′′ (= ∂SEP(F )(·, y)).)

9.3.22. Theorem.

(i) Assume that F is a dilator of kind Ω; then

SEP(F )(x, y) = ∗
0F (x) +

∑
y′<y

∂ SEP(F )(x, y′)

SEP(F )(f, g) = ∗
0F (f) +

∑
y′<y

∂ SEP(F )(f, gy′) ,

where gy′ ∈ I
(
y′, g(y′)

)
is defined by gy′(z) = g(z) for all z < y′.

(ii) Assume that T ∈ Ω I1(F,G); then

SEP(T )(x, y) = ∗
0T (x) +

∑
y′<y

∂ SEP(T )(x, y′) .

Proof. See [5], 3.6.6. 2
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9.3.23. Remarks.

(i) ∗
yF (x), ∗gF (f) defines a binary functor from ON2 to ON; in fact

one can write: F+ = ∗
· F (·) + F ′ for some “connected” F ′. Similar

properties hold for ∗· T (·).

(ii) It is possible to write:

SEP(F ) = ∗
0F +

∫ ∂ SEP(F )(·, z)
∂z

SEP(T ) = ∗
0T +

∫ ∂ SEP(T )(·, z)
∂z

.

(iii) The idea of the proof of 9.3.22 is as follows: one restricts to the case

when F is connected; then ∗yF (x) is exactly the set of all elements

z = (z0 ; x0, ..., xn−1 ; y + x)F such that xq < y, with q = σFz0,n(0).

Then the set of points which are in ∗y+1F (x), but not in ∗yF (1 +x), is

exactly the set of all elementsz = (z0 ; x0, ..., xn−1 ; y+ 1 + x)F , with

xq = y... .
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9.4. Induction on dilators

9.4.1. Ordinal classes.

The class 0n of ordinals is well-ordered by the membership relation; the

Burali-Forti paradox states that 0n is not an ordinal, i.e. not a set (if 0n

were a set, then 0n ∈ 0n, and xn = 0n would be a s.d.s. for ∈ in 0n).

However, there is no reason against a reasonable use of 0n. In practice 0n

can be considered as an ordinal. A typical example is when F is a dilator:

then F (0n) can be defined by the usual direct limit process: 0n is the

direct limit of (x,Exx′), when x varies through 0n: the index “set” here

is a proper class... . Concretely F (0n) consists of all formal denotations

(z0 ; x0, ..., xn−1 ; 0n)F , with (z0, n) ∈ Tr(F ) and x0 < ... < xn−1, the or-

dering between t = (z0 ; x0, ..., xn−1 ; 0n)F and t = (z1 ; x′0, ..., x
′
m−1 ; 0n)F

is determined as usual from the relative orders of the xi’s and xj’s, see ??

p. 37. F (0n) is a class (in general proper) and is a well-order: this is the

reason why we shall speak of an ordinal class. In practice 0n can often

be “relativized”, i.e. replaced by some ordinal:

– very often 0n can be replaced by ℵ1: this measn that the only objects

that we acknowledge as ordinals are denumerable.

– In some cases 0n can even be replaced by admissible ordinals (ωck1 , or

the first stable σ0).

– In some situations 0n can even be replaced by any limit ordinal of the

form ωx.

Dilators yield a new approach to the question of proper classes (in the

context of ordinals): F enables us to compute the ordinal class F (0n) “in

function of 0n”: this is a dynamic theory of ordinal classes.

9.4.2. Definition.

The predecessor relation � between dilators is defined as follows:

(i) F � F +G when G 6= 0.

(ii) If F is of kind Ω, let G = SEP(F ); then Gy � F for all y ∈ 0n

(recall that Gy = G(·, y)).
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(iii) F � G and G� H imply F � H.

9.4.3. Theorem.

Let ∆ be the following functor (diagonal functor) from BIL to DIL:

(∆F )(x, x) = F (x, x), (∆F )(f, f) = F (f, f), (∆T )(x, x) = T (x, x); then

(i)
(
∆ SEP(F )

)
◦ (ω1+Id) = F ◦ (ω1+Id)

(ii)
(
∆ SEP(T )

)
◦ (E1

ω1+Id) = F ◦ (E1
ω1+Id)

when F and T are of kind Ω.

Proof. (i) means that, when F is a bilator, then F (x, x) = UN(F )(x) for

all x = ω1+x′ , F (f, f) = UN(F )(f, f) for all f = ωE1+f ′ . Define a func-

tion ϕx from F (x, x) to itself by: ϕx
(
(z0 ; x0, ..., xn−1 ; x ; y0, ..., ym−1)

)
F

=

(z0 ; y + x0, ..., y + xn−1 ; x ; y0, ..., ym−1)F with y = 0 if m = 0, y =

ym−1 + 1 otherwise. This definition is made possible because y < z and

y + x = x. Now observe that ϕx is a strictly increasing function: if t =

(z0 ; x0, ..., xn−1 ; x ; y0, ..., ym−1)F < (z1 ; x′0, ..., x
′
p−1 ; x ; y′0, ..., y

′
q−1)F =

u, then consider y = 0 if m = 0, y = ym−1 + 1 otherwise, y′ = 0 if

q = 0, y′ = y′q−1 + 1 otherwise. If y < y′, then (z0 ; y + x0, ..., y +

xn−1 ; x ; y0, ..., ym−1)F < (z1 ; y′+x′0, ..., y
′+x′p−1 ; x ; y′0, ..., y

′
q−1)F by gen-

eral properties of flowers; if y = y′, then

ϕx(t) = F (E0y + Ex,Ex)(t) < ϕx(u) = F (E0y + Ex,Ex)(u) .

Obviously rg(ϕx) = F (x), hence F (x, x) = UN(F )(x). In order to prove

that F (f, f) = UN(F )(f), it will be sufficient to prove the commutativity

of the diagram:

ϕx
F (x, x) F (x, x)

F (f, f) F (f, f)

F (x′, x′) F (x′, x′)
ϕx′

ϕx′(f, f)
(
(z0 ; x0, ..., xn−1 ; x ; y0, ..., ym−1)F

)
=(

z0 ; y′ + f(x0), ..., y′ + f(xn−1) ; x′ ; f(y0), ..., f(ym−1)
)
F

,
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with y′ = 0 if n = 0, y′ = f(ym−1) + 1 otherwise. On the other hand we

have:

F (f, f)ϕx
(
(z0 ; x0, ..., xn−1 ; x ; y0, ..., ym−1)F

)
=(

z0 ; f(y + x0), ..., f(y + xn−1) ; x′ ; f(y0), ..., f(ym−1)
)
F
,

with y = 0 if m = 0, y = ym−1 + 1 otherwise. If n = 0, then the two

expressions coincide. If m 6= 0, then we must show that f(ym−1 +1+xi) =

f(yn−1)+1+f(xi); but f(1) = 1 (because f = ωE1+f ′), hence it suffices to

prove that f is “linear”, i.e. that f(a+ b) = f(a) + f(b): this is immediate

if one looks at the Cantor Normal Forms of a and b.

(ii) means that, if F and G are bilators and T ∈ I1(F,G), then

T (x, x) = UN(T )(x). In order to prove this property, it will suffice to

show that ϕGx T (x, x) = T (x, x)ϕFx : this is left to the reader. 2

9.4.4. Remark.

9.4.3 expresses that UN and ∆ are very close to one another: they coin-

cide on ordinals of the form ω1+x′ and function of the form ωE1+f ′ .

9.4.5. Theorem.

Let F be a dilator; then the predecessors of F for � form a well-ordered

class of order type F (0n).

Proof. First observe that F (0n) is a well-order: if un = (zn ; yn0 , ..., y
n
pn−1 ; 0n)F

is a s.d.s. in F (0n), let y be an ordinal > all ordinals ynpn−1; then u′n =

(zn ; yn0 , ..., y
n
pn−1 ; y)F is a s.d.s. in F (y)... . We prove the theorem by in-

duction on F (0n):

– If F is of kind 0 (i.e. F (0n) = 0), then F has no predecessor.

– If F is of kind 1, write F = F ′ + 1, and F (0n) = F ′(0n) + 1; the prede-

cessors of F for � are F ′ and its predecessors; the induction hypothesis

yields that the class of all predecessors of F ′ is a well-order of order type

F ′(0n), hence the class of all predecessors of F is a well-order of order

type F (0n).

– If F is of kind ω, write F =
∑
i<x

Fi with x limit; let Gi =
∑
i′<i

Fi; then
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F ′ � F iff F ′ � Gi for some i (observe that Gi � Gj when i < j);

the induction hypothesis yields that the class of predecessors of Gi is a

well-order of order type Gi(0n) for all i, hence the class of predecessors

of F is a well-order of order type sup
i

Gi(0n) = F (0n).

– If F is of kind Ω, then F ′ � F iff F ′ � SEP(F )y for some y ∈ 0n;

observe that SEP(F )y �
=

SEP(F )y
′

when y ≤ y′. The function y ;

SEP(F )(0n, y) is strictly increasing for y ≥ n, hence SEP(F )(0n, y) <

SEP(F )(0n, 0n); but SEP(F )(0n, 0n) = F (0n) by 9.4.3 (because 0n =

ω1+0n; the theorem still holds when x is not a set). Hence we can apply

the induction hypothesis which yields that the class of predecessors of

SEP(F )y is a well-order of order type SEP(F )(0n, y). Hence the union

of all these mutually compatible well-orders is a well-order of order type

F (0n) = SEP(F )(0n, 0n) = sup
y∈0n

SEP(F )(0n, y). 2

9.4.6. Remark.

We have obtained the following characterization of the kind of a dilator:

(i) F is of kind 0 iff F (0n) = 0.

(ii) F is of kind 1 iff F (0n) is a successor.

(iii) F is of kind ω iff F (0n) is limit and of cofinality < 0n, i.e. the

supremum of a sequence of length < 0n (i.e. indexed by a set).

(iv) F is of kind Ω iff F (0n) is limit and of cofinality 0n, i.e. the supremum

of a sequence of length 0n.

In fact, in this characterization, 0n can be replaced by any regular

cardinal > F (ω). In practice, F (ω) is often denumerable, hence one can

replace 0n by ℵ1: F will be of kind 0, 1, ω or Ω when F (ℵ1) is 0, successor,

of cofinality ω, of cofinality ℵ1. This is the origin of our terminology, since

Ω is the obsolete way of denoting ℵ1.

9.4.7. Theorem Induction on dilators (Girard, [5]).

Let P be a property defined on dilators, and assume that:
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(i) P (0).

(ii) P (F )→ P (F + 1).

(iii) If x is limit, and if Fi 6= 0 for all i < x, and if for all y < x, P
(∑
i<y

Fi
)
,

then P
(∑
i<x

Fi
)
.

(iv) If F is of kind Ω and if for all y ∈ 0n, P (SEP(F )y), then P (F ).

Then P (F ) holds for all F .

Proof. If ¬P (F ), then one constructs, using (i)–(iv), a sequence Fn such

that ¬P (Fn), and the values Fn(0n) are strictly decreasing... . 2

9.4.8. Remark.

The well-foundedness of the predecessor relation can be obtained from a

more general result: when F , G are functions from 0n to 0n, let F <∞ G

mean that for some a ∈ 0n, F (x) < G(a+ x). Then

9.4.9. Theorem.

<∞ is a well-founded order relation.

Proof. First observe that <∞ is an order relation: if F (x) < G(a + x) for

all x ∈ 0n and G(x) < H(b+x) for all x ∈ 0n, then F (x) < H(b+a+x) for

all x ∈ 0n. Assume that Fn is a s.d.s. for <∞; then Fn+1(x) < Fn(an + x).

Let b be a limit ordinal of the form ωx, and strictly greater than all an’s;

then Fn+a(b) < Fn(an + b) = Fn(b), hence Fn(b) is a s.d.s. in 0n... . 2
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End of the remark.

Observe that, when F � G, we have F <∞ G (here F andG are considered

as functions from 0n to 0n): if G = F+F ′, with F ′ 6= 0, then F ′(x) > 0 for

all x > n for a certain n. Then F (x) ≤ F (n+x) < G(n+x) for all x ∈ 0n.

If G is of kind Ω and F = SEP(G)y, then F (x) = ‖G(x, y)‖ ≤ G(y + x);

in fact, if (z0, n) ∈ Tr(G) is an element of the topmost equivalence class

modulo ∼G0 (for the order ≤G / ∼G0 ), then the image of G(x, y) under

G(Eyy+ω+1 + E1) is bounded above by (z0 ; 0, ..., q− 1, ω, ω+ 1, ..., ω+n−
q−1 ; y+ω+1+x)G, hence F (x) < G(y+ω+1+x). The well-foundedness

of <∞ implies therefore the well-foundedness of �.

9.4.10. Remark.

The task achieved in these sections is the following:

(i) The idea is to express an induction principle on the well-ordered

class F (0n). Of course such a principle could be directly formulated

by considering denotations (z0 ; x0, ..., xn−1 ; 0n)F . The disadvantage

of this formulation is that (z0 ; x0, ..., xn−1 ; 0n)F denotes a point in

F (0n), whereas in practice, we would rather need “a functor”. The

problem is therefore to “fill” the space F (0n) with dilators, that we

shall style as the predecessors of F .

(ii) Some of the predecessors of F are already known, namely the dilators

F ′ such that F ′ < F (9.1.4). Essentially, the relation < is sufficient

to determine the immediate predecessors of dilators of kinds 0, 1 or

ω.

(iii) The essential difficulty is to find the predecessors of a connected dila-

tor of kind Ω: the idea is to proceed as follows: if z < F (0n), i.e.

z = (z0 ; x0, ..., xn−1 ; 0n)F , let a = xn−1 + 1; then Fa = F ◦ (a+ Id)

has the following property: if f ∈ I(0n, 0n), then Fa(f)(z) = z,

hence Fa maps z into z. Then the idea is to take as predeces-

sor of F , corresponding to z, the dilator G defined by: G(x) =

(z0 ; x0, ..., xn−1 ; a+x)F , and, when z < G(x), G(f)(z) = Fa(f)(z) =

F (Ea + f)(z). Unfortunately, this definition does not give a linear

order, and we are led to (slightly) modigy this picture, and this yields
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SEP: when F (0n) is of cofinality 0n, one constructs a “fundamental

sequence” F̌ (x), as follows: F̌ (x) is the smallest z < F (0n) such that

the values F (Ex + f)(z) are cofinal in F (0n), when f ∈ I(0n, 0n).

The sequence F̌ (x) is strictly increasing for x ≥ n (for some in-

teger n), and continuous at limit points; if one associates to each

F̌ (x) a dilator Gx by the process explained above (use the fact that

z′ < z → F (Ex+f)(z′) < z); then Gx is essentially a restriction (i.e.

a predecessor for <) of F ◦ (x+ Id). The final solution is the dilator

SEP(F )(·, y) which coincides with G1 between F̌ (0) and F̌ (1), ... ,

with Gx+1 between F̌ (x) and F̌ (x+ 1).

F̌ (x) F̌ (x+ 1) F̌ (y)

if z ∈ [F̌ (x), F̌ (x + 1)[, then SEP(F )(·, y) coincides on z with F ◦
(y + 1 + Id)... . (Of course F̌ (x) = SEP(F )(0n, x)... .)

This construction was expressed in more abstract terms in The-

orem 9.3.22; F̌ (y) =
∗
y F (0n), etc... .

9.4.11. Examples.

(i) If F is a flower then the predecessors of F are constants; since SEP(F )

(x, y) = F (y), SEP(F )(f, g) = g it is clear that SEP(F )(·, y) = F (y).

Hence, if F and G are two distinct non constant flowers, then F and

G are not comparable for the relation �.

(ii) For instance the predecessors of Id are the constants x̄, the predeces-

sors of Id + Id are the x’s and the Id + x’s, etc... . In some sense Id is

what is “after” having exhausted all ordinals (but Id is not the only

such point: any non constant flower would do as well). Once again,

the superiority of our approach to this question w.r.t. the traditional

conception of a proper class mainly rests upon the following facts:



152 9. Dilators as well-ordered classes

– the “actual” 0n is not needed.

– The “finitary” control.

But of course it cannot be expected that all proper classes are of

the form F (0n)... .
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9.5. Generalized products

9.5.1. Definition.

A flower F is nice iff for all x, y, z ∈ 0n, for all f ∈ I(x, y):

z < x→ F (z) < F (x) ∧ F (f)
(
F (z)

)
= F

(
f(z)

)
.

9.5.2. Remark.

If F is nice, then T (x)(z) = F (z) defines a natural transformation from Id

to F , denoted by ξF .

9.5.3. Proposition.

F is nice iff F enjoys 9.5.1 for all x, y, z < ω.

Proof. Left to the reader. 2

9.5.4. Remark.

One would easily show the equivalence:

F nice↔ dF (y)

dy
= 1 +G for some G .

(The 1 in 1 +G corresponds to the points F (x)... .)

9.5.5. Definition.

The following data define a category FLn:

objects: nice flowers.

morhpisms from F to G: the set I1
n(F,G) of all nice morphisms from F

to G, i.e. all T ∈ I1(F,G) such that

T (x)
(
F (z)

)
= G(z) for all z < x ∈ 0n .

9.5.6. Theorem.

Assume that (Fi, Tij) is a direct system in FLn, with the following property:

if i � j, then Fj = Fi ◦ Fij for some Fij in FLn and Tij = E1
Fi
◦ ξFij ; ◦ is the

functor composition; (F ◦ G)(x) = F
(
G(x)

)
, (F ◦ G)(f) = F

(
G(f)

)
,

(T ◦ U)(x) = T
(
U(x)

)
.

Then:
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(i) (Fi, Tij) has a direct limit in FLn, (F, Ti).

(ii) if Ci = {Fi(x) ; x ∈ 0n}, if C = {F (x) ; x ∈ 0n} then C =
⋂
i∈I

Ci.

Proof. (i) can be replaced by (i)′ and (i)′′:

(i)′
(
Fi(x), Tij(x)

)
has a direct limit in ON for all x ∈ 0n.

(i)′′ if z < x ∈ 0n, then Ti(x)
(
Fi(z)

)
= F (z).

We define by induction strictly increasing functions fi from 0n to 0n,

as follows:

fi(0) = sup
j�i

Fij(0)

fi(x+ 1) = sup
j�i

Fij(fj(x) + 1)

fi(x) = sup
y<x

fi(y) if y is limit .

We prove by induction on x that i � j → Fij
(
fj(x)

)
= fi(x):

+ fi(0) = sup
k�j

(
Fij
(
Fjk(0)

))
; but Fij is topologically continuous, (9.2.3),

hence fi(0) = Fij
(

sup
k�j

(
Fjk(0)

))
= Fij

(
fj(0)

)
.

+ The cases x successor and x limit are similar... .

We now define functions gix from Fi(x) to 0n by: gix
(
(a ; x0, ..., xn−1)Fi

)
=

(
a ; fi(x0), ..., fi(xn−1)

)
Fi

. gix is strictly increasing; moreover assume

that zi = (a ; x0, ..., xn−1)Fi and let zj = Tij(x)(zi); hence zj = (b ; x0, ...,

xn−1)Fj for some b and also zj =
(
a ; Fij(x0), ..., Fij(xn−1)

)
Fi

(since by

hypothesis Tij = E1
Fi
◦ ξFij); then we get:

gjx(zj) =
(
b ; fj(x0), ..., fj(xn−1)

)
Fj

=

=
(
a ; Fij

(
fj(x0)

)
, ..., Fij

(
fj(xn−1)

))
Fi

=

=
(
a ; fi(x0), ..., fi(xn−1)

)
F

= gix(zi) .
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We have shown that gix = gjxTij(x), and from that it follows that(
Fi(x), Tij(x)

)
has a direct limit in ON (8.1.21). This establishes (i)′.

(i)′′ is an immediate consequence of the following lemma:

9.5.7. Lemma.

If (Fi, Tij) is a direct system in FLn such that, considered as a system in

DIL, we have: (F, Ti) = lim
−→

(Fi, Tij), then (F, Ti) is the direct limit of

(Fi, Tij) in FLn (i.e. FLn is “closed” in DIL).

Proof. The first thing (left to the reader) is to verify that F is a flower and

that x < y → F (x) < F (y) ! Then, given z < x ∈ 0n, choose i such that

F (z) ∈ rg
(
Ti(x)

)
hence F (z) = Ti(x)

(
ai(z)

)
; F (z) is the smallest object

of the form (a ; x0, ..., xm−1)F with m 6= 0 and xm−1 ≥ z, and necessarily

ai(z) is the smallest object (b ; x0, ..., xm−1)Fi , with m 6= 0 and xm−1 ≥ z,

i.e. ai(x, z) = Fi(x, z) (see 9.2.4 (iv)). This shows that Ti(x)
(
Fi(z)

)
=

F (z). Hence F (f)
(
F (z)

)
= F (f)Ti(x)

(
Fi(z)

)
= Ti(y)Fi(f)

(
Fi(z)

)
=

Ti(y)
(
Fi
(
f(z)

))
= F

(
f(z)

)
: F and the Ti’s are nice. 2

Let C(z) be the zth element of
⋂
i

Ci; we establish (ii) by providing

that C(z) ≤ F (z) and F (z) ≤ C(z):

+ F (z) = lim
−→

∗ (
Fi(z), Tij(x)

)
= lim
−→
K

∗ (
Fk
(
Fki(z)

)
, Fk

(
Fki
(
ξFij(z)

)))
=

Fk
(

lim
−→
K

∗ (
Fki(z), Fki

(
ξFij(z)

)))
with K = {i ; i ∈ I ∧ i � k}. We have

established that F (z) ∈ rg(Fk); hence F (z) ∈ ⋂
i

Ci, and so: F (z) ≥

C(z).

+ Conversely, we show that C(z) = Fi
(
fi(z)

)
for all i ∈ I, by induction on

z: first remark that:

i � j → Fi
(
fi(z)

)
= Fi

(
Fij
(
fj(z)

))
= Fj

(
fj(z)

)
;

this establishes that the value Fi
(
fi(z)

)
is independent of i; hence it
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will be sufficient to show that C(z) = Fi
(
fi(z)

)
for some i ∈ I ! The

cases z = 0 and z limit are left to the reader, and we only prove the

property for z + 1: if for all i ∈ I, C(x, z) = Fi
(
fi(z)

)
, observe that

i � j → fi(z) ≥ fj(z) (because fi(z) = Fij
(
fj(z)

)
and z ; Fij(z) is

strictly increasing) hence, for some k ∈ I, fi(z) takes a constant value t

for all i � k and we have, if k � i � j:

t = fi(z) = Fij
(
fj(z)

)
= Fij(t) .

Let C∗k =
⋂
j�k

rg
(
Fkj(·)

)
; obviously

a ∈ C ↔ ∃u
(
u ∈ C∗k ∧ a = Fk(u)

)
.

From this it follows that C(z+1) = Fk(u), where u is the smallest element

of C∗k strictly greater than t; the expression of u is easy to obtain:

u = sup
j�k

Fkj(t+ 1) = sup
j�k

Fkj(fj(z) + 1) = fk(z + 1) .

Hence C(z + 1) = Fk
(
fk(z + 1)

)
.

Now observe that Ti(x)
(
Fi(z)

)
≤ gix

(
fi(z)

)
; but the definition of gix

yields gix
(
Fi(z)

)
= Fi

(
fi(z)

)
, and this gives us: F (z) = Ti(x)

(
Fi(z)

)
≤

gix
(
Fi(z)

)
= Fi

(
fi(z)

)
= C(z). 2

9.5.8. Remark.

A traditional ordinal technique is the use of so-called normal functions: a

normal function is a function from 0n to 0n which is strictly increasing and

topologically continuous. If F is a nice flower, then the function x ; F (x)

is normal, but the converse is false, i.e. a normal function is not necessarily

induced by a nice flower (for instance x ; ℵx). One traditionally considers

the following operations on normal functions:

(i) composition: if F and G are normal, so is F ◦ G.
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(ii) intersection: if (Fi)is a family of normal functions such that: i ≤
j → rg(Fi) ⊂ rg(Fi), then the set

⋂
i

rg(Fi) is the range of a normal

function.ss

(In the literature (i) is often replaced by (i)′: (i)′ fixed point: if F is

normal, so is the function F ′ whose range is the class {z ; F (z) = z}.
In fact (i)′ can be obtained from (i) and (ii): let F n = F ◦ ... ◦ F (n

times); then rg(Fm) ⊂ rg(F n) when n ≤ m, and if rg(F ′) =
⋂
n

rg(F n),

it is plain that rg(F ′) = {z ; z = F (z)}; so the composition is more general

than the fixed point... .)

Constructions (i) and (ii) can be carried out in the more delicate context

of nice flowers: (i) is just composition of functors, whereas (ii) requires,

in order that one can apply 9.5.6, that Fj = Fi ◦ Fij for some Fij, when

i � j. A practical consequence is that all constructions involving normal

functions can be adapted, mutatis mutandis, to nice flowers; of course such

an adaptation has the advantage that we have a “finitary” control on the

construction, whereas this is not the case for normal function... .

9.5.9. Definition.

Assume that (Ft)t<x is a family of nice flowers; then one defines a new

nice flower
∏
t<x

Ft, the generalized product of the family (Ft); if (Gu)u<y

is another such family, if f ∈ I(x, y) and Tt ∈ I1
n(Ft, Gf(t)) for all t < x,

then one defines
∏
t<f

Tt ∈ I1
n

(∏
t<x

Ft,
∏
u<y

Gu

)
as follows: (the definition is

by induction on y)

(i) If x = y = 0, then∏
t<x

Ft =
∏
u<y

Gu = Id,
∏
t<f

Tt = E1
Id

(ii)
∏

u<y+1

Gu =
(∏
u<y

Gu

)
◦ Gy∏

t<f+E1

Tt =
(∏
t<f

Tt
)
◦ Tx∏

t<f+E01

Tt =
(∏
t<f

Tt
)
◦ ξGy
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(iii)
∏
u<y

Gu = lim
−→
y′<y

∗ ( ∏
u<y′

Gu,
∏

u<Ey′y′′

E1
Gu

)
∏

t<
⋃
i

fi

Tt = lim
−→

(∏
t<fi

Tt
)

when y is a limit ordinal.

9.5.10. Example.

Assume that x = 3, y = 7, and that f(0) = 2, f(1) = 3, f(2) = 5; then

∏
t<3

Ft = Id ◦ Id ◦ F0 ◦ F1 ◦ Id ◦ F2 ◦ Id

| | | | | | |∏
t<f

Tt = ξG0 ◦ ξG1 ◦ T0 ◦ T1 ◦ ξG4 ◦ T2 ◦ ξG6

↓ ↓ ↓ ↓ ↓ ↓ ↓∏
u<7

Gu = G0 ◦ G1 ◦ G2 ◦ G3 ◦ G4 ◦ G5 ◦ G6

9.5.11. Theorem.

Definition 9.5.9 is sound.

Proof. We show by induction on y that
∏
u<y

Gu and
∏
t<f

Tt exist, and that

the following associativity property holds: if y = y′+ y′′, f = f ′+ f ′′, then

(if f ′ ∈ I(x′, y′))∏
u<y

Gu =
∏
u<y′

Gu ◦
∏
u<y′′

Gy′+u

and ∏
t<f

Tt =
∏
t<f ′

Tt ◦
∏
u<f ′′

Tx′+t

(i) If y = 0, everything is trivial.

(ii) If the properties hold for y, they hold for y + 1.

(iii) If y is limit, then the system
( ∏
u<y′

Gu,
∏

u<Ey′y′′

EGu

)
y′<y′′<y

enjoys

the hypotheses of 9.5.6: this is an immediate consequence of the
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associativity property applied to y′′ < y. From this, the existence of

the
∏
u<y

Gu and
∏
t<f

Tt is ensured. It remains to prove associativity;

assume that y = y′ + y′′ and one can suppose that y′′ 6= 0; one can

write

∏
u<y

Gu = lim
−→
z<y′′

∗ ( ∏
u<y′+z

Gu,
∏

u<Ey′+Ezz′

E1
Gu

)
=

lim
z<y

∗ ( ∏
u<y′

Gu ◦
∏
u<z

Gy′+u,
∏

u<Ey′

E1
Gu ◦

∏
u<Ezz′

E1
Gy′+u

)
=

(this equality uses the fact that ◦ preserves direct limits,

see 9.5.12)∏
u<y′

Gu ◦ lim
−→
z<y′′

∗ (∏
u<z

Gy′+u,
∏

u<Ezz′

E1
Gy′+u

)
=

=
∏
u<y′

Gu ◦
∏
u<y′′

Gy′+u .

Associativity for natural transformations is proved in the same way.

2

9.5.12. Theorem.,∏
is a functor from the category of sequences FLON

n to FLn;
∏

preserves

direct limits and pull-backs.

Proof. The verification is tedious and straightforward. In particular, this

means that the functor ◦ from FL2
n to FLn preserves direct limits and

pull-backs. This is a particular case of

9.5.13. Proposition.

The functor ◦ from DIL2 to DIL preserves direct limits and pull-backs.

Proof. Preservation of direct limits is proved as follows: given (a, n) ∈
Tr(F ◦ G), we show the existence of T , F ′, U , G′, such that T ∈ I1(F ′, F ),

U ∈ I1(G′, G), with F ′ and G′ finite dimensional, and (a, n) ∈ rg
(

Tr(T ◦
U)
)
; a = (a ; 0, ..., n − 1 ; n)F◦G =

(
b ; x0, ..., xm−1 ; G(n)

)
F

; assume that
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xi = (ci ; p
0
i , ..., p

ki−1
i ; n)G; if one defines T by rg

(
Tr(T )

)
= {(b ; m)} and

U by rg
(

Tr(U)
)

= {(ci ; ki) ; i < m}, then (a, n) ∈ rg
(

Tr(T ◦ U)
)
... .

We establish preservation of pull-backs: with the notations just intro-

duced, one sees that (a, n) ∈ rg
(

Tr(Ti ◦ Ui)
)

iff (b,m) ∈ rg
(

Tr(Ti)
)

and (cj, kj) ∈ rg
(

Tr(Ui)
)

for all j < m; from that rg
(

Tr(T3 ◦ U3)
)

=

rg
(

Tr(T1 ◦ U1)
)
∩ rg

(
Tr(T2 ◦ U2)

)
when T3 = T1 ∧T2 and U3 = U1 ∧U2.2

We sketch a proof of 9.5.12: preservation of direct limits essentially means

that, given (a, n) ∈ Tr
(∏
t<x

Ft
)
, it is possible to find a family (Gi)i<n of fi-

nite dimensional nice flowers, a function f ∈ I(n, x), and Ti ∈ I1
n(Gi, Ff(i))

such that (a, n) ∈ rg
(

Tr
(∏
i<f

Ti
))

; we argue by induction on x:

+ The case x = 0 is perfectly trivial.

+ Assume that the property holds for x, and let (a, n) be a point in

Tr
( ∏
t<x+1

Ft
)
; then one can associate to (a, n) a point (b,m) in Tr

(∏
t<x

Ft
)

and apsoints (ci, ki) in Tr(Fx) (i = 0, ...,m − 1), by the construction of

9.5.13. We apply the induction hypothesis: (b,m) ∈ rg
(

Tr
(∏
i<f

Ti
))

for

some f ∈ I(p, x), with rg
(

Tr(Ti)
)

finite for all i < p; define Tp and Gp

by Tp ∈ I1(Gp, Fx) and rg
(

Tr(Tp)
)

= {(c0, k0), ..., (cm−1, km−1)}. Then

(a, n) ∈ rg
(

Tr
( ∏
i<f+E1

Ti
))

.

+ If x is limit,
(∏
t<x

Ft,
∏

t<Ex′x

E1
Ft

)
= lim
−→
x′<x

∗ (∏
t<x′

Ft,
∏

t<Ex′x′′

E1
Ft

)
and this im-

plies that (a, n) = Tr
( ∏
t<Ex′x

E1
Ft

) (
(b ; m)

)
for some x′ < x and (b ; m) ∈

Tr
(∏
t<x′

Ft
)
. Assume now that (induction hypothesis) the function f ∈

I(n, x′), the finite dimensional Gi’s and Ti ∈ I1(Gi, Ff(i)) are such that

(b,m) ∈ rg
(

Tr
(∏
i<f

Ti
))

; if g = Ex′xf , then clearly (a, n) ∈ rg
(

Tr
(∏
i<g

Ti
))

.

In fact the function f , the family Ti which have been constructed above

have the following property (analogue of the normal form theorem): if

(a, n) ∈ rg
(∏
t<g

Ut
)
, then:
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+ rg(f) ⊂ rg(g).

+ If f(t) = g(t′), then rg
(

Tr(Tt)
)
⊂ rg

(
Tr(Ut′)

)
and from this, preservation

of pull-backs easily follows. 2

9.5.14. Example.

The traditional example from the theory of normal functions is the Veblen

hierarchy:

V0 = Id (the identity function from 0n to 0n)

Vα+1 = Vα ◦ ϑ (where ϑ is a fixed normal function)

Vλ, for λ limit, enumerates the intersection of the ranges of

the function Vλ′ , for λ′ < λ.

This hierarchy was introduced in [84]; the traditional presentation is V ′0 =

ϑ, V ′α+1 enumerates the fixed points of V ′α, and for λ limit V ′λ enumerates

the intersection of the range of the V ′λ′ , λ
′ < λ; V and V ′ are connected

as follows: V ′α = Vωα ; if α = ωβ1 + ... + ωβn with β1 ≥ ... ≥ βn, then

Vα = V ′β1
◦ ... ◦ V ′βn ; hence the two definitions are trivial variants one of

another. However, the formal properties of Vα are more satisfactory, and

it is the reason why we modify the traditional definition on a minor point.)

In practice, ϑ will be (defined by) a nice flower; hence it makes sense

to write

Vα =
∏
t<a

ϑ (hence V ′α =
∏
t<ωα

ϑ) .

This means that Vα is the product of “α copies” of ϑ. But also, by

9.5.12. α ; Vα, f ;
∏
t<f

E1
ϑ, defines a functor from ON to FLn, preserving

direct limits and pull-backs, and of course such a functor can be identified

with a functor V from ON2 to ON:

V (α, β) = Vα(β) ; V (f, g) = Vf (g) =
∏
t<f

E1
ϑ .

The functor V is a bilator, and is such that V (f, g)
(
V (x, z)

)
= V

(
x′,

g(z)
)

when f ∈ I(x, x′), g ∈ I(y, y′) and z < y.
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More details on this construction can be found in [85]. Observe that the

Veblen hierarchy appears, in this framework, as a finitistic construction. In

fact, we shall extend this construction, and the result will be the functor Λ.

9.5.15. Remark.

Our task is now to transfer all our concepts to bilators, using the fact that

a bilator can be viewed as a functor from ON to FL:

(i) The category BILn is defined by:

objects: nice bilators, i.e. bilators such that y < y′ → F (x, y) <

F (x, y′)

and F (f, g)
(
F (x, z)

)
= F

(
x′, g(z)

)
, when f ∈ I(x, x′), g ∈ I(y, y′),

z < y;

morphisms from F to G: the set Ibn(F,G) of all T ∈ Ib(F,G) such

that T (x, y)
(
F (x, z)

)
= G(x, z) for all x, y, z with z < y.

(ii) The semi-product is a functor from BIL2
n to BILn

(F ◦s G)(x, y) = F
(
x,G(x, y)

)
(F ◦s G)(f, g) = F

(
f,G(f, g)

)
(T ◦s U)(x, y) = T

(
x, U(x, y)

)
.

One easily checks that ◦s preserves direct limits and pull-backs

(remark that, in BILn, pull-backs always exist).

(iii) Generalized semi-products of nice bilators are defined in a way akin

to 9.5.9; we use Π instead of
∏

to indicate that we are working with

semi-products.

All results concerning nice flowers, products and generalized products,

can be adapted, mutatis mutandis, to nice bilators, semi-products, and

generalized semi-products; the idea is to use the identification between

BILn and the category of functors from ON to BILn preserving direct

limits and pull-backs. The reader will find in [5], Section 5.3, a detailed

definition of these concepts for bilators.
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9.6. The functor Λ

Λ is a kind of exponential, which transforms sums into (semi-) products;

Λ is a functor from DIL to BILn, preserving direct limits and pull-backs.

In fact, since BILn can be identified with a subcategory of DIL (by means

of the unifying functor UN), then Λ can also be viewed as a functor from

DIL to itself; then Λ is a ptyx of type (O→ O)→ (O→ O) (see Chapter

12). When we say that Λ is a kind of exponential, this suggests that Λ is

akin to the familiar ordinal exponential (e.g. the dilator 2Id): in fact we shall

see that the formula which expresses that Λ is a ptyx of the appropriate

type, i.e. that Λ maps dilators on dilators, is formally equivalent to the

Π1
1-comprehension axion; (see Sec. 1.1.6) and recall that the fact that 2Id

is a dilator (i.e. that 2X is a well-order when X is a well-order) is formally

equivalent to (Σ0
1 − CA)∗ (see Sec. 5.4). Hence, the analogy with oridinal

exponentiation will be enhanced by this result.

Technically speaking, the main feature in the definition of Λ is the use

of induction on dilators; to be more precise, induction on dilators is not

necessary in the definition of Λ, but only in the proof of the soundness of

the definition, namely that Λ maps dilators on nice bilators ... this is a

very familiar situation.

In the sequel, we shall encounter many Λ-like objects, for instance:

(i) Variants of Λ based upon iteration (9.B.3).

(ii) Variants of Λ based upon neighbouring concepts such as rungs and

ladders (annex 9.A).

(iii) The functor that performs cut-elimination in Chapter 11, which is

also very close to Λ.

In fact Λ is a “civilized” version of Bar-recursion of type 2, just as

induction on dilators is a “civilized” version of Bar-induction of type 2.

9.6.1. Definition.

One defines a functor Λ from DIL to BILn, as follows:

(i) If G =
∑
t<y

Gt, with Gt connected for all t, then
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ΛG = Π
t<y

ΛGt .

If T ∈ I1(F,G) and F =
∑
t<x

Ft, with Ft connected for all t, if f ∈

I(x, y) and the family Tt ∈ I1(Ft, Gf(t)) is such that T =
∑
t<f

Tt, then

ΛT = Π
t<f

ΛTt .

(ii) Λ1 = Id + Id (hence ΛE1 = Eb
Id+Id); strictly speaking, Id + Id is a

dilator; what we denote by Id + Id is the bilator SEP(Id + Id), i.e.

the bilator sum; this kind of abuse of notations will be frequent... .

(iii) If G is connected and 6= 1, if f ∈ I(x, x′), g ∈ I(y, y′), then write

SEP(G)(·, y) =
∑
t<y

tG SEP(G)(·, g) =
∑
t<g

gtG

with gtG = I(tG,g(t) G): with the notations of 9.3.22, tG is ∂SEP(G)

(·, t) and gtG is ∂SEP(G)(·, gt); then

(ΛG)(x, y) =
(

Π
t<y

(
1 + ΛtG))(x, 0)

(ΛG)(f, g) =
(

Π
t<g

(
Eb

1 + ΛgtG)
)
(f,E0) .

If F is connected and T ∈ I1(F,G), then write SEP(T )(·, y) =∑
t<Ey

tT (hence tT = ∂SEP(T )(·, t)); then

(ΛT )(x, y) =
(

Π
t<Ey

(
Eb

1 + ΛtT )
)
(x, 0) .

9.6.2. Theorem.

Definition 9.6.1 is sound; more precisely there exists one and only one

functor Λ from DIL to BILn which enjoys 9.6.1 (i)–(iii): furthermore,

this functor has the following features (equivalent to 9.6.1 (i)–(iii)):



The functor Λ 165

(i) Λ is a functor from DIL to BIL: more precisely if G is a dilator,

ΛG is a bilator; if T ∈ I1(F,G), ΛT ∈ Ib(ΛF,ΛG); Λ1
G = Eb

ΛG
;

Λ(TU) = (ΛT )(ΛU).

(ii) Λ0 = Id ΛE1
0 = Eb

Id .

(iii) Λ1 = Id + Id ΛE1
1 = Eb

Id+Id .

(iv) If T ∈ ΩI1(F,G), with F and G connected, then

(ΛG)(x, y) =
(

Π
t<y

(1 + ΛtG)
)
(x, 0)

(ΛG)(f, g) =
(

Π
t<g

(Eb
1 + ΛgtG)

)
(f,E0)

(ΛT )(x, y) =
(

Π
t<Ey

(Eb
1 + ΛtT )

)
(x, 0) .

(v) Λ(F ′ + F ′′) = (ΛF ′) ◦s (ΛF ′′)

Λ(T ′ + T ′′) = (ΛT ′) ◦s (ΛT ′′) .

(vi) (ΛE1
0F )(x, y)(z) = (ΛF )(x, z) .

(vii) Λ preserves direct limits.

(viii) Λ preserves pull-backs.

Proof. Assume that we have found a solution Λ of (i)–(viii); then this Λ

is a solution of 9.6.1:

9.6.1 (i): by induction on y (in fact, using the fact that Σ preserves direct

limits, one can prove the result without using induction on y: the idea is

to prove the result for y finite, and then to extend it by direct limits...); if

y = 0 apply 9.6.2 (ii); if y = y′ + 1, then G = G′ +Gy′ , with G′ =
∑
t<y′

Gt;

the induction hypothesis yields ΛG′ = Π
t<y′

ΛGt, hence, by 9.6.2 (v) we

obtain:

ΛG =
(

Π
t<y′

ΛGt

)
◦s ΛGy′ = Π

t<y

ΛGt
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the case of morphisms is similar (one uses 9.6.2 (vi) which can be read as:

ΛE1
0F = ξbΛF

); if y is limit, then using 9.6.2 (vii), one gets

ΛG = lim
−→
y′<y

∗ (
Λ
∑
t<y′

Gt,ΛE1∑
t<y′ Gt

∑
,t<y′′ Gt

)
;

using the induction hypothesis, the limit is equal to

lim
−→
y′<y

∗ (
Π
t<y′

ΛGt, Π
t<Ey′y′′

EΛGt

)
= Π

t<y

ΛGt .

The case of morphisms is similar.

9.6.1 (ii) is exactly 9.6.2 (iii).

9.6.1 (iii) is exactly 9.6.2 (iv).

Finally, observe that 9.6.2 (vi) ensures that Λ is a functor from DIL into

BILn (and not only BIL): ΛE1
0F = ξbΛF

, hence ΛF is nice; if T ∈ I1(F,G),

then TE1
0G, and this means that (9.6.2 (i)) ΛTξbΛF

= ξbΛG
: so ΛT is nice.

On the other hand, observe that, if there is a functor satisfying 9.6.1

(i)–(iii), then it is clearly unique. Hence, it remains to construct a functor

Λ enjoying (i)–(viii); we shall proceed as follows: given a dilator H, define

a subcategory DIL � H as follows: F is an object of DIL � H iff

∃H ′(H ′ � H and I1(F,H ′) 6= ∅), the morphisms in DIL� H being given

by I1(F,G) as in DIL (i.e. DIL � H is a full subcategory of DIL). We

also introduce DIL�H = DIL� H + 1.

We show, by induction on H, the existence of a unique functor ΛH ,

(abbreviated as Λ) from DIL� H to BIL enjoying the relativization of

(i)–(viii) to DIL� H. When F is in DIL� H, let us denote by h(F )

the smallest H ′ (modulo �) such that I1(F,H ′) 6= ∅, H ′ varying through

the class of all predecessors of H + 1 (do not forget that this class is a

well-roder!). Then, when T ∈ I1(F,G), we shall use the notation h(T ) for

h(G). The proof splits into five cases:

9.6.3. H is of kind 0.

If H = 0, then DIL� H contains exactly one object: 0, and one mor-

phism: E1
0. The Λ0 = Id, ΛE1

0 = Eb
Id defines a functor enjoying (i)–(viii)

relativised to DIL� 0.
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9.6.4. H = 1.

DIL�H consists of two objects: 0 and 1, and three morphisms, namely

E1
0, E1

1, E1
01. We define Λ1, ΛE1

01, ΛE1
1 by means of (iii) and (vi). We

establish that the relativizations of (i)–(viii) hold:

(i) (ΛT )(ΛU) = Λ(TU): assume that h(T ) = 1; then either T = E1
1

and TU = U (hence (ΛT )(ΛU) = E1
Id+Id(ΛU) = ΛU = Λ(TU)), or

U = E1
0, and TU = T , hence

(ΛT )(ΛU) = (ΛT )ΛE1
Id = ΛT = Λ(TU) .

(ii), (iii) and (iv) are trivially fulfilled.

(v) If F = F ′ + F ′′ is an object of DIL� 1, then one of F ′ and F ′′ is

0, so one of ΛF ′ and ΛF ′′ is equal to Id: so ΛF = ΛF ′ ◦s ΛF ′′, since Id

is neutral for ◦s. The case of natural transformations is similar.

(vi) By definition, when h(F ) = 1, (ΛE01)(x, y)(z) = x+ z... .

(vii) is trivial (no non-trivial direct systems in a finite category!).

(viii) If T1 ∧ t2 = T3, with h(Ti) = 1, then:

– If T1 = E1
1, then T2 = T3 and

ΛT1 ∧ΛT2 = Eb
Id+Id ∧ΛT2 = ΛT2 = ΛT3 .

– If T2 = E1
1: symmetric.

– If T1 = T2 = E1
01, then T1 = T2 = T3, so ΛT1 ∧ΛT2 = ΛT3.

9.6.5. H = H ′ +H ′′.

Assume that (i)–(viii) hold for DIL�H ′ and DIL�H ′′; then they hold

for DIL�H ′ +H ′′. 9.6.5, used together with 9.6.4, yields the case where

H is of kind 1.

Write H = H ′ +H ′′; we first extend Λ to DIL�H:

– If H1�H, then either H1 � H ′ or H1 = H ′ + H ′′1 , where H ′′1 �H; in

both cases H1 = H ′1 +H ′′1 , with H ′1�H ′, H ′′1 �H ′′.
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– If F is an object of DIL� H, then ∃H1 � H I1(F,H1) 6= ∅; if T ∈
I1(F,H1), then the decomposition H1 = H ′1+h′′1 induces a decomposition

F = F ′+F ′′, T = T ′+T ′′ (9.1.8) “splitting lemma”) with T ′ ∈ I1(F ′, H ′1),

T ′′ ∈ I1(F ′′, H ′′1 ); hence F = F ′ + F ′′, for some F ′ ∈ DIL� H ′ and

F ′′ ∈ DIL�H ′′. If U ∈ I1(G,F ) and F is in DIL�H, then by 9.1.8,

a decomposition F = F ′ + F ′′ induces a decomposition G = G′ + G′′,

U = U ′+U ′′, ...; hence if U is a morphism in DIL�H U can be expressed

as a sum U ′ + U ′′, where U ′ and U ′′ are morphisms in DIL� H ′ and

DIL�H ′′ respectively.

If F = F ′+F ′′ is an object of DIL�H, we define ΛF = ΛF ′ ◦s ΛF ′′;

this is possible, since F ′ and F ′′ are objects of DIL�H ′ and DIL�H ′′

respectively. If F = G′ + G′′ is another decomposition of F as a sum

of an object of DIL�H ′ and an object of DIL�H ′′, then we have for

instance LH(G′) ≤ LH(F ′), hence one can find G′1 such that F ′ = G′+G′1,

G′′ = G′1 + F ′′; then

ΛF = ΛF ′ ◦s ΛF ′′ = ΛG′ ◦s ΛG′1 ◦s ΛF ′′ = ΛG′ ◦s ΛG′′

(we use: the associativity of ◦s, property (v) for DIL�H ′ and DIL�H ′′,

together with the fact that ΛG′1 is the same when computed in DIL�H ′

and in DIL�H ′′). We have therefore shown our definition of ΛF to be

independent of the decomposition F = F ′ + F ′′... .

If T = T ′+T ′′, define ΛT = ΛT ′ ◦s ΛT ′′: one shows as above that this

definition is independent of the decomposition T = T ′ + T ′′.

(i) We show that Λ(TU) = (ΛT )(ΛU): assume that U ∈ I1(F,G),

T ∈ I1(G,K), and K ∈ DIL�H; then if one writes K = K ′ + K ′′, one

can write T = T ′ + T ′′, T ′ ∈ I(G′, K ′), T ′′ = I(G′′, K ′′), and applying

9.1.8 once more U = U ′ + U ′′, U ′ ∈ I1(F ′, G′), U ′′ ∈ I1(F ′′, G′′); then

TU = T ′U ′ + T ′′U ′′. Hence:

Λ(TU) = Λ(T ′U ′) ◦s Λ(T ′′U ′′) =

(ΛT ′)(ΛU ′) ◦s (ΛT ′′)(ΛU ′′) =

(ΛT ′ ◦s ΛU ′)(ΛT ′′ ◦s ΛU ′′) = (ΛT )(ΛU) .

(ii) and (iii) are immediate.
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(iv). If G is connected, 6= 1 belongs to DIL�H, write G = G′ + G′′,

with G′ in DIL�H ′, G′′ in DIL�H ′′; then G = G′ or G = G′′, hence

the property follows from the hypotheses... .

(v) If G is a sum G′ + G′′, then decompose G as F ′ + F ′′, with F ′ in

DIL�H ′, F ′′ in DIL�H ′′; then two subcases

– if LH(G′) ≤ LH(F ′), write F ′ = G′ +G′1, so G′′ = G′1 + F ′′:

ΛG = ΛF ′ ◦s ΛF ′′ = ΛG′ ◦s ΛG′1 ◦s ΛF ′′ = ΛG′ ◦s ΛG′′ .

– if LH(G′) ≥ LH(F ′), write G′ = F ′ +G′1, so F ′′ = G′1 +G′′:

ΛG = ΛF ′ ◦s ΛF ′′ = ΛF ′ ◦s ΛG′1 ◦s ΛG′′ = ΛG′ ◦s ΛG′′ .

The property Λ(T ′ + T ′′) = ΛT ′ ◦s ΛT ′′ is obtained in a similar way.

(vi) If F is in DIL�H, write F = F ′+F ′′, with F ′, F ′′ in DIL�H ′

and DIL�H ′′ respectively. Then E0F = E0F ′ + E0F ′′ , hence

(ΛE0F )(x, y)(z) = (ΛE0F ′)
(
Ex, (ΛE0F ′′)(x, y)

)
(z) =

(ΛF ′)
(
x, (ΛE0F ′′)(x, y)(z)

)
= (ΛF ′)

(
x, (ΛF ′′)(x, z)

)
=

(ΛF )(x, z) .

(vii) If (F, Ti) = lim
−→

(Fi, Tij), write F = F ′ + F ′′, with F ′, F ′′ re-

spectively in DIL� H ′ and DIL� H ′′; by 9.1.8, we obtain decompo-

sitions Ti = T ′i + T ′′i , Fi = F ′i + F ′′i , Tij = T ′ij + T ′′ij, and obviously:

(F ′, T ′i ) = lim
−→

(F ′i , T
′
ij), (F ′′, T ′′i ) = lim

−→
(F ′′i , T

′′
ij). Then

(ΛF,ΛTi) = (ΛF ′ ◦s ΛF ′′,ΛT ′i ◦s ΛT ′′i ) =

lim
−→

(ΛF ′i ◦s ΛF ′′i ,ΛT
′
ij ◦s ΛT ′′ij) = lim

−→
(ΛFi,ΛTij)

since ◦s preserves direct limits, and by (vii) for (F ′i , T
′
ij) and (F ′′i , T

′′
ij)...).

(viii) If Ti ∈ I(Fi, G) (i = 1, 2, 3) and T1 ∧ T2 = T3, then write G =

G′ + G′′, with G′, G′′ in DIL�H ′ and DIL�H ′′ respectively; then by

9.1.8, one may write Ti = T ′i+T
′′
i , and obviously T ′3 = T ′1∧T ′2, T ′′3 = T ′′1 ∧T ′′2 .

Then
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ΛT3 = ΛT ′3 ◦s ΛT ′′3 = (ΛT ′1 ∧ΛT ′2) ◦s (ΛT ′′1 ∧ΛT ′′2 ) =

ΛT1 ∧ΛT2

(since ◦s preserves pull-backs, and (viii) holds for the Ti’s and the T ′′i ’s...).

9.6.6. H of kind ω.

Assume that (i)–(viii) hold for all H ′ � H; then it is immediate that

(i)–(viii) relativized to DIL � H hold! Hence it will suffice to define

ΛG and ΛT when h(G) = h(T ) = H. Assume that G =
∑
i<y

G′i, with

all Gi’s connected; if U ∈ I(G,H), one can write U =
∑
i<f

Ui, for some

f ∈ I
(
y,LH(H)

)
; we claim that f̂(y) = LH(H).

(Proof. Let H =
∑
i<x

Hi be the decomposition of H as a sum of connected

dilators; then if H ′ =
∑

i<f̂(y)

Hi, one easily constructs U ′ ∈ I(G,H ′); the

hypothesis that h(G) = H forces H ′ = H, hence f̂(y) = x = LH(H). 2)

hence y is limit. So G is of kind ω. If for i < y Gi =
∑
j<i

G′j, then clearly

(G,EGiG) = lim
−→

(Gi,EGiGj). We define ΛG = lim
−→

∗
(ΛGi,ΛEGiGj).

The existence of such a limit in BILn is a consequence of the general

results of Section 9.3: in fact we have

ΛG = Π
i<y

ΛG′i ... .

By the way observe that ΛG = lim
−→

∗
(ΛGi,ΛEGiGj) still holds when

h(G)� H (this is (vii) restricted to DIL� H). Similarly, if T ∈ I(F,G),

with h(T ) = H (= h(G)), write T =
∑
i<f

T ′i , and then (with obvious no-

tations) ΛF = lim
−→
x

∗
(ΛFi,ΛEFiFj); if Ti ∈ I(Fi, Gf(i)) is defined by

Ti =
∑
j<fi

T ′j (fi ∈ I
(
i, f(i)

)
, fi(z) = f(z)...) then simply define ΛT =

lim
−→

(ΛTi). (In other terms ΛT = Π
i<f

ΛT ′i .) We check (i)–(viii):
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(i) Λ(TU) = (ΛT )(ΛU); as above write T = lim
−→

(Ti), U = lim
−→

(Ui),

TU = lim
−→

(Vi); it is immediate that Vi = Tg(i)U with g = LH(U). Hence

we obtain

Λ(TU) = lim
−→

(ΛTg(i)Ui) = lim
−→

(ΛTi) lim
−→

(ΛUi) =

(ΛT )(ΛU) .

(ii), (iii) and (iv) are trivial.

(v) Assume that T ′ ∈ I(F ′, G′), T ′′ ∈ I(F ′′, G′′), and let T = T ′ + T ′′,

G = G′ + G′′; then two subcases (we restrict ourselves to the non-trivial

case h(G+G′) = H)

– If G′′ = 0, ΛG = ΛG ◦s Id = ΛG′ ◦s ΛG′′ and ΛT = ΛT ◦s EId =

ΛT ′ ◦s ΛT ′′.

– If G′′ 6= 0, let x, x′, x′′, y, y′, y′′, f , f ′, f ′′, be the respective lengths of F ,

F ′, F ′′, G, G′, G′′, T , T ′, T ′′, and observe that x = x′ + x′′, y = y′ + y′′,

f = f ′+f ′′; define F , F ′, F ′′, G, G′, G′′, T , T ′, T ′′ as above, and observe

that: Fx+i = F ′ + F ′′i , Gy+i = G′ +G′′i , Tx+i = T ′ + T ′′i ; then

G = lim
−→
y

∗
(ΛGi,ΛEGiGj) =

lim
−→
y′′

∗ (
Λ′(G′ +G′′i ),Λ(EG′ + EG′′i G

′′
j
)
)

=

lim
−→
y′′

∗
(ΛG′ ◦s ΛG′′i ,ΛEG′ ◦s ΛEG′′i G

′′
j
) =

ΛG′ ◦s lim
−→
y′′

∗
(ΛG′′i ,ΛEG′′i G

′′
j
) = ΛG′ ◦s ΛG′′ ,

and

ΛT = lim
−→
f

(ΛTi) =
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lim
−→
f ′′

(
Λ(T ′ + T ′′i )

)
= lim
−→
f ′′

∗
(ΛT ′ ◦s ΛT ′′i ) =

ΛT ′ ◦s lim
−→
f ′′

(ΛT ′′i ) = ΛT ′ ◦s ΛT ′′

(using the induction hypothesis (v) for G′, T ′ (h(G′)� H) and for G′′i ,

T ′′i , together with the preservation of direct limits by ◦s... .)

(vi) When h(G) = H, then the expression of ΛE0G as a semi-product

ΠΛE0G′i
shows that ΛE0G is of the form ξbΛG

... .

(vii) By obvious considerations (see for instance Sec. 12.3) it suffices to

show that each T ∈ I(F,G), with dim(F ) < +∞. But, if h(G) = H, one

may write ΛG = lim
−→

∗
(ΛGi,ΛEGiGj) hence (z0 ; n) = Tr

(
Λ(T )

)
(z1 ; n),

for some T ∈ I(Gi, Gi) and some i ∈ I (take T = EGiG); then the induction

hypothesis applied to ΛG yields: (z1 ; n) = Tr
(
Λ(U)

)
(z2 ; n) for some

U ∈ I(F,Gi), with dim(F ) < +∞. Hence TU ∈ I(F,G), and (z0 ; n) ∈
rg
(

Tr(TU)
)
, dim(F ) < +∞.

(viii) Still using obvious considerations we must show that, if one can

express (z0 ; n) as: (z0 ; n) = Tr(ΛT1)(z1 ; n) = Tr(ΛT2)(z2 ; n), with

T1 ∈ I(F1, G), T2 ∈ I(F2, G), dim(F1), dim(F2) < +∞, then there exist F3

and T31 ∈ I(F3, F1), T32 ∈ I(F3, F2) such that T1T31 = T2T32, and (z3 ; n) ∈
Tr(ΛF3) s.t. (z1 ; n) = Tr(ΛT31)(z3 ; n), (z2 ; n) = Tr(ΛT32)(z3 ; n). One

can restrict to the case where G is finite dimensional.

(Proof. DefineG′ and U ∈ I(G′, G) by rg
(

Tr(U)
)

= rg
(

Tr(T1)
)
∪rg

(
Tr(T2)

)
and define T ′1 ∈ I(F1, G

′), T ′2 ∈ I(F2, G
′) by UT ′1 = T1, UT ′2 = T2 ... then

G′ is finite dimensional... . 2)

I.e. the question can be reduced to a problem in the category DILfd ∩
DIL� H, which is obviously equal to DILfd ∩DIL � H; but, in that

last category, the property is true by the induction hypothesis... .

9.6.7. H is connected and 6= 1.

(This case, together with 9.6.5, is sufficient to handle the general case

“H is of kind Ω” of the induction step: assume that (i)–(viii) hold for
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DIL � H ′ + H ′′, with H ′′ connected and 6= 1; then it is immediate that

(i)–(viii) hold for DIL�H ′ and DIL � H ′′; by 9.6.7, (i)–(viii) will still

hold for DIL�H ′′, and by 9.6.5 they will hold for DIL�H ′ +H ′′.)

We assume to have already obtained a functor Λ defined of DIL� H,

and enjoying (i)–(viii); then consider G s.t. h(G) = H; this means that

I1(G,H) 6= ∅, and since G 6= 0, ΩI1(G,H) 6= ∅, hence G is of kind Ω

(more precisely LH(G) ≤ LH(H) = 1, and G 6= 0 → LH(G) = 1; so

G is connected; G(0) ≤ H(0) = 0, hence G 6= 1). Then it is possible

to define ΛG by means of (iv); if T ∈ I1(F,G), then either F = 0, and

ΛT = ξbΛG
(this is (vi)) (in fact, we need to verify (vi) before making such

a verification; the verification of (vi) made below could have been written

here), or F is connected and 6= 1, and T ∈ ΩI1(F,G): in that case, one

can define ΛT by means of (iv).

(i) It is immediate that ΛG defined by means of (iv) is a functor

from ON2 to ON; furthermore, ΛG preserves lim
−→

and ∧: (ΛG)(·, y) =

Π
t<y

(1 + ΛtG)(·, 0), it is immediate that (ΛG)(·, y) preserves lim
−→

and

∧; hence, it will suffice to show that (ΛG)(x, ·) preserves lim
−→

and ∧: if

(y, gi) = lim
−→

(yi, gij)

(
Π
l<y

(1 + ΛlG), Π
l<gi

(Eb
1 + ΛE

lG)
)

=

lim
−→

(
Π
l<yi

(1 + ΛlG), Π
l<gij

(Eb
1 + ΛE

lG)
)

(this is a consequence of 9.5.12), and applying both sides to the pair (x, 0),

we obtain:(
(ΛG)(x, y), (ΛG)(Ex, gi)

)
= lim

−→

(
(ΛG)(x, yi), (ΛG)(Ex, gij)

)
.

Similarly, when gi ∈ I(yi, y) (i = 1, 2, 3), and g3 = g1 ∧ g2, then by

9.5.12 we obtain

Π
t<g3

(Eb
1 + ΛEtG) =

(
Π
t<g1

Eb
1 + ΛEtG

)
∧
(

Π
t<g2

(Eb
1 + ΛEtG)

)
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and, applying both sides to (Ex,E0) we get

(ΛG)(Ex, g3) = (ΛG)(Ex, g1) ∧ (ΛG)(Ex, g2) .

Then, we show that the functor (ΛG)(x, ·) enjoys (FL): if y ≤ y′, then

(ΛG)(Ex,Eyy′) = Π
t<Eyy′

(Eb
1 + ΛEtG)(Ex,E0) =

(
Π
t<Ey

Eb
1 + ΛEtG

)
◦s Π

t<E0y′

(Eb
1 + ΛEtG)(Ex,E0) =

Eb
F ◦s ξbK(Ex,E0)

with

F = Π
t<y

(1 + ΛtG) , K = Π
y≤t<y′

(1 + ΛtG) .

But:

(EF ◦s ξbK)(x, 0) = F
(
Ex, ξ

b
K(x, 0)

)
= F (Ex,E0K(x,0)) =

E
F (x,0)F

(
x,K(x,0)

) = E
(ΛG)(x,y)(ΛG)(x,y′)

.

It is immediate that T ∈ I1(F,G)→ ΛT ∈ I1(ΛF,ΛG); then we show

that Λ(TU) = (ΛT )(ΛU), when h(T ) = h(G) = H, T ∈ I1(F,G):

– If F 6= 0, and U 6= E0F , then

(ΛTU)(x, y) = Π
t<Ey

(
Eb

1 + Λt(TU)
)
(x, 0) =

Π
t<Ey

(Eb
1 + ΛtTtU)(x, 0) =

((
Π
t<Ey

(Eb
1 + ΛtT )

) (
Π
t<Ey

(Eb
1 + ΛtU)

))
(x, 0) =

((
Π
t<Ey

(Eb
1 + ΛtT )

)
(x, 0)

(
Π
t<Ey

(Eb
1 + ΛtU)

)
(x, 0)

)
=

(ΛT )(x, y)(ΛU)(x, y) .

– In general, observe that, from the obvious equalities:
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Π
t<y

(1 + Id)(x, z) = y + z , Π
t<g

(1 + Id)(f, h) = g + h

the definition (iv) holds too when G = 0 (with tG = 0, gtG = E0).

From this, one can show that (ΛTU) = (ΛT )(ΛU) holds when F = 0 or

U = E0F : the proof is similar to the case just treated.

(ii), (iii), (iv) are trivial.

(v) If h(F ′ + F ′′) = h(H), then F ′ + F ′′ must be connected, hence one

of F ′ and F ′′ is 0 ... we conclude as in 9.6.4 (v).

(vi) If h(F ) = H, then the property is trivial by construction; however,

we have not verified the nicety of ΛF : first (ΛF )(x, y + 1) = K
(
x, 1 +

L(x, y)
)
, with K = Π

t<y

(1 + ΛtF ), L = ΛyF , whereas (ΛF )(x, y) =

K(x, y), hence K(x, y) < K(x, y + 1). If f ∈ I(x, x′), g ∈ I(z, z′), we

show that (ΛF )(f, g + E1)
(
(ΛF )(x, z)

)
= (ΛF )(x′, z′) (from this, it will

be immediate that ΛF is nice). Let

T = Π
t<g

(Eb
1 + ΛgtF ) and U = Λ(g+E1)zF ;

obviously

(ΛF )(f, g + E1) =
(
T ◦s (E1 + U)

)
(f, 0) =

T
(
f,E1 + U(f,E0)

)
,

and if

G = Π
t<z

(1 + ΛtF ) , G′ = Π
t<z′

(1 + ΛtF )

(so T ∈ Ibn(G,G′)), we obtain:

(ΛF )(f, g + E1)
(
G(x, 0)

)
= T

(
f,E1 + U(f,E0)

) (
G(x, 0)

)
=

G(x′, 0) .

Now observe that (ΛF )(x, z) = G(x, 0), (ΛF )(x, z′) = G′(x, 0).

(vii) If (F, Ti) = lim
−→

(Fi, Tij), and h(F ) = H, then it is possible to

assume (by restricting I to a cofinal subset), that Fi 6= 0 for all i: hence

we start with a direct system in ΩDIL, with its limit in ΩDIL. By 9.5.12

we get
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(
Π
t<y

(1 + ΛtF ), Π
t<Ey

(Eb
1 + ΛtTi)

)
=

lim
−→

(
Π
t<y

(1 + ΛtFi), Π
t<Ey

(Eb
1 + ΛtTij)

)

(using: (tF,t Ti) = lim
−→

(tFi,t Tij) together with (vii) for DIL � H). If

one applies (x, 0) to both sides, one gets(
(ΛF )(x, y), (ΛTi)(x, y)

)
= lim

−→

(
(ΛFi)(x, y), (ΛTij)(x, y)

)

which implies (8.3.7) that (ΛF,ΛTi) = lim
−→

(ΛFi,ΛTij).

(viii) Assume that h(G) = H, and that Ti ∈ I(Fi, G) (i = 1, 2, 3)

and that T3 = T1 ∧ T2; we have already observed, inthe proof of (i), that

Ti(x, y) = Π
t<Ey

(E1 + ΛtTi)(x, 0), holds when Fi is of kind Ω, but also

when Fi = 0. (In that case one defines tT = E0tG
.) Clearly tT3 = tT1∧ tT2,

hence, by 9.5.12, we obtain(
Π
t<Ey

(Eb
1 + ΛtT3)

)
= Π

t<Ey

(Eb
1 + ΛtT1) ∧ Π

t<Ey

(Eb
1 + ΛtT2)

(using (viii) for DIL� H). If one applies (x, 0) to both sides, one gets

(ΛT3)(x, y) = (ΛT1)(x, y) ∧ (ΛT2)(x, y)

and by 8.3.10

ΛT3 = ΛT1 ∧ΛT2 .
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End of the proof of 9.6.2. We have shown that, for all H in DIL, as soon

as (i)–(viii) hold for DIL � H, then they also hold for DIL�H. From

this we conclude that (i)–(viii) hold for all dilators. 2

9.6.8. Remark.

In fact, there are many variant os Λ, i.e. definitions of the same kind, but

with small differences. A typical example is the function Λ defined on

ladders considered in Annex A. But many other possibilities can be used.

The reader will find the most important ones in the exercises of Annex B.

The variant chosen here is in my opinion the most elegant, but also the

most complicated, because of the use of the semi- products... .
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Annex 9.A. The hierarchy theorem

In 1975, I proved a theorem relating the pointwise hierarchy γ to the

Grzegorczyk hierarchy λ (see 5.B). Roughly speaking the result is:

γη0
= λε0

where ε0 and η0 are elements of O of respective heights ε0 and η0 (the

“Howard ordinal”). Hence, since one needs “ε0 steps” to exhaust all prov-

ably total recursive functions of PA when measured w.r.t. γ, one will need

“η0 steps” if one does the same thing w.r.t. λ. This result destroyed the

belief in the monist assignment of ordinals (here ε0) to theories (here PA)

... but this was already discussed in 7.C.

The proof essentially involves the functor Λ; but in fact, there are as

many formulations of the hierarchy theorems as there are technical ways

(Kleene’s O, trees...) of defining the indexing sets of hierarchies. If one

considers Λ, one gets a theorem of comparison of hierarchies, when the

hierarchies are indexed by dendroids (see [5], Ch. 7). However, such a

formulation is too far from the familiar use of Kleene’s O: if we want to

formulate the theorem for Kleene’s O, we must adapt the construction

of Λ to a slightly different context; this is exactly what we shall do be-

low. Before giving the proof, it could be interesting (as a kind of cultural

background) to say a few generalities on the – now obsolete – question of

Bachmann collections, Bachmann hierarchies. The precise technical de-

tails of these questions will be omitted... . In 1950, Bachmann introduced

his main concepts [86]:

(i) Bachmann collection: a Bachmann collection of type α and height

β consists in assigning, for all limit β′ ≤ β, a fundamental sequence

([β′] ξ)ξ<T (β′) enjoying the following properties:

• The sequence [β′] ξ is strictly increasing and continuous at limit

points.

• β′ = sup
ξ<T (β′)

([β′] ξ) and T (β′) ≤ α.

• A certain numer of technical conditions relating the various funda-

mental sequences, and that we omit... .
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(Example: if e ∈ O, then 5.A.7 (iii) defines a Bachmann collection

of height ‖e‖ and type ω.)

(ii) Bachmann hierarchy: assume that B is a Bachmann collection of type

V , where V is a regular cardinal; then we define a function λB from

V to V ; the definition is by induction on the height ‖B‖ of B:

• If ‖B‖ = 0, let λB(x) = (1 + x)x for all x < V .

• If ‖B‖ = a+ 1, let B′ be the restriction of B to a; then

λB(x) = λB′(x) + 1 + λB′(x+ 1) + 1 .

• If ‖B‖ is limit, and T (‖B‖) < V , define, for all ξ < T (‖B‖), a

Bachmann collection Bξ, by restricting B to [‖B‖] ξ; consider the

ordinals

Axξ = λBξ(x) + 1 + λBξ(x+ 1) + 1

then

λB(x) = sup
ξ<T (‖B‖)

(Axξ ) .

• If ‖B‖ is limit, and T (‖B‖) = V , then we define for x, ξ < V ,

ordinals Axξ , exactly as above; then

λB(x) = sup
ξ<x

(Axξ ) .

(Example: if B is the Bachmann collection associated to the point

e ∈ O by means of 5.A.7 (iii), then it is immediate that the number-

theoretic functions λB and λe coincide... .)

The Bachmann hierarchy is traditionally used to construct large recur-

sive ordinals, for instance, assume that V is ℵ1 (in fact V = ω
(K)
1 suf-

fices!), and consider the ordinal εΩ+1 = sup
n

(
Ω(Ω...Ω)

)
(n times) (with

Ω = V = ℵ1). Then it is immediate to define a structure of Bachmann

collection of type Ω and height εΩ+1, say εΩ+1. Then one easily shows that

the ordinal

η0 = λεΩ+1
(ω)
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is recursive. This ordinal is called the Howard ordinal. The name comes

from the fact that Howard is the first to have explicitly proposed this

ordinal as “the” ordinal of ID1 [87]. In fact, a closer look at the definition

of λ shows that, when x is < V , the ordinal λB(x) is naturally equipped

with a structure of Bachmann collection of type x; in particular, η0, is

equipped with a structure of Bachmann collection of type ω, η0, and which

may be identified with an element of Kleene’s O.

If, instead of starting with the Bachman collection εΩ+1, one starts with

εΩn+1 (with Ωn = ℵn, n 6= 0) then one can construct ηn−1
n = λεΩn+1

(Ωn−1),

together with a Bachmann collection of type Ωn−1 and height ηn−1
n , denoted

ηn−1
n ; we construct progressively ordinals ηpn and Bachmann collections −ηpn

of height ηpn and type Ωp, such that

ηpn = ληp+1
n

(Ωp)

(the formula is valid for p = n− 1 if ηnn = εΩn+1, and for p = 0, if Ω0 = ω).

This enables us to construct recursive ordinals ηn and elements of

Kleene’s O, ηn, by

ηn = η0
n , η0 = η0

n .

These ordinals ηn are traditionally associated with the theories of n+1-

times iterated inductive definitions IDn+1 (see 11.5). It is consistent with

this notations to use η−1 = ε0, η−1 = ε0.

(We have said enough on Bachmann collections to understand the proof

that follows; however, the reader may be curious to know something about

the further developments of these constructions:

(i) Following Bachmann, people made constructions of more and more

complicated Bachmann collections, typically Pfeiffer [99] and Isles

[89], [90]. Isles’s constructions involved the use of “large” cardinals (in

fact their recursive analogues), inaccessibles and Mahlos. The awful

complexity of the construction has clearly shown that the conceptual

framework of Bachmann collections,... was terribly insufficient.

(ii) A great progress has been achieved by the introduction [91] (due to

Aczel, after a suggestion of Feferman) of the so-called “ϑ- functins”.
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The principal advantage of this method is that the tedious construc-

tion of fundamental sequences is avoided. Bridge [92] has shown the

equivalence of this approach with Isles’s. Later on, Buchholz [93] has

shown that (an inessential variant of) ϑ can be used to define rather

large recursive ordinals: this is the so-called Buchholz’s system, which

is widely used in Π1
1 proof-theory. (See for instance the encyclopedic

text [3] for definitions and applications... .)

Now, let us give an idea of the proof of our theorem; the ingredients

are

(i) A functorialization of the concept of Bachmann collection; it is of

course necessary to slightly modify the original notions: this leads

to rungs; and ladders are functors from ordinals to rungs preserving

lim
−→

and ∧.

(ii) It is possible, if L is a ladder to define ΛL – Λ is related to Λ, but is

not defined on the same objects – which is a function from 0n to 0n

(in fact a dilator) by:

(ΛL)(x) = λL(x+)(x)

where x+ is the smallest cardinal > x; (L(x+) is a rung of type x+,

hence something close to a Bachmann collection of type x+, hence

λL(x+) can be defined...). In fact the ordinals (ΛL)(x) are naturally

equipped with structures of rungs of type x, that we shall also denote

by (ΛL)(x). In particular ΛL is a ladder.

(iii) The value (ΛL)(n) is equal to:

– λL(ω)(n), because ω = n+.

– γ(ΛL)(ω)(n), hence

λL(ω) = γ(ΛL)(ω).

This is precisely the hierarchy theorem; as a corollary

λε0 = γη ,
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and more generally

ληp = γηp+1

for all p... . From this it follows that the traditional assignment

PA ID1 ID2 ID3 ... IDn ...

ε0 η0 η1 η2 ... ηn−1 ...

can be replaced by the new one

PA ID1 ID2 ID3 ... IDn ...

η0 η1 η2 η3 ... ηn ...

But now, I think that the result has been sufficiently well explained

and introduced, and let us give the detailed proof:

9.A.1. Definition.

Let r and a be ordinals; a rung R of height r and type a is a 4-uple

(a, r, T, [·] ·) such that:

(RG1) T is a function from r + 1 to a+ 1.

(RG2) For all y ≤ r, [y] · is a strictly increasing and continuous function

from T (y) + 1 to y + 1:

• ξ ≤ T (y)→ [y] ξ ≤ y.

• ξ′ < ξ ≤ T (y)→ [y] ξ′ < [y] ξ.

• ξ limit → [y] ξ = sup
ξ′<ξ

[y] ξ′

(RG3) For all y, b such that y ≤ r and b ≤ T (y):

(i) T ([y] b) = b.

(ii) c ≤ b→
[
[y] b

]
c = [y] c.

(RG4) If y ≤ r, then

(i) [y]
(
T (y)

)
= y.
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(ii) If y is limit, then T (y) is limit.

(RG5) Assume that y, z ≤ r, and b < T (y), and that [y] b < z < [y] (b+1);

then [y] b < [z] 0.

9.A.2. Definition.

The function [y] · from T (y) + 1 to y + 1 is the fundamental sequence

of y (in R).

9.A.3. Notations.

(i) ‖R‖ will denote the height of R, whereas t(R) will denote its type.

(ii) We shall try to follow the following notational pattern: we denote

a rung by capital letters, and its height by the corresponding small

letter: for instance R′′n and r′′n.

9.A.4. Remark.

Compared to the traditional concept of Bachmann collection, the main

improvement is that we allow non-trivial fundamental sequences for non

limit points... .

9.A.5. Examples.

(i) For all ordinals a and b such that b ≤ a, one defines a rung ba, of

height b and type a, as follows: if y ≤ b, then T (y) = y, and if z ≤ y,

then [y] z = z; we use the abbreviation a instead of aa.

(ii) If R = (a, r, T, [·] ·) and S = (a, s, U, |[·]| ·) are rungs of the same type

a, one defines a new rung R+1+S = (a, r+1+s, V, {·} ·) as follows:

(1) If z < r + 1, then V (z) = T (z); if c < T (z) {z} c = [z] c.

(2) If z ≤ s, then V (r+1+z) = U(z); if c < U(z), then {r+1+z} c =

r + 1 + |[z]| c.

R+1+s, the sum of R and S, is easily shown to be a rungof type a.

A particular case is when S = 0a: R+ 1 +S is, in that case, denoted

by R + 1.
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(iii) If R = (a, r, T, [·] ·) is a rung, and if s ≤ r, one defines R|̀ s =

(a, s, U, |[·]| ·), simply by restricting T and [·] · to s... .

(iv) If R = (a, r, T, [·] ·) and S = (a, s, U, |[·]| ·) are rungs of the same type

a; then we define the rung R× S = (a, r × s, V, {·} ·), as follows:

(1) If s = 0, then R× S = 0a.

(2) If s 6= 0, then r× s = sup
z<s

(r× z+ 1 + r+ 1), V (r× s) = U(s),

and if c ≤ U(s) {r× s} c = r×|[s]| c. If z < s, let Z = S|̀ z; then

(R×S )̀| (r× z+ 1 + r) = R×Z + 1 +R. (R×S is the product

of R and S; this is easily shown to be a rung of type a; r × s is

close to the product r · s.)

(v) If R = (a, r, T, [·] ·), and S = (a, s, U, |[·]| ·) are rungs of the same

type a, then we define a rung (1 +R)·S = (a, r·s, V, {·} ·), as follows:

(1) If s = 0, then (1 +R)·S = 1a.

(2) If s 6= 0, then r·s = sup
z<s

(r·z + 1 + r·z × r + 1) V (r·s) = U(s),

and for c ≤ U(s), {r·s} c = r·|[s]| c; if z < s, let Z = S|̀ z. Then

(R·S )̀| (r·z + 1 + r·z × r) = R·Z + 1 +R·Z ×R.

9.A.6. Proposition.

(i) If y and z are such that [y] b < [z] c < [y] (b+ 1), then z < [y] (b+ 1).

(ii) If [y] b = [z] c and y ≤ z, then b = c and y = [z]T (y).

Proof. (i) z = [y] (b + 1) is impossible by (RG3) (ii); suppose that z >

[y] (b+1); then [y] (b+1) is not of the form [z] d (again by (RG3) (ii)). Hence

for some d, we have: [z] d < [y] (b+1) < [z] (d+1) (and d ≥ c). By (RG5),

we obtain [z] d < [y] 0, hence [y] b < [z] c ≤ [z] d < [y] 0, contradiction with

(RG1).

(ii) (RG3) (i) yields b = T ([y] b) = T ([z] c) = c, so b = c; if y = [z] d for

some d, then T (y) = d, y = [z]
(
T (y)

)
; otherwise, for some d, [z] d < y <

[z] (d+ 1) and c ≤ d; so [y] 0 ≤ [y] b = [z] c ≤ [z] d < [y] 0, contradiction.2
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9.A.7. Proposition.

For all z ≤ r, there is a greatest y ≤ r such that z = [y]T (z).

Proof. Assume the contrary, and let y = sup {t ; [t]T (z) = z}. By hy-

pothesis, [y]T (z) 6= z, or T (y) > T (z). As a first consequence, y is limit

(since y is of the form sup (A), and y 6∈ A), so there is a b < T (y) such

that z < [y] b and t > [y] b such that [t]T (z) = z. If t = [y] c for some c,

then [y]T (z) =
[
[y] c

]
T (z) = z, contradiction; if [y] c < t < [y] (c + 1) for

some c, with b ≤ c < T (y), then z < [y] c < [t] 0, a contradiction. 2

9.A.8. Proposition.

(i) Assume that the intervals Ii (i = 0, 1) defined by Ii =
[
[yi] bi, [yi] (bi+

1)
[

are such that I0 ∩ I1 6= ∅; then I0 ⊂ I1 or I1 ⊂ I0.

(ii) Suppose that the interval I of r is obtained as the union as a non

void family (Ii)i∈A, with Ii of the form
[
[yi] bi, yi

[
; then there exists

y ≤ 1 and b ≤ T (y) such that I =
[
[y] b, y

[
; furthermore, the interval

[b, T (y)[ is included in the union of the intervals [bi, T (yi)[.

Proof. (i) Assume for instance that [y0] b0 < [y1] b1 < [y0] (b0 + 1), then

by (RG5) and 9.A.6 (ii), we get [y0] b0 < [y1] 0 < y1 < [y0] (b0 + 1): hence

I0 ⊂ I1, and the extremities of I1 are distinct from the extremities of I0.

(ii) Nothing is changed if one assumes that for all i, T (yi) = bi + 1.

We first treat a particular case: assume that the intervals Ii are pairwise

comparable for inclusion. In that case observe that (as a consequence of

the fact that the extremities are distinct), if Ii ⊂
6=
Ij, then [yi] bi < [yj] bj <

yj < yi: if the family (Ii) would contain infinitely many distinct elements,

then one of the sequences [yi] bi or yi would contain a s.d.s. of r. Hence

the family contains only finitely many distinct intervals, and the property

is immediate in that case. It remains now to consider the case where the

intervals are pairwise incomparable w.r.t. inclusion; by (i) above, they are

necessarily pairwise disjoint. Choose i0 ∈ A, and let x be maximum with

the property that [x]T (yi0) = yi0 . Let B be a subset of A, maximal among

those enjoying:

(1) If i ∈ B, then yi = [x]T (yi).
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(2) H =
⋃
i∈B

Ii is an interval.

Since J is obviously of the form
[
[x] b, [x] c

[
, it will suffice to prove that

I = J , i.e. that A = B; suppose that [x] c = [yj] bj for some j, then by

considering J∪{j} one gets a contradiction; similarly, if [x] b = yj for some

j... . 2

9.A.9. Definition.

Let S = (b, s, U, |[·]| ·) be a rung; if f ∈ I(a, b) we define:

(i) A subset S∗f of S:

z 6∈ S∗f ↔ ∃x ≤ b ∃u <

U(x)
(
u 6∈ rg(f) ∧ |[x]|u ≤ z < |[x]| (u+ 1)

)
.

(Hence CS∗f appears as a union of intervals of the form
[
|[yi]| bi, |[yi]|

(bi + 1)
[
.)

(ii) An ordinal r = order type of S∗f , together with a functionms
f (in short

mf ), m
s
f ∈ I(r, s), defined by rg(bsf ) = S∗f . By abuse of notations,

we shall also write: ms
f (r) = s (mutilation function).

(iii) A 4-uple f−1(S) = (a, r, T, [·] ·):

(1) f̂
(
T (z)

)
= U

(
m̂f (z)

)
(z ≤ r)

(2) mf ([z] c) = |[mf (z)]| f(x) (x < T (z), z ≤ r)

(3) [z]T (z) = z (z ≤ r) .
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9.A.10. Lemma.

m̂f ([z] c) = |[mf (z)]| f̂(x) .

Proof. Let Z = m̂f ([z] c), Z ′ = mf ([z] c); then [Z,Z ′[ is either void (easy:

left to the reader) or non void, and maximal in C S∗f ; so by 9.A.8 (ii), this

interval is of the form
[
|[Z ′]|u, Z ′

[
, and [u, U(Z ′)[ is included in C rg(f);

by maximality, it follows that u ∈ rg(f̂), and this is only possible when

u = f̂(x); so

m̂f (|[z]| c) = Z = |[Z ′]| f̂(c) = |[mf ([z] c)]| f̂(c) = |[mf (z)]| f̂(c) .

(The last equality is obtained by considering separately the trivial case

z = [z] c, and the case c < T (z): in that case one uses Definition 9.A.9 (iii)

(2) above... . 2

9.A.11. Theorem.

(i) The 4-uple (a, r, T, [·] ·) of 9.A.9 (iii) is a rung.

(ii) f−1
(
g−1(S)

)
= (gf)−1(S).

Proof. (RG1), (RG2), (RG3) (ii) and (RG4) (i) are immediate; we verify

the remaining properties:

– (RG3) (i): By 9.A.10 m̂f ([z] c) = mf (z) |[f̂(c)]|, hence we get: f̂
(
T ([z] c)

)
= U

(
m̂f ([z] c)

)
= U

(
|[mf (z)]| f̂(c)

)
= f̂(c), hence T ([z] c) = c.

– (RG4) (ii): If z ≤ r is limit, then m̂f (z) is limit, hence we get: m̂f (z) =

sup
c<U

(
m̂f (z)

) (|[m̂f (z)]| c); since U
(
m̂f (z)

)
= f̂

(
T (z)

)
, one gets m̂f (z) =

sup
d<T (z)

|[m̂f (z)]| f(d) = sup
d<T (z)

|[mf (z)]| f(d) = sup
d<T (z)

(
mf ([z] d)

)
. Hence

z = sup
d<T (z)

[z] d.

– (RG5): If [z] c < t < [z] (c+1), then mf ([z] c) < mf (t) < m̂f

(
[z] (c+1)

)
;

let v = mf (z); then |[v]| f(c) < mf (t) < |[v]| (f(c)+1); hence mf ([z] c) =

|[v]| f(c) < |[mf (t)]| f(0) = mf ([t] 0): hence [z] c < [t] 0.



188 9. Dilators as well-ordered classes

(ii) is left to the reader. 2

9.A.12. Remark.

The proofs 9.A.11 and 9.A.10 are slightly incorrect: we have not verified

the possibility of defining f−1(A) as in 9.A.9 (iii); for instance [z] c can be

defined, as a consequence of the remark that, if Z ∈ S∗f , then |[Z]| c ∈ S∗f
iff c ∈ rg(f) (for all c < U(z)).

9.A.13. Proposition.

The mutilation “commutes” with sum, products and exponentials.

Proof. This means that:

f−1(R + 1 + S) = f−1(R) + 1 + f−1(S)

f−1(R× S) = f−1(R)× f−1(S)

f−1(R·S) = f−1(R)·f
−1(S) .

These properties are immediate. 2

9.A.14. Remark.

The behaviour of the rungs ba w.r.t. mutilation is more complicated: if

f ∈ I(a, a′), then f−1(a) = a′; but f−1(ba) = b′a, where b′ is defined by:

∀z(z < b′ ↔ f(z) < b), i.e. f̂(b′) ≤ b ≤ f(b′), when b < a.

9.A.15. Definition.

Let K be a finite set; we define the category K −ON as follows:

objects: pairs (x, d), where x ∈ 0n and d is a function from K to x.

morphisms: the set I(x, d ; y, e) of those f ∈ I(x, y) s.t. ef = d.

9.A.16. Definition.

Let V be a regular cardinal (in practice V will be an admissible ordinal...),

and assume that (V, d) is an object of K −ON; then we define:

(i) The category K −ON ≤ (V, d):

objects: pairs (x, e) s.t. I(x, e ; V, d) 6= ∅.



The hierarchy theorem 189

(ii) The category K −ON < (V, d):

objects: pairs (x, e) s.t. I(x, e ; V, d) 6= ∅ and x < V .

In both cases the morphisms are given by I(x, e ; x′, e′), i.e. these are

full subcategories.

9.A.17. Definition.

The following data define a category RG:

objects: rungs (a, r, T, [·] ·).
morphisms: the set I(R, S) of all f ∈ I

(
t(R), t(S)

)
such that f−1(S) = R.

9.A.18. Definition.

(i) A ladder is a functor from ON to RG such that:

(1) t
(
L(x)

)
= x.

(2) L(f) = f .

(ii) One defines K-ladders, K ≤ (V, d)-ladders, K < (V, d)-ladders, by

replacing ON by K−ON, K−ON ≤ (V, d), K−ON < (V, d); they

enjoy the conditions:

(1) t
(
L(x, e)

)
= x.

(2) L(f) = f .

9.A.19. Examples.

(i) L(x) = x defines a ladder.

(ii) If k ∈ K, then L(x, d) = d(k)
x

defines (using 9.A.14) a K-ladder.

(iii) Sum, products, and exponentials can be used to construct new lad-

ders and K-ladders:

L(x) = x+ 1 + x defines a ladder

L(x, d) = x× d(k)
x

defines a K-ladder.



190 9. Dilators as well-ordered classes

9.A.20. Definition.

Assume that S = (a, s, U, |[·]| ·) and R = (s, r, T, |[·]| ·) are rungs (the type

of R is equal to the height of S); then one defines a new rung RS =

(a, r, V, {·} ·) (the composition of R and S) by:

(i) V (x) = U
(
T (x)

)
for all x < r.

(ii) {x} d = [x] (|[T (x)]| d) for all d ≤ V (x).

(The verification that RS is a rung is left to the reader.)

9.A.21. Definition.

Assume that L and L′ are ladders; then one defines a new ladder L′′ =

L0(Id + 1 + L′), as follows:

L′′(x) = L(x+ 1 + ‖L′(x)‖)
(
x+ 1 + L′(x)

)
.

The composition is also defined on K-ladders by:

L′′(x, d) = L(x+ 1 + ‖L′(x, d)‖, e)
(
x+ 1 + L′(x, d)

)
,

where e is defined by e(k) = d(k) for all k ∈ K.

(The definition can still be used for K < (V, d)-ladders, using the fact that

x+ 1 + ‖L′(x, d)‖ < V for all (x, d) s.t. d < V .)

9.A.22. Theorem.

The composition maps ladders (resp. K-ladders, K < (V, d)-ladders into

themselves.

Proof. We prove the theorem forK-ladders; the result depends on a lemma.

9.A.23. Lemma.

Let L be a K-ladder, and let z ≤ ‖L(x, d)‖; assume that T (z) < x, and

that, for some u < T (z) we have [u, T (z)] ∩ rg(d) = ∅; then one can find

z′, z < z′ ≤ L(x) such that: [z′]u ≤ z < [z′] (T (z) + 1).

Proof. Define (x′, d′) and f, g ∈ I(x′, d′ ; x, d) by: rg(f) = x − [u, T (z)[,

rg(g) = x−]u, T (z)]; then f and g differ only on the argument x; hence,

if we define (x′′, d′′) and h ∈ I(x′′, d′′ ; x′, d′) by rg(h) = x′ − {u}, it is
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clear that fh = gh = f ∧ g. Observe that rg(gh) = x − [u, T (z)]; as-

sume now that the conclusion of the lemma is false; then obviously z ∈
L(x, d)∗fh = L(x, d)∗gh. Let f ∗ = m

L(x,d)
f , g∗ = mL(x,d)

g , h∗ = m
L(x′,d′)
h ; then

f ∗h∗ = g∗h∗, and z ∈ rg(f ∗h∗), i.e. z = f ∗h∗(z′′) for some z′′ ∈ ‖L(x′′, d′′)‖.
Let z′0 = h∗(z′′); then z = f ∗(z′0) = g∗(z′0). We compute the value T ′(z′0)

(in L(x′, d′)) by means of 9.A.9 (iii) (1) applied to f and g:

f̂
(
T ′(z′0)

)
= T

(
f̂ ∗(z′0)

)
implies T ′(z′) = u

ĝ
(
T ′(z′0)

)
= T (ĝ∗(z′0)

)
implies T ′(z′) = u+ 1 .

We have obtained a contradiction. 2

Proof of 9.A.22. Let L′′ = L ◦ (Id + 1 + L′), let S ′′ = L′′(x, d), S ′ =(
x+1+L′(x, d)

)
, S = L(y, e), with y = ‖S ′‖ and e(k) = d(k) for all k ∈ K.

Assume that S ′′ = (x, s′′, T ′′, {·} ·), S ′ = (x, y, T ′, |[·]| ·), S = (y, s′′, T, [·] ·);
by definition S ′′ = SS ′. We prove that S ′′f

∗ = S∗g , with g = mS′
f :

S ′′f
∗ is obtained by removing all intervals

[
[z] (|[z′]| t), [z)

(
|[z′]| (t + 1)

)[
where t 6∈ rg(f), whereas S∗g is obtained by removing all intervals

[
[z]u, [z] (u+

1)
[
, with u 6∈ rg(g): the interval

[
[z] (|[z′]| t), [z]

(
|[z′]| (t + 1)

)[
, when

t 6∈ rg(f), is obvious by a union of intervals of the form
[
[z]ui, [z] (ui + 1)

[
for a family (ui), ui 6∈ rg(g): this proves that S∗g ⊂ S ′′f

∗. Assume that the

opposite inclusion is false: this means that some interval
[
[z] t, [z] (t+ 1)

[
,

with t 6∈ rg(g), is not included in any interval
[
[b] (|[b′]|u), [b]

(
|[b′]| (u+1)

)[
,

for any u 6∈ rg(f). Choose z and t such that:

– [z] t is minimum with this property.

– z is not of the form [z′]T (z) for any z′ > z (9.A.7).

Now observe that:

(i) T (z) > x (otherwise, take b = z, b′ = T (z), u = t).

(ii) T (z) < y (otherwise, take b = z, and let b′ and u be such that

|[b′]|u ≤ t < |[b′]| (u+ 1)).

(iii) [u, T (z)] ∩ rg(z) = ∅: because rg(e) ⊂ x: apply (i).
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By (ii) and (iii), and 9.A.23, we conclude that there is some z′ such that:

[z′] t ≤ z < [z′] (T (z) + 1). Hence we can write [z′] t′ < z < [z′] (t′ + 1)

for some t′ ≤ T (z) (the equality z = [z′] t would entail z = [z′]T (z)...).

The interval
[
[z′] t′, [z′] (t′ + 1)

[
is not included in CS ′′f

∗ (since it contains[
[z] t, [z] (t + 1)

[
), but is included in CS ′′g : observe that: [t, T (z) + 1[⊂

C rg(g).

(Proof. Let b = z, and choose b′ and u with T ′(b′) = u + 1, u 6∈ rg(f)

and |[b′]|u ≤ t < b′; such a choice is possible because t 6∈ rg(g). It

suffices to show that T (z) < b′: but, if b′ ≤ T (z), then
[
[z] t, [z] (t + 1)

[
⊂[

[b] (|[b′]|u), [b]
(
|[b′]| (u+ 1)

)[
. 2)

Finally, [z′] t < [z] t, and this contradicts the minimality of [z] t. We have

therefore proved that S ′′f
∗ = S∗g .

The end of the proof offers no special difficulty: asssume that f ∈
I(x′, d′ ; x, d) and letR = (y′, r′′, U, [·]1·) = f−1(S), R′ = (x′, y′, U ′, |[·]|1·) =

f−1(S ′), R′′ = (x′, r′′, {·}1·) = f−1(S ′′). It suffices to show that R′′ = RR′

(since L(y′, e′) = R, with e′(k) = d′(k) for all k ∈ K, R′ = x′+1+L′(x′, d′)).

We get:

(1) f̂
(
U ′′(z)

)
= T ′′

(
m̂S′′
f (z)

)
= T ′

(
T
(
m̂S′′
f (z)

))
= T ′

(
T
(
m̂S
g (z)

))
=

T ′
(
ĝ
(
U(z)

))
= T ′

(
m̂S′
f

(
U(z)

))
= f̂

(
U ′
(
U(z)

))
.

Hence U ′′(z) = U ′
(
U(z)

)
.

(2) m̂S′′
f ({z}1u) = {m̂S′′

f (z)} f̂(u) = [m̂S′′
f (z)]

(∣∣∣[T(m̂S′′
f (z)

)]∣∣∣ f̂(u)
)

=

[m̂S′′
f (z)]

(∣∣∣[T(m̂S
g (z)

)]∣∣∣ f̂(u)
)

= [m̂S
g (z)]

(∣∣∣[ĝ(U(z)
)]∣∣∣ f̂(u)

)
=

[m̂S
g (z)]

(∣∣∣[m̂S′
f

(
U(z)

)]∣∣∣ f̂(u)
)

= |m̂S
g (z)]

(∣∣∣[m̂S′
f

(
U(z)

)]∣∣∣
1
u
)

=

m̂S
g

(
[z]1(|[U(z)]|1u)

)
= m̂S′′

f

(
[z]1(|[U(z)]|1u)

)
.

Hence {z}1u = [z]1(|[U(z)]|1u). 2

9.A.24. Theorem.

It is possible to define a function Λ which maps K ≤ (V, d)-ladders on

K < (V, d)-ladders, and such that:

(1) If (W,d′) is an object of K ≤ (V, d) (W regular cardinal) and if L′ is
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the restriction of L to K −ON ≤ (W,d′), then ΛL′ is the restriction

of ΛL to KON < (W,d′).

(2) If (with obvious notations) L = L′ + 1 + L′′, then ΛL = ΛL′ + 1 +M

for some K < (V, d)-ladder M .

The precise definition of Λ is given during the proof.

Proof. By induction on A = ‖L(V, d)‖.

Case 1. A = 0; define (ΛL)(x, e) = x; properties (1) and (2) are trivial.

Case 2. A 6= 0, but T (A) = 0; then it is easily checked that L = L′+1 (i.e.

L(x, e) = L′(x, e)+1) for a certain K ≤ (V, d)-ladder L′. If A′ = ‖L′(V, d)‖,
then clearly A = A′ + 1. We use the abbreviation ϑ(M) (when M is

a K < (V, d)-ladder) to denote M + 1 +
(
M ◦ (Id + 1)

)
. One defines:

(ΛL)(x, e) = ϑ(ΛL′)(x, e) + 1. (1) and (2) are trivially fulfilled.

Case 3. A 6= 0; we shall use the following abisses of notations:

– T and [·] · are used for all rungs that may occur; we assume that it is

clear from the context which rung these notions are part from.

– When we use (x, c), then c is considered as a finite sequence (xi)i∈K of

ordinals < x (and for instance it is possible to replace (x, c) by (y, c)

when y ≥ x... .

We define K ′ = K ∪{k}, where k is a new point. If z < T (A), then we

define (V, dz), an object of K ′ −ON, as follows:

– dz(k
′) = d(k′) when k′ ∈ K.

– dz(k) = z.

(More generally, if (x, e) is an element of K−ON, we define, for all z < x,

an element (x, ez) of K ′−ON, by ez(k
′) = e(k′) when k′ ∈ K, ez(k) = z.)

9.A.25. Lemma.

If T (A) 6= 0, and z < T (A), then there is a (unique) K ′ ≤ (V, dz)-ladder

Lz such that: Lz(V, dz) = L(V, d)̀| ([A] (z + 1)− 1).

Proof. Assume that (x, e′) is an element of K ′ − ON ≤ (V, dz); then e′
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can be uniquely written as ez′ , for some e and some z′. We claim, that (if

Ax,e = ‖L(x, e)‖) z′ < T (Ax,e).

(Proof. In fact we have the following possibilities for the ordinal T (Ax,e):

(i) ∃k0 ∈ K ∀x ∀e T (Ax,e) = e(k0)

(ii) ∃k0 ∈ K ∀x ∀y T (Ax,e) = e(k0) + 1

(iii) ∀x ∀e T (Ax,e) = 0

(iv) ∀x ∀e T (Ax,e) = x

(see Exercise 9.B.5 for instance); then z < T (A) = T (AV,d) and h ∈
I(x, ez′ ; V, dz) implies z′ < T (Ax,e):

(i) If T (A) = d(k0), then z < d(k0) = hl(k0); but z = h(z′) hence

z′ < e(k0) = T (Ax,e).

(ii) If T (A) = d(k0) + 1, then h(z′) < he(k0) + 1, hence z′ < e(k0) + 1 =

T (Ax,e)

(iv) If T (Z) = V , then z′ < x = T (Ax,e). 2)

Then it is possible to define Rx,e,z′ = L(x, e)̀| ([Ax,e] (z′+ 1)− 1). We claim

that, when h ∈ I(x, ez′ ; V, dz), then h−1
(
Lz(V, dz)

)
= Rx,e,z′ . This is com-

pletely immediate... . From that it follows that Lz(e, z
′) = Rx,e,z′ defines a

K ′ −ON ≤ (V, dz)-ladder. 2

Observe that Lz(V, dz) = [A] (z + 1) − 1 < A, hence we may use the

induction hypothesis on Lz: then we must distinguish two subcases

1. 0 < T (A) < V : if (x, e) is an object of K − ON < (V, d), define

(ΛL)(x, e) as follows:

‖(ΛL)(x, e)‖ = sup
z<T (‖L(V,e)‖)

(∥∥∥(ϑ(ΛLe,z)
)
(x, ez′

∥∥∥+ 1
)

where Le,z is the unique K ′ ≤ (V, ez)-ladder such that

Le,z(V, ez) = L(V, e)̀| ([‖L(V, e)‖] (z + 1)− 1)

(Λ :)(x, e)̀|
∥∥∥ϑ(ΛLez))(x, ez)∥∥∥ =

(
ϑ(ΛLez)

)
(x, ez)

T (‖(ΛL)(x, e)‖) = T (‖L(x, e)‖) = T (‖L(V, e)‖)

[‖(ΛL)(x, e)‖] t = sup
z<t

(∥∥∥(ϑ(ΛLez)
)
(x, ez)

∥∥∥+ 1
)
.
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The fact that this defines a K < (V, d)-ladder, and that (1) and (2) hold,

is immediate.

2. T (A) = V : we define

‖(ΛL)(x, e)‖ = sup
z<x

(∥∥∥(ϑ(ΛLe,z)
)
(x, ez)

∥∥∥+ 1
)

T (||(ΛL)(x, e)‖) = x

the rest of the definition being exactly as in subcase 1 above. 1 and 2 are

immediate... . 2

9.A.26. Definition.

Let R = (V, r, T, [·] ·) be a rung of type V , where V is a regular cardinal;

then we define the following hierarchies of functions from V to V :

(i) If r = 0, then

γR(x) = 0 λR(x) = x .

(ii) If r 6= 0, and r is a successor; then define R′ = R|̀ r − 1; then

γR(x) = γR′(x) + 1 λR(x) =
(
ϑ(λR)

)
(x) + 1 .

(Here ϑ(f)(x) = f(x) + 1 + f(x+ 1).)

(iii) If r 6= 0, and T (r) is limit and < V ; then define, for all z < T (r):

Rz = R|̀ [r] z

γR(x) = sup
z<T (r)

γRz(x) λR(x) = sup
z<T (r)

λRz(x) .

(iv) If r 6= 0 and T (r) = V , then, with Rz as in (iii):

γR(x) = γRx(x) λR(x) = λRx(x) .

9.A.27. Remarks.
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(i) The important case is of course when V = ω; when R is a rung of

type ω and R is recursive enough, then the structure obtained from R

by considering only the fundamental sequences of length ω, is likely

to belong to O! Then we see that our definitions of λ and γ in the

context of O and in the context of rungs of type ω coincide... .

(ii) The case V 6= ω is of course less interesting; the hierarchy λR is of

course (one of) the (many variants of) Bachmann hierarchy, adapted

to rungs... .

9.A.28. Proposition.

Let L be a K ≤ (V, d)-ladder, let x > sup
(
rg(d)

)
; then:

(i) γL(V,d)(x) = ‖L(x, d)‖.

(ii) λL(V,d)(x) = ‖(ΛL)(x, d)‖.

Proof. (i) and (ii) are proved by induction on A = ‖(L(V, d)‖.
(i): 1. If A = 0, then L(V, d) = 0V ,and L(x, d) = 0x; hence γL(V,d)(x) =

0 = ‖L(x, d)‖.
2. If A = B + 1, and T (A) = 0, then define a K ≤ (V, d)-ladder L′ by:

L = L′ + 1; the induction hypothesis yields γL′(V,d)(x) = ‖L′(x, d)‖, hence

γL(V,d)(x) = γL′(V,d)(x) + 1 = ‖L′(x, d)‖+ 1 = ‖L(x, d)‖ .

3. If A = B + 1, and T (A) = t + 1; then define (with K ′ = K ∪ {k},
k 6∈ K) d′ from K ′ to V , which extends d, by d′(k) = t. We have already

remarked (see the proof in the proof of 9.A.25) that T (A) ≤ x, hence it

follows that (x, d′) is an object of K ′−ON ≤ (V, d′); define a K ′ ≤ (V, d′)-

ladder L′ by:

L′(V, d′) = L(V, d)̀|B

and apply the induction hypothesis: we get

γL(V,d)(x) = γL′(V,d′)(x) + 1 = ‖L′(x′, d′)‖+ 1 = ‖L(x, d)‖ .

4. If A is limit, and T (A) < V ; then, given t < T (A), define dt from

K ′ to V , extending d, by dt(k) = t; define a K ′ ≤ (V, dt)-ladder Lt by:
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Lt(V, dt) = L(V, d)̀| [A] t

and apply the induction hypothesis: we get

γL(V,d)(t) = sup
t<T (A)

γLt(V,dt)(x) = sup
t<T (A)

‖Lt(x, d)‖ = ‖L(x, d)‖

(using the fact that T (‖L(x, d)‖) = T (‖L(V, d)‖)).
5. If A is limit, and T (A) = V , then define K ′ and dt exactly as above,

when t < x; we define the K ′ ≤ (V, dt)-ladders Lt by:

Lt(V, dt) = L(V, d)̀| ([A] (t+ 1)− 1) .

Then, using the induction hypothesis, we obtain:

γL(V,d)(x) = sup
t<x

(γLt(x,dt)(x) + 1) =

sup
t<x

‖Lt(x, dt)‖+ 1 = ‖L(x, d)‖ .

(ii) is left to the reader. 2

9.A.29. Corollary (theorem of comparison of hierarchies; Girard [5]).

Let L be a ladder; then

λL(V ) = γ(ΛL)(V ) .

Proof. First, we must explain the meaning of “ΛL”: if one restricts L

to the category ON ≤ W (= ∅ −ON ≤ (W, ∅)), then ΛL is defined as a

∅ < (W, ∅)-ladder, i.e. a <W -ladder. Using Property 1 of the Construction

9.A.24, it follows that the values (ΛL)(x) are independent of the choice of

W > x... . The proof is a trivial consequence of 9.A.28:

λL(V )(x) = ‖(ΛL)(x)‖ = γ(ΛL)(V )(x) .
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9.A.30. Discussion.

The result 9.A.29 must be slightly modified in order to obtain results of

the form:

γηp = ληp−1

for p = 0, 1, 2, ... (recall that η−1 = ε0).

Let us look more closely at the case p = 0; in fact, we are more inter-

ested in the equality

(1) λ

ω(ω

...
ω)

n times

= γ [η0]n

where η0 is an element of O, defined as in 5.A.7 (ii).

The reason for preferring this formulation is clear: the provably total

recursive functions of PA are exactly those bounded by some λωn (with

ωn = ω(ω
...

ω)

n times), hence they are exactly the functions bounded by

some γ [η0]n.

Let us now detail how one can use 9.A.29 to obtain 1:

1. Consider L0(x) = x, Lp+1(x) = Lp(x) +x·Lp(x). Then Ln−1(ω) is a rung

of height ωn; also, it is plain that, if one considers only the fundamental

sequences of length ω, Ln−1(ω) can be viewed as an element ωn of

O, with ‖ωn‖ = ωn. (All one has to do is to select indices for the

fundamental sequences; this is perfectly straightforward... .)

2. In the same way (ΛLn)(ω) is a rung of type ω; it is not difficult to get

from this an element [η0]n of O, in a way similar to 1.

3. Observe that:

γ [η0]n = γ(ΛLn)(ω) = λLn(ω) = λωn .

In the general case of ηp, see Exercise 9.B.9.
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Annex 9.B. Exercises

9.B.1. The categories K −ON.

(i) Define the sum of categories in the obvious way. Show that the

category K − ON (9.A.15) is the sum of full subcategories of the

form n→ ON. (n→ ON is defined by:

objects: pairs (x, d) with d ∈ I(n, x).

morphisms: I(x, d ; x′, d′) as in 9.A.15.)

(ii) Show that the categories n → ON are isomorphic to the categories

ONn+1.

(iii) Let D be a strongly homogeneous quasi-dendroid, and let s = (x0, ...,

xn−1) ∈ D∗; let a0, ..., ap−1 be the underlined elements of s, listed

in strictly increasing order; if (x, d) ∈ p → ON, define F (x, d) =

{s′ ; s′ ∈ D0(x) ∧ s′ extends (x′0, ..., x
′
n−1)}, where x′i = xi when xi is

not underlined, and x′i = d(j) when xi = aj. Extend F into a functor

from p→ ON to QDN preserving direct limits and pull-backs.

(iv) If D = BCHq(A) (A ∈ DIL), construct, given s ∈ D∗, F as in (iii),

and let B = LINq(F ). Show that B preserves direct limits and pull-

backs. Using (ii) transform B into a functor B′ from ONp+1 to ON

preserving lim
−→

and ∧ (“dilator in p + 1 variables”). In particular

consider the cases:

1. s = (x0) (hence p = 0): relation of B′ to the decomposition of A

in sum.

2. s = (x0, x1) when A is of kind Ω, and x0 = max {z ; (z) ∈ D∗}:
relation of B′ to the functor SEP(A).

(Remark. The construction of B′ from A is an alternative concept of prede-

cessor, which can be used to replace the one that we have defined here; there

are two inconveniences in using this concept: 1. we must use p+1-variable

dilators; 2. these predecessors do not define a well-founded relation as it

stands... .)
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9.B.2. Ladders and dilators.

(i) If L is a ladder, define a functor ‖L‖ from ON to ON by:

‖L‖ (x) = ‖L(x)‖ ‖L‖ (f) = ‖mL(y)
f ‖ if f ∈ I(x, y) .

Show that ‖L‖ is a dilator. Can all dilators be put under the form

‖L‖ for some ladder L ?

(ii) Construct a functor ‖Λ‖ from DIL to DIL preserving direct limits

and pull-backs, and such that ‖Λ‖ ‖L‖ = ‖ΛL‖.

(Remark. ‖Λ‖ is the typical example of a variant of Λ.)

9.B.3. Variants of Λ.

(i) If F is a dilator, define a functor G from ON2 to ON by:

G(x, 0) = F (x) G(f,E0) = F (f)

G(x, y + 1) = G(x, y) + F
(
G(x, y)

)
G(f, g + E1) =

G(f, g) + F
(
G(f, g)

)
If f ∈ I(x, x′), g ∈ I(y, y′), then G(f, g + E01) = G(f, g) +

E
0F

(
G(x′,y′)

), G
(
x, sup(yi)

)
= sup

(
G(x, yi)

)
, G
(
f,

⋃
i

gi
)

=
⋃
i

G(f,

gi). Show that G preserves direct limits and pull-backs, and that G

is a bilator when F 6= 0. We set IT(F )(x) = G(x, x), IT(F )(f) =

G(f, f). Define, when T ∈ I(F, F ′), IT(T ), in such a way that IT

becomes a functor from DIL to DIL preserving lim
−→

and ∧. (IT

stands for “iteration“.)

(ii) Show the existence of a functor Λ1 from DIL to DIL preserving

direct limits and pull-backs and s.t.:

Λ10 = 1

Λ1(F + 1) = IT(Λ1F )

SEP(Λ1F )(·, y) = Λ1
(
SEP(F )(·, y)

)
.
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(iii) Show the existence of a functor ΛΦ from DIL to DIL preserving

direct limits and pull-backs, and s.t.:

ΛΦ0 = Id

ΛΦ(F + 1) = ΛΦF + 1 + Φ(F )

SEP(ΛΦF )(·, y) = ΛΦ
(
SEP(F )

)
(·, y)

where Φ is a given functor from DIL to DIL preserving lim
−→

and

∧ (ptyx of type (O→ O)→ (O→ O)).

(Remark. (iii) is a typical example of primitive recursion on dilators; one

can for instance consider the particular cases:

Φ(F ) = G0 ◦ F G0 fixed dilator

Φ(F ) = ΛΦ(F ) , etc... .

9.B.4. Variant of Λ.

(i) Assume that L is a ladder; define for all x and y rungs M(x, y) by:

M(x, 0) = L(0) + 1 ;

‖M(x, y)‖ = sup
z<y

(
‖M(x, z)‖+ 1 + ‖L(‖M(x, z)‖)‖+ 1

)
M(x, y)̀|

(
‖M(x, z)‖+ 1 + ‖L(‖M(x, z)‖)‖

)
=

M(x, z) + 1 + L(‖M(x, z)‖)

T (‖M(x, y)‖) = y , [‖M(x, y)‖] z = ‖(x, z)‖ .

Prove that IT(L)(x) = M(x, x) defines a ladder.

(ii) Prove the analogue of the hierarchy tehorem for the original Grze-

gorczyk hierarchy:

λ′0(x) = 2x

λ′α+1(x) = λ′α(x) + 1 + it(λ′α) + 1

λ′α(x) = λ′[α]x(x)
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where it(f) stands for a function obtained by iterating f :

it(f)(0) = f(0) + 1 ;

it(f)(x+ 1) = it(f)(x) + 1 + f
(
it(f)(x)

)
+ 1 .

9.B.5. More about rungs.

(i) Using 9.A.23, show that, when L is a K-ladder, and z = ‖L(x, d)‖,
then we have only the following possibilities:

1. T (z) = 0 and T
(
m
L(y,e)
f (z)

)
= 0 for all f ∈ I(x, d ; y, e) and all y,

e.

2. T (z) = x and T
(
m
L(y,e)
f (z)

)
= y... .

3. T (z) = d(i) for some i ∈ K, and T
(
m
L(y,e)
f (z)

)
= f

(
T (z)

)
... .

4. T (z) = d(i) + 1 for some i ∈ K, and T
(
m
L(y,e)
f (z)

)
= f

(
T (z)

)
... .

(ii) If L is a ladder and z ≤ ‖L(x)‖ show that one of the following holds:

1. [z′]T (z) ≤ z < [z′] (T (z) + 1) for some z′ > z; in that case show

that T
(
m
L(y)
f (z)

)
= f

(
T (z)

)
for all y and f ∈ I(x, y).

2. T (z) = x; in that case show that T
(
m
L(y)
f (z)

)
= y... .

3. If 1 and 2 fail, show that T (z) is either 0 or a successor, and that

in both cases T
(
m
L(y)
f (z)

)
= f̂

(
T (z)

)
... .

(Hint. Use 9.A.23.)

(iii) In general, if L is a K-ladder, show that all points z < ‖L(x, d)‖ can

be said to be of type I or of type II; this means that, for all y, e and

f ∈ I(x, d ; y, e):

• If z is of type I, then z′ = m
L(y,e)
f (z) is of type I and T (z′) =

(f + E1)
(
T (z)

)
.

• If z is of type II, then z′ = m
L(y,e)
f (z) is of type II and T (z′) =

f̂
(
T (z)

)
.
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(iv) Assume that L is a K-ladder; define a K-ladder L′ as follows: in

L(x, d), if z is of type II, let T ′(z) = 0, [z′]0 = z, T and [ ] being

unchanged for type I points. Check that L′ is a K-ladder.

(Hint. Use 9.A.23.)

9.B.6. Nice flowers.

Assume that F is a flower; show the existence of an integer k such that

F ◦ (k + Id) is a nice flower.

9.B.7. Products without nicety.

Consider F = 2 · Id, and T = (E′01 + E′1)E′Id, i.e. T ∈ I1(Id, F ), T (x)(z) =

2z + 1. Define Fn = F ◦ ... ◦ F (n times), and Tnn+1 ∈ I1(Fn, Fn+1) by

Tnn+1 = EFn ◦ T . Define from that Tnm when n ≤ m. Show that the direct

limit of (Fn, Tnm) in PIL is the predilator ω̃ · Id (ω̃ is the order opposite

to ω).

9.B.8. Regularity (Boquin [94]).

We consider the category ON defined by:

objects: ordinals.

morphisms from x to y: the set Ī(x, y) of all f ∈ I(x, y) s.t. f + E1 is a

continuous function from x+ 1 to y + 1.

A regular dilator is a dilator which sends ON into ON. If D and

D′ are regular dilators, then Ī1(D,D′) is the set of all T ∈ I1(D,D′) s.t.

T (x) ∈ Ī
(
D(x), D′(x)

)
for all x ∈ 0n.

(i) Let F be a regular dilator, and let D = BCHq(1 + F + 1); if s =

〈x0, ..., x2n−1〉 ∈ D∗ − D, we consider the sets T (s) = {u ; 〈x0, ...,

x2n−1, u〉 ∈ D∗} and U(s) = {u ; 〈x0, ..., x2n−1, u〉 ∈ D}. Prove that

1. 0 ∈ U(s); from that conclude that ∀s′ ∈ D∗ of the form 〈x′0, ...,
x′2m−1〉, T (s′) is an ordinal.

2. T (s) is not a limit ordinal; furthermore, its greatest element is

in U(s).

3. If u ∈ T (s) − U(s), then u = u′ + 1, for some u′ ∈ U(s) (3

implies 1).
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(Hint. The proof consists in exhibiting limit points in some F (x),

and looking at their images under F (f), for an appropriate f . The

replacement of F by 1+F +1 is needed to ensure 1, 2 for s = 〈 〉... .
1 is proved by considering first the case x2n−1 limit, and the small-

est point in D0(x) of the form s ∗ t ... t must be 〈0〉.
2 is proved by considering 〈x0, ..., x2n−2, x2n−1 + 1, 0〉 ∈ D, and

showing that this point cannot be a limit... ! The same thing must

hold for all points D0(f)(s)... .

3. Replace s by D0(f)(s) = 〈x′0, ..., x′2n−1〉, and show that the small-

est t s.t. 〈x′0, ..., x′2n−1〉 ∗ t ∈ D0(x) cannot be a limit... .)

(ii) Show conversely that, if D = BCHq(1 + F + 1) enjoys 1–3, then

F is a regular dilator.

(iii) Assume that T ∈ I1(F, F ′), and consider the function f = BCHq

(E1 +T + E1) from BCHq(1 +F + 1) (= D) to BCH1(1 +F ′+ 1)

(= D′). Show that T ∈ Ī1(F, F ′) iff:

1. f(〈x0, ..., x2n−1, 0〉) = f ∗(〈x0, ..., x2n−1〉) ∗ 〈0〉.

2. If u 6∈ U(s) (in D), u < T (s), then

f(s ∗ 〈u+ 1〉) = f ∗(s) ∗ 〈v + 1〉 (if f ∗(s ∗ 〈u〉) = f ∗(s) ∗ 〈v〉).

3. If u ∈ T (s), u limit (in D), then

f(s ∗ 〈u〉) = sup
u′<u

f ∗(s) ∗ 〈v′〉 (if f ∗(s ∗ 〈u′〉) = f ∗(s) ∗ 〈v′〉).

(iv) If F is a regular flower, show that F is nice; same question when

T ∈ Ī1(F, F ′) and F , F ′ are regular flowers. When F is a regular

flower, what are the points in Ī1(Id, F ) ? Show that a flower F is

regular iff it is of the form a+
∫

(1 +G+ 1) for some regular G.

(v) Show that the functor length LH, when restricted to regular bila-

tors and regular morphisms of dilators, preserves pull-backs.

(vi) Consider a sum F =
∑
i<x

Fi of regular dilators; when is such a sum

regular? Similar question for a sum
∑
i<f

Ti of regular morphisms.
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(vii) There is an obvious concept of regular bilator; regular bilators are

always nice; show that the functors SEP and UN can still be de-

fined on regular objects.

(Hint. Define a natural transformation T from SEP(F ) to F ◦ A,

with A(x, y) = y + 1 + x, and show that rg
(
T (x, y)

)
is a closed

subset of F ◦ A(x, y)... .)

Remark. Regular dilators are certainly a more effective, more regu-

lar (!) concept than dilators. For instance the disturbing features of

dilators such as non preservation of pull-backs disappear with reg-

ular dilators; from this, for instance, the kind of a dilator becomes

more easily computable (see (viii) below)... . Moreover, since regu-

lar bilators are nice, it is likely that a simplified version of Λ can be

defined on regular dilators, taking its value among regular bilators:

the essential simplification would be:

(ΛF )(x, y) =
(
Λ SEP(F )(·, y)

)
(x, 0)

(ΛF )(f, g) =
(
Λ SEP(F )(·, g)

)
(f,E0)

(ΛT )(x, y) =
(
Λ SEP(T )(·, y)

)
(x, 0) .

However, the structure of regular dilators is slightly less “alge-

braic” than the structure of dilators, and for this reason, I so not

think that dilators must be replaced by regular dilators everywhere... .

of course the replacement is made possible by the property:

(viii) If F is a dilator, construct a regular dilator F ′ together with T ∈
I1(F, F ′).

(ix) If F is a regular dilator; show that

• F (1) = 0→ F of kind 0.

• F (1) limit → F of kind ω.

• F (1) successor→ F of kind 1 or Ω; the distinction between these

two subcases is obtained by looking at F (E01).

9.B.9. About the ηp’s.
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(i) From the definition of ηp, conclude that ηp = Λ(...(Λ︸ ︷︷ ︸
p+1 times

L)...) where L

is a ladder s.t. ‖L(ω)‖ = ε0, that the reader will explicitly define.

(ii) Conclude that γηp = ληp−1 .

(iii) Prove a similar result involving on one hand ordinals < ηp, and or-

dinals < ηp−1 on the other hand, on the model of what we did for

p = 0 in 9.A.30.

CHAPTER 10

THE β-RULE

Mostowski introduced the concept of β-model, ([95]), a generaliza-

tion of the concept of ω-model: an ω-model of PRA2 is a β-model (in

Mostowski’s sense) iff the following holds: as soon as m |= WO(f̄), then

f is (the characteristic function of) a well-order. Mostowski raised the

question of finding a syntactic characterization of truth in all β-models of

a given theory. What rendered the question delicate is the fact that truth

in all β-models is Π1
2 complete, hence Mostowski’s problem could not be

solved by means of ω-logic, i.e. Π1
1 methods.

I solved this question in 1978; the syntactic characterization makes

use of a functorial concept of β-proof; our notion of β-model is slightly

different from Mostowski’s original formulation, but one can easily show

that our concept solves Mostowski’s problem in the original formulation.

We shall first prove the β-completeness theorem for a rather simple

formulation of β-logic, and then we shall consider more general situations

and the corresponding completeness theorems... .

10.1. The β-completeness theorem

10.1.1. Definition.

(i) A β-language is a language L with a distinguished type o (the type
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of ordinals), together with a distinguished predicate ≤o (with two

places of type o) and such that the only terms of L of type o are

variables. When we speak of a formula of L, we always assume that

it has no free variables of type o.

(ii) Assume that L is a β-language; a β-theory(in the language L) is

simply a theory whose underlying language is L.

(iii) If L is a β-language, then a β-model of L is a model of L in

the usual sense, such that m(o) is equal to some ordinal α, and

m |= ζ̄ ≤o ξ̄ ↔ ζ ≤ ξ for all ζ, ξ < α. α = 0 is allowed; this is

in contradiction with the familiar definition of “model”, where one

assumes that m(τ ) 6= ∅ for all τ . A β-model of T is a β-model of

L in which (the closures of) all axioms of T are true.

10.1.2. Definition.

Let T be β-theory; then a formula A of L is β-valid in T iff every closed

instantiation A′ of A in L [m] is true in m, where m is an arbitrary β-

model of T . T
β
` A means “A is β-valid in T ”.

10.1.3. Example.

The example we are giving is not particularly elegant, but it has the ad-

vantage of bridging our concept of β-model with Mostowski’s original def-

inition. (The most interesting examples of β-theories will be found in the

next chapter: they are connected with the treatment of theories of induc-

tive definitions by means of β-logic.) Let us add the type o to L2
pr; we also

add the predicate letter ≤o, and a predicate letter R with three places of

respective types (2),

bi and o, and we consider the axioms:

∀xo∀xo(R(f, y, x) ∧R(f, y, x′)→ x = x′)

∃xo R(f, y, x)

∀xo∀xo(WO(f) ∧ f(y, y′) = 0 ∧ y 6= y′ ∧R(f, y, x) ∧

R(f, y′, x′)→ ¬(x′ ≤o x) .
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(These axioms express the existence, when f is a well-order, of a strictly

increasing function from f to o.) Now remark that:

(i) Every model of this theory yields, when restricted to the language

L2
pr, a β-model in the sense of Mostowski: if m |= WO(f̄), then

one can define a strictly increasing function h from f to m(o) by

h(y) = x ↔ m |= R(f̄ , ȳ, x̄); since m(o) is an ordinal, f is a well-

order. m is an ω-model: if f is the characteristic function of the

usual ordering of the integers, then the fact that WO(f) is provable

in PRA2 entails the existence of a strictly increasing function from

m(π) to m(o), and this forces m(ι) to be order isomorphic to ω.

(ii) Conversely, given a β-model of PRA2 in the sense of Mostowski,

consider the ordinal α = sup ‖R‖, where R varies through the rela-

tions of the form m |= f̄(x̄, ȳ) = 0̄, for some f̄ 2 ∈ |m|(2) such that

m |= WO(f). Define R(f̄ , ȳ, x̄) to be true iff:

– either ¬WO(f̄) and x is 0.

– or WO(f) and x is the order type of the set of predecessors of y,

w.r.t. f .

(iii) Remarks (i) and (ii) clearly show that A is true in all β-models of

PRA2 in the sense of Mostowski iff A is β-valid in the theory we just

constructed... . Hence any syntactic characterization of β-validity

will induce a solution of Mostowski’s problem.

10.1.4. Remark.

There are many similarities between ω-logic and β-logic. One can surely

mix these concepts, and obtain a notion of “βω-logic”; the question is “Is

it good taste to do that?”

(i) In most situations, the combination β-logic + ω-logic is fairly good:

it enables us to concentrate on questions concerning β-logic, without

bothering about integers.

(ii) However, ω-logic can be eliminated by an adequate choce of the

formalism. For the most subtle applications, e.g. cut-elimination,



The β-completeness theorem 209

the choice of a specific expression of the ω-rule by means of the β-

rule is a delicate subject; in fact the results of the next chapter, on

inductive definitions, will enable us to express the ω-rule by means

of the β-rule in a completely satisfactory way.

(iii) Hence the combination β-logic + ω-logic can be used for rough work;

but something is gained by the elimination of ω-logic... .

10.1.5. Theorem.

(i) Assume that T is a prim. rec. β-theory; then the set {dAe ; T
β
` A}

is Π1
2.

(ii) It is possible to choose a prim. rec. β-theory T in such a way that

the set {dAe ; T
β
` A} is Π1

2-complete (see Remark 6.1.5).

Proof. (i) T
β
` A can be written

∀m(m is a β-model of T →m |= A) .

(As in 6.1.4, we assume for simplicity that A is closed, and that all axioms

of T are closed.)

It suffices to restrict our attention to denumerable β-models.

(Proof. If m is a β-model of T +¬A, then by the Löwenheim-Skolem the-

orem, one can find a denumerable submodel n of m, which is still a model

of T + ¬A. n(o), which is a subset of the ordinal m(o) is isomorphic to

an ordinal, hence n is isomorphic to a β-model n′, hence we have found a

denumerable β-model of T + ¬A. 2)

On the model of 6.1.4, we introduce a formula C(f): ∀B(B is an ax-

iom of T → f(B) = 0) ∧ ∀B
(
f(¬B) = 1 − f(B)

)
∧ ∀B∀C

(
f(B ∧

C) = sup
(
f(B), f(C)

)
∧ f(B ∨ C) = inf

(
f(B), f(C)

)
∧ f(B → C) =

inf
(
1 − f(B), f(C)

))
∧ ∀B∀τ

(
f
(
∀xτB(xτ )

))
= sup

{
f
(
B(xτn )

)
; n ∈

IN
}

∧
f
(
∃xτB(xτ )

)
= inf

{
f
(
B(xτn )

)
; n ∈ IN

}
∧∀g∃n(f(xτg(n+1) ≤o xτg(n+1)) =

1)∧LO(≤o). (The last conjunct is a formula expressing that ≤o is a linear
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oder, whereas the last but one conjunct expresses that there is no s.d.s. for

≤o, i.e. that ≤o is a well-order.) Clearly T
β
` A iff ∀f(C(f)→ f(A) = 0);

now, C(f) (more precisely its precise formulation by means of Gödel num-

berings) is Π1
1, and it follows that T

β
` A is Π1

2.

(ii) Let T be the theory of Example 10.1.3 plus the axiom (Σ0
1−CA∗).

Assume that A = ∀f B(f) is a closed Π1
2 formula; then by the results of

Chapter 5, one can find a term t(f) such that the equivalence WO
(
t(f)

)
↔

¬B(f) is provable in PRA2 + (Σ0
1 − CA∗), hence β-valid in T .

Assume that A is true; if m is a β-model of T , and f is an element of

m of type (1), then m |= WO
(
t(f̄)

)
→ t(f) is the characteristic function

of a well-order, i.e. ¬B(f). Hence, if m |= ∃f ¬B(f), ¬A holds: hence

A→m |= A.

Conversely, if A is true in all β-models of T , then A is true in all β-

models of T in Mostowski’s sense, hence A is true in the standard model,

i.e. A is true.

Hence we have shown that, whenA is a closed Π1
2 formula, A↔ T

β
` A.

Now, if X is a Π1
2 subset of IN , i.e. n ∈ X ↔ A(n̄) for a suitable Π1

2 formula

A, then

n ∈ X ↔ T
β
` A(n̄) .

Hence the set X0 = {dAe ; T
β
` A} is Π1

2-complete: X0 is Π1
2 by (i), and

if X is any Π1
2 subset of IN , one can find a prim. rec. function f such that

n ∈ X ↔ f(n) ∈ X0

(take f(n) = Sub(dAe, dx0e, dn̄e)). 2

10.1.6. Definition.

(i) Assume that L is a β-language, and let α be an ordinal; one defines a

language L [α] by adding to L constants ζ̄ for all ζ < α. (Since L [α]

contains constants of type o, this language is not a β-language. But

free variables of type o are not allowed in L [α].)
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(ii) The sequent calculus LKα is defined as follows: the sequents are made

of formulas of L [α]; LKα uses the following specific rules:

+ Axioms: ` ζ̄ ≤o ξ̄ when ζ ≤ ξ < α

ξ̄ ≤o ζ̄ ` when ξ < ζ < α

+ Logical rules for ∀o and ∃o: these rules are akin to the rules for ∀L
and ∃L in ω-logic:

... Γ ` A(ζ̄),∆ ... (all ζ > α) Γ, A(ζ̄) ` ∆

r∀o l∀o
Γ ` ∀xo A(xo),∆ Γ,∀xo A(xo) ` ∆

Γ ` A(ζ̄),∆ ... Γ, A(ζ̄) ` ∆ ... (all ζ < α)

r∃o l∃o
Γ ` ∃xo A(xo),∆ Γ,∃xo A(xo) ` ∆

10.1.7. Remark.

A trivial solution to the problem of characterizing β-validity is the follow-

ing: A is β-valid in T iff for all α, at first sight: “for all denumerable α”, A

is provable in T +LKα. With this solution, a β-proof is a family πα)α∈0n

of proofs, such that πα is a proof of ` A in T +LKα.

This solution cannot be accepted, because such a family (πα) is not a

syntactic object, even with a very liberal acceptation of “syntactic”:

(i) When α is an ordinal, πα must be “α-recursive” or “recursive in

α”; the concepts available in the literature on α-recursion are not

precisely effective ... i.e. we have a problem as to the sense in which

πα is “syntactic”.

(ii) But the idea of a family of proofs indexed by the class of all ordinals

is, syntactically speaking, a monstrosity: the family of all β-models

of T is an acceptable syntactic object as well, if one is ready to accept

such families of proofs as syntactic objects!

(iii) However, this vulgar solution to the question of β-completeness can

be used as a starting point: we must generate the family (πα) in

an effective way; in fact observe that objection (i) does not hold for
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finite α’s, since for n < ω πn is a finite proof, and is therefore purely

syntactic. Furthermore the family (πn)n<ω is certainly enumerable

by a prim. rec. function. Hence all our task will be to “extend” the

family (πn)n<ω by an effective procedure to a family (πα)α∈0n. The

construction uses direct limits... .

10.1.8. Definition.

Let us restate the concept of a proof in LKα in a way akin to 6.1.8:

A proof in LKα is a pair (D,ϕ), where:

(i) D is a quasi-dendroid of type α.

(ii) s ∗ (n) ∈ D∗ ∧ n′ ≤ n→ s ∗ (n′) ∈ D∗ ∧ n < 2.

(iii) ϕ is a function whose domain is D∗ and such that, for all t ∈ D∗,

one of the following holds:

(1) ϕ(t) = 〈dAxe, dΓ ` ∆e〉 and Γ ` ∆ is A ` A, or ` ξ̄ ≤ ζ̄ for some

ξ and ζ such that ξ ≤ ζ < α or ξ̄ ≤ ζ̄ ` for some ξ and ζ such

that ζ < ξ < α; furthermore t ∈ D.

(2) ϕ(t) = 〈drΛe, dΓ,Λ ` A∧B,∆,Πe〉 and t ∗ (0) ∈ D∗ and t ∗ (1) ∈
D∗ and t ∗ (2) 6∈ D∗, and

(
ϕ
(
t ∗ (0)

))
1

= dΓ ` A,∆e and(
ϕ
(
t ∗ (1)

))
1

= dΛ ` B,Πe (for some sequents Γ ` A,∆ and

Λ ` B,Π of L [α]; we shall not mention this any longer...).

(3) ϕ(t) = 〈dl1∧e, dΓ, A∧B ` ∆e〉 and t ∗ (0) ∈ D∗ and t ∗ (1) 6∈ D∗

and
(
ϕ
(
t ∗ (0)

))
1

= dΓ, A ` ∆e... .

(4) ϕ(t) = 〈dl2∧e, dΓ, A∧B ` ∆e〉 and t ∗ (0) ∈ D∗ and t ∗ (1) 6∈ D∗

and
(
ϕ
(
t ∗ (0)

))
1

= dΓ, B ` ∆e... .

(5) ϕ(t) = 〈dr1∨e, dΓ ` A∨B,∆e〉 and t ∗ (0) ∈ D∗ and t ∗ (1) 6∈ D∗

and
(
ϕ
(
t ∗ (0)

))
1

= dΓ ` A,∆e... .

(6) ϕ(t) = 〈dr2∨e, dΓ ` A∨B,∆e〉 and t ∗ (0) ∈ D∗ and t ∗ (1) 6∈ D∗

and
(
ϕ
(
t ∗ (0)

))
1

= dΓ ` B,∆e... .

(7) ϕ(t) = 〈dl∨e, dΓ,Λ, A ∨ B ` ∆,Πe〉 and t ∗ (0) ∈ D∗ and t ∗
(1) ∈ D∗ and t ∗ (2) 6∈ D∗

(
ϕ
(
t ∗ (0)

))
1

= dΓ, A ` ∆e and(
ϕ
(
t ∗ (1)

))
1

=eΛ, B ` Πe... .
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(8) ϕ(t) = 〈dr¬e, dΓ ` ¬A,∆e〉 and t ∗ (0) ∈ D∗ and t ∗ (1) 6∈ D∗

and
(
ϕ
(
t ∗ (0)

))
1

= dΓ, A ` ∆e... .

(9) ϕ(t) = 〈dl¬e, dΓ¬A ` ∆e〉 and t ∗ (0) ∈ D∗ and t ∗ (1) 6∈ D∗ and(
ϕ
(
t ∗ (0)

))
1

= dΓ,` A,∆e... .

(10) ϕ(t) = 〈dr →e, dΓ ` A→ B,∆e〉 and t ∗ (0) ∈ D∗ and t ∗ (1) 6∈
D∗ and

(
ϕ
(
t ∗ (0)

))
1

= dΓ, A ` B,∆e... .

(11) ϕ(t) = 〈dl →e, dΓΛ, A → B ` ∆,Πe〉 and t ∗ (0) ∈ D∗ and

t ∗ (1) 6∈ D∗ and t ∗ (2) 6∈ D∗ and
(
ϕ
(
t ∗ (0)

))
1

= dΓ ` A,∆e
and

(
ϕ
(
t ∗ (0)

))
1

= dΛ, B ` Πe... .

(12) ϕ(t) = 〈dr∀oe, dΓ ` ∀xo A(xo),∆e〉 and t ∗ (ξ) ∈ D∗ and
(
ϕ
(
t ∗

(x)
))

1
= dΓ ` A(x),∆e for all ξ < α... .

(13) ϕ(t) = 〈dr∀τ e, dΓ ` ∀xτ A(xτ ),∆e〉 and t ∗ (0) ∈ D∗ and

t ∗ (1) 6∈ D∗ and
(
ϕ
(
t ∗ (0)

))
1

= dΓ ` A(y),∆e for some y such

that ∀x A(x) ∼ ∀y A(y), and y not free in Γ ` ∆ and τ 6= o.

(14) ϕ(t) = 〈dl∀τ e, dΓ,∀xτ A(xτ ) ` ∆e〉 and t ∗ (0) ∈ D∗ and t ∗
(1) 6∈ D∗ and

(
ϕ
(
t ∗ (0)

))
1

= dΓ, A(u) ` ∆e for some term u of

tupe τ , substituable for xτ in A... . (If τ = o, u must be equal

to ξ̄, for some ξ < α.)

(15) ϕ(t) = 〈dr∃τ e, dΓ ` ∃xτ A(xτ ),∆e〉 and t, ∗ (0) ∈ D∗ and t ∗
(1) 6∈ D∗ and

(
ϕ
(
t ∗ (0)

))
1

= dΓ ` A(u),∆e for some term u

substitutable for xτ in A... . (If τ = o, u must be equal to ξ̄, for

some ξ < α.)

(16) ϕ(t) = 〈dl∃oe, dΓ,∃xo A(co) ` ∆e〉 and t ∗ (ξ) ∈ D∗ and
(
ϕ
(
t ∗

(ξ)
))

1
= dΓ, A(ξ) ` ∆e for all ξ < α... .

(17) ϕ(t) = 〈dl∃τ e, dΓ,∃xτ A(xτ ) ` ∆e〉 and t ∗ (0) ∈ D∗ and t ∗
(1) 6∈ D∗ and

(
ϕ
(
t ∗ (0)

))
1

= dΓ, A(y) ` ∆e for some y such that

∀x A(x) ∼ ∀y A(y), and y not free in Γ ` ∆ and τ 6= o... .

(18) ϕ(t) = 〈drW e, dΓ ` A,∆e〉 and t ∗ (0) ∈ D∗ and t ∗ (1) 6∈ D∗

and
(
ϕ
(
t ∗ (0)

))
1

= dΓ ` ∆e... .

(19) ϕ(t) = 〈dlW e, dΓ, A ` ∆e〉 and t ∗ (0) ∈ D∗ and t ∗ (1) 6∈ D∗

and
(
ϕ
(
t ∗ (0)

))
1

= dΓ ` ∆e... .
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(20) ϕ(t) = 〈drEe, dΓ ` ∆′, B,A,∆′′e〉 and t ∗ (0) ∈ D∗ and t ∗ (1) 6∈
D∗ and

(
ϕ
(
t ∗ (0)

))
1

= dΓ ` ∆′, A,B,∆′′e... .

(21) ϕ(t) = 〈dlEe, dΓ′, B,A,Γ′′ ` ∆e〉 and t ∗ (0) ∈ D∗ and t ∗ (1) 6∈
D∗ and

(
ϕ
(
t ∗ (1)

))
1

= dΓ′, A,B,Γ′′ ` ∆e... .

(22) ϕ(t) = 〈drCe, dΓ ` A,∆e〉 and t ∗ (0) ∈ D∗ and t ∗ (1) 6∈ D∗ and(
ϕ
(
t ∗ (0)

))
1

= dΓ ` A,A,∆e... .

(23) ϕ(t) = 〈dlCe, dΓ, A ` ∆e〉 and t ∗ (0) ∈ D∗ and t ∗ (1) 6∈ D∗ and(
ϕ
(
t ∗ (0)

))
1

= dΓ, A,A ` ∆e... .

(24) ϕ(t) = 〈dCute, dΓ,∆ ` ∆,Πe〉 and t ∗ (0) ∈ D∗ and t ∗ (1) ∈
D∗ and t ∗ (2) 6∈ D∗ and

(
ϕ
(
t ∗ (0)

))
1

= dΓ ` A,∆e and(
ϕ
(
t ∗ (1)

))
1

= dΛ, A ` Πe... .

10.1.9. Remarks.

(i) We use the symbols d e to denote some kind of Gödel numbering for

the rules (dAxe, ..., dCute) and for the formulas and sequents of L [α];

this Gödel numbering has not yet been defined; of course the diffi-

culty comes from the parameters ξ̄ < α, which make impossible any

attempt to Gödel number formulas of L [α] by means of integers... .

We use ordinals < ω1+α to Gödel number expressions of L [α]:

– Observe that finite sequences of ordinals < ω1+α can be encoded

by means of ordinals < ω1+α: let y0, ..., yn−1 be such a sequence

and write yi = ωx1 · a1
i + ...+ωxp · api +bi, with a1

i , ..., a
p
i , bi integers,

and x1 > ... > xp > 0; then we define 〈y0, ..., yn−1〉 to be ωx1 · A1 +

...+ωxp · Ap+B, with B = 〈b0, ..., bn−1〉 = pb0+1
0 · pb1+1

1 · ... · pbn−1+1
n−1

and Ak = p
ak0
0 · p

ak1
1 · ... · p

akn−1

n−1 − 1.

– The Gödel numbers of the symbols of L are defined as usual: they

are integers; the Gödel number of the constant ξ̄ < α is defined to

be ω1+ξ.

– Gödel numbers for expressions of L [α] are obtained by means of

the function 〈·, ..., ·〉 defined above.
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(ii) It is certainly necessary to be more precise when naming our rules in

10.1.8; especially the rules (l∀o) and (r∃o) must be carefully Gödel

numbered: for instance the Gödel number assigned to an instance of

(l∀o) acting on ξ could be 〈14, ω1+ξ〉... .

(iii) Our Gödel numbering and the function 〈 〉 are “functorial”: this

will clearly appear later on ... (10.1.12).

10.1.11. Definition.

Let π = (D,ϕ) be a α’-proof an assume that f ∈ I(α, α′); then we even-

tually define an α-proof fπ = (fD,f ϕ) as follows:

– fD is defined as in 8.D.6.

– fϕ is the function making the following diagram commutative,

µDffD D
fϕ ϕ

ω1+α ω1+α′

ω1+f

if such a function exists; fϕ is not defined otherwise.

10.1.12. Remark.

The Gödel numbering is functorial in the following sense: assume that

f ∈ I(α, α′) and that A ∈ L [α]; let B be the formula obtained from A by

replacing all parameters ξ̄ (with ξ < α by f(ξ); then

dBe = ω1+f (dAe) .

Now, it is not hard to restate 10.1.11 in a more familiar language: we start

with an α′-proof and

(i) first we cut all premises of index ξ 6∈ rg(f) (and what is above those

premises) in all rules (r∀o) and (l∃o): this is a process of mutilation,

familiar from dendroids (in fact dendroids, quasi-dendroids, homoge-

neous trees ... were built up on the model of α-proofs...).
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(ii) in the mutilated proof, if there remains parameters ξ̄, with ξ 6∈ rg(f),

then fπ cannot be defined; otherwise, replace systematicaly all pa-

rameters f(ξ) by ξ̄: the resulting proof is fπ. See examples below.
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10.1.13. Examples.

(i) Consider the ω-proof (there is an ambiguity between “ω-proof” in the

sense of Chapter 6 and in the sense of “α-proof” with α = ω...):

2̄ ≤ 0̄ ` 3̄ ≤ 1̄ ` 4̄ ≤ 2̄ ` 5̄ ≤ 3̄ ` 6̄ ≤ 4̄ `
r¬ r¬ r¬ r¬ r¬

` ¬(2̄ ≤ 0̄) ` ¬(3̄ ≤ 1̄) ` ¬(4̄ ≤ 2̄) ` ¬(5̄ ≤ 3̄) ` ¬(6̄ ≤ 4̄)
r∃o r∃o r∃o r∃o r∃o

` ∃yo ¬(y ≤ 0̄) ` ∃yo ¬(y ≤ 1̄) ` ∃yo ¬(y ≤ 2̄) ` ∃yo ¬(y ≤ 3̄) ` ∃yo ¬(y ≤ 4̄) ...
r∀o

∀xo ∃yo ¬(y ≤ x)

Consider the function f ∈ I(ω, ω) defined by f(n) = 2n; then what

remains after mutilation w.r.t. f is:

2̄ ≤ 0̄ ` 4̄ ≤ 2̄ ` 6̄ ≤ 4̄ `
r¬ r¬ r¬

` ¬(2̄ ≤ 0̄) ` ¬(4̄ ≤ 2̄) ` ¬(6̄ ≤ 4̄)

r∃o r∃o r∃o
` ∃yo ¬(y ≤ 0̄) ` ∃yo ¬(y ≤ 2̄) ` ∃yo ¬(y ≤ 4̄) ...

r∀o
∀xo ∃yo ¬(y ≤ x)

All parameters that remain in the mutilated proof are in rg(f); hence

it is possible to define fπ by replacing everywhere 2n by n̄:

1̄ ≤ 0̄ ` 2̄ ≤ 1̄ ` 3̄ ≤ 2̄ `
r¬ r¬ r¬

` ¬(1̄ ≤ 0̄) ` ¬(2̄ ≤ 1̄) ` ¬(3̄ ≤ 2̄)

r∃o r∃o r∃o
` ∃yo ¬(y ≤ 0̄) ` ∃yo ¬(y ≤ 1̄) ` ∃yo ¬(y ≤ 2̄) ...

r∀o
∀xo ∃yo ¬(y ≤ x)
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Consider now the function g ∈ I(ω, ω) defined by f(n) = 3n; then

what remains after mutilation w.r.t. g is:

2̄ ≤ 0̄ ` 5̄ ≤ 3̄ `
r¬ r¬

` ¬(2̄ ≤ 0̄) ` ¬(5̄ ≤ 3̄)

r∃o r∃o
` ∃yo ¬(y ≤ 0̄) ` ∃yo ¬(y ≤ 3̄) ...

r∀o
∀xo ∃yo ¬(y ≤ x)

In this mutilated proof, parameters 2̄, 5̄, ... which are not in rg(g) still

occur, hence gπ does not exist.

If h ∈ I(n, ω), then the parameter h(n− 1) + 2 occurs in π after

mutilation w.r.t. h, and so hπ is immediate from a semantic viewpoint:

there is no n-proof, when n 6= 0, of ∀xo∃yo ¬(y ≤ x) since this

formula expresses that o is void or a limit ordinal... .

(ii) But the most important example is given by the principle of transfi-

nite induction; it is not an exaggeration to say that β-logic is intro-

duced in the purpose of giving a purely logical proof of this principle!

Let A be a formula of L with a free variable of tyep o. We consider

the formula Prog(A):

∀xo
(
∀yo

(
x ≤ y ∨ A(y)

)
→ A(x)

)
.

Then we define by induction on ξ < α (induction on ξ is excessive!

see 10.1.21 below) an α-proof πα,ξ of the sequent Prog(A) ` A(ξ̄):

assume that πα,ζ has been defined for all ζ < ξ, then πα,ξ is:
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παζ (if ζ < ξ) (if ξ ≤ ζ < α)

Prog(A) ` A(ζ̄) ` ξ̄ ≤ ζ̄

r2∨ r1∨
Prog(A) ` ξ̄ ≤ ζ̄ ∨ A(ζ̄) ... Prog(A) ` ξ̄ ≤ ζ̄ ∨ A(ζ̄) ...

r∀o
Prog(A) ` ∀yo

(
ξ̄ ≤ y ∨ A(y)

)
A(ξ̄) ` A(ξ̄)

l→
Prog(A),∀yo

(
ξ̄ ≤ y ∨ A(y)

)
→ A(ξ̄) ` A(ξ̄)

l∀o
Prog(A) ` A(ξ̄)

We prove by induction (induction on ξ is excessive! see 10.1.21 below)

on ξ < α that, if f ∈ I(α, α′) fπα′,f(ξ) ' πα,ξ, i.e. fπα′,f(ξ) exists and

equals πα,ξ: assume that the property holds for all ζ < ξ; then it is

plain that fπα′,f(ξ) equals

fπα′f(ζ)
(if f(ζ) < f(ξ)) (if f(ξ) ≤ f(ζ) < α′)

Prog(A) ` A(ζ̄) ` ξ̄ ≤ ζ̄

r2∨ r1∨
Prog(A) ` ξ̄ ≤ ζ̄ ∨ A(ζ̄) ... Prog(A) ` ξ̄ ≤ ζ̄ ∨ A(ζ̄) ...

r∀o
Prog(A) ` ∀yo

(
ξ̄ ≤ y ∨ A(y)

)
A(ξ̄) ` A(ξ̄)

l→
Prog(A), ∀yo

(
ξ̄ ≤ y ∨ A(y)

)
→ A(ξ̄) ` A(ξ̄)

l∀o
Prog(A) ` A(ξ̄)

and, using the induction hypothesis, this equals πα,ξ.

Now consider the proof πα:
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πα,ξ (if ξ < α)

Prog(A) ` A(ξ̄)

r∀o
Prog(A) ` ∀xoA(x)

r →
` Prog(A)→ ∀xoA(x)

πα establishes the principle of transfinite induction (on A); Assume

that f ∈ I(α, α′); then fπα′ exists and is equal to

fπα′,f(ξ)
(if f(ξ) < α′)

Prog(A) ` A(ξ̄)

r∀o
Prog(A) ` ∀xoA(x)

r →
` Prog(A)→ ∀xoA(x)

i.e. to πα: fπα′ ' πα if f ∈ I(α, α′).

10.1.14. Definition.

Let L be a β-language, let Γ ` ∆ be a sequent of L, and let T be a

β-theory in the language L; a β-proof of Γ ` ∆ in T is a family (πα)α∈0n

such that, for all α:

πα is a proof of Γ ` ∆ in T [α] = LKα + T and enjoying the homo-

geneity condition:

∀α∀α′∀f ∈ I(α, α′) fπα′ ' πα .

To the β-proof (πα) associate the function f : f(n) = dπne (since πn is

a finite proof, there is an obvious way of defining a Gödel number dπne...).
(πα) is said to be recursive (resp. prim. rec.) iff the function f is recur-

sive (resp. prim. rec.). If (πα) is recursive, then an index of f is called a a

code of (πα).
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10.1.15. Example.

The family (πα) of 10.1.13 is the typical example of a β-proof: this family

if a β-proof of the sequent ` Prog(A) → ∀xo A(x). Furthermore, this

β-proof is prim. rec.

10.1.16. Definition.

The following data define, when T is a β-theory in the language L, a cat-

egory DEMT :

objects: pairs (a,π) where π is an α-proof.

morphisms from (α,π) to (β,λ): the set I(α,π ; β,λ) of all f ∈ I(α, β)

s.t. fλ is defined and fλ = π.

10.1.17. Theorem.

Consider the following functor from DEMT to ON:

Tr
(
(α,π)

)
= α Tr(f) = f .

(i) Let
(
(αi,πi), fij

)
be a direct system in DEMT , and assume that(

(α,π), fi
)

enjoys 8.1.11 (i)–(iii) w.r.t.
(
(αi,πi), fij

)
; then the di-

rect system has a direct limit
(
(β,λ), gi

)
in DEMT and (β, gi) =

lim
−→

(αi, fij).

(ii) Assume that fi ∈ I
(
(αi,πi), (β,λ)

)
(i = 1, 2); then the pull-back of f1

and f2, considered as morphisms in the category DEMT exists, and

is equal to their pull-back when f1 and f2 are considered as morphisms

in ON.

Proof. The proof essentially rests upon the following lemma:

10.1.18. Lemma.

If π is an α-proof, one can construct a function xπ from the set Pf (α) of

finite subsets of α to P (α) such that:

(i) X ⊂ Y → xπ(X) ⊂ xπ(Y ).
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(ii) If f ∈ I(β, α), then fπ exists iff ∀X
(
X finite and X ⊂ rg(f) →

xπ(x) ⊂ rg(f)
)
.

Proof. We use the definition of fπ that is given in 10.1.12; if X is a fi-

nite subset of α, then we mutilate w.r.t. f such that rg(f) = X, as in

10.1.12 (i); more precisely we consider the result of suppressing in π, all

branches above premises of index ξ 6∈ X in the rules (r∀o) and (l∃o); we

define xπ(X) to consist of all ordinals ζ such that ζ̄ occurs in the remaining

(mutilated) proof. Observe that xπ is obviously increasing w.r.t. inclusion;

furthermore, the hypothesis “X finite” was of no use, and xπ(X) is defined

for arbitrary subsets X of α: we obviously have xπ(X) =
⋃

Y⊂X

Y finite

xπ(Y ).

(Proof. If ζ̄ occurs somewhere (at stage s) in π, then there are only

finitely many rules (r∀o) and (l∃o) below this occurrence; if β1, ..., βn are

the underlined ordinals occurring in s, then ζ ∈ xπ(X) ↔ β1, ..., βn ∈ X.

2)

Now, fπ is defined iff xπ
(
rg(f)

)
⊂ rg(f): this proves (ii). 2

10.1.17 is proved as follows:

(i) Consider X =
⋃
i

rg(fi); since I is directed, and fiπ exists for all

i ∈ I, it follows that hπ is defined (with h such that rg(h) = X);

the result is a consequence of 10.1.18 (ii); assume that h ∈ I(β, α),

and define yi by fi = hgi. One easily checks that
(
(α,h π), gi

)
enjoys

8.1.11 (i)–(iii) w.r.t.
(
(αi,πi), fij

)
. h is the only solution of fi = hgi

for all i. Furthermore, hπ is uniquely determined by the data (αi,πi),

fij: assume that πi = (Di, ϕi) and define

D =
⋃
i

µgi(Di) (µf is defined in 8.D.6)

ϕ ◦ µDgi = ω1+gi ◦ ϕi .

Then hπ = (D,ϕ). All these results show that 8.1.11 (iv) holds.

(ii) Using 10.1.18 (ii), we observe that, if
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∀X finite, X ⊂ rg(f1)→ xπ(X) ⊂ rg(f1)

and ∀X finite, X ⊂ rg(f2)→ xπ(X) ⊂ rg(f2) ,

then

∀X finite, X ⊂ rg(f1) ∩ rg(f2)→ xπ(X) ⊂ rg(f1) ∩ rg(f2) .

So if f3 is defined by rg(f3) = rg(f1) ∩ rg(f2), it follows that, the

hypothesis: f1π and f2π defined entail f3π defined. The fact that

f3 = f1 ∧ f2 in the category DEMT is rather trivial, and therefore

left to the reader. 2

10.1.19. Remark.

In defining the category DEMT , the following immediate property has

been used implicitly: if f ∈ I(α, β) and g ∈ I(β, γ) are such that gπ and
f (gπ) are defined, then (gf)π is defined and equal to f (gπ).

10.1.20. Theorem.

(πα) is a β-proof iff

π(α) = (α,πα) π(f) = f

defines a functor from ON to DEMT . π preserves direct limits and pull-

backs.

Proof. The first half of the theorem is a mere triviality. If (α, fi) =

lim
−→

(αi, fij), then by 10.1.17 (i) (πα, fi) = lim
−→

(παi , fij); hence π pre-

serves direct limits. Preservation of pull-backs is shown in a similar way.2

10.1.21. Remarks.

(i) It is therefore possible to identify β-proofs with those functors π from

ON to DEMT such that Tr ◦ π = IDON.

(ii) Are β-proofs acceptable “syntactic” objects ? In our discussion 10.1.7,

we said that a reasonable condition to ask for, would be that the

family (πα) is determined by the subfamily (πn)n<ω. But if π is a

β-proof, we have
(
(α,πα), fi

)
= lim

−→

(
(αi,παi), fij

)
, when (α, fi) =
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lim
−→

(αi, fij) with all αi’s< ω. Hence π is determined by its restriction

to the category ON < ω. But the restriction of π to ON < ω is

completely determined by the family (πn), since π(f) = f for all

f . (Moreover, πα can be constructed in an effective way from the

family (πn) and α: given a direct system of integers (αi, fij) such

that (α, fi) = lim
−→

(αi, fij), then observe that (with πα = (Di, ϕi),

= (D,ϕ)) D =
⋃
i

µfi(Di) and ϕ ◦ µfi = ω1+fi ◦ ϕi. This gives an

effective way to compute πα.

10.1.22. Theorem (β-completeness; Girard, 1978).

A is β-valid in T iff there is a β-proof of the sequent ` A in T . If T is a

recursive theory, then this β-proof can be chosen recursive.

Proof. (i) One side of the proof is immediate: let m be a β-model of T ;

then if m(o) = α, and π is a β-proof of A, then we consider the α-proof

πα; then it is immediately shown that all closed instantiations (in m) of

sequents of πα are true.

(ii) Conversely, we shall prove a more precise result; we use “pre” as

usual, i.e. pre α-proof means α-proof without well-foundedness conditions,

pre β-proof means a family (πα) of pre α-proofs... .

10.1.23. Theorem.

It is possible to construct a pre β-proof (πα) of ` A in T with the following

property:

∀α ∈ 0n (πα is an α-proof ↔ in all models m s.t. m(o) ≤ α

all closed instantiations of A are true) .

Furthermore, if T is recursive, and πn is an n-proof for all n, then π

is recursive.

Proof. The proof essentially follows the argument of Theorem 6.1.13; the

modifications are not very big, but rather subtle... .

1. Instead of constructing a pre ω-proof, we shall construct, for each α, a

pre α-proof πα.
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2. We must manage to satisfy the requirements fπα = πβ for all f ∈
I(α, β).

3. It is not possible to require that an infinite branch in πα contains all for-

mulas of L [α] (first think of the case α not denumerable; more seriously,

there is no way of establishing (even for denumerable α) a bijection be-

tween ω and L [α] which should be “functorial”).

4. Concretely, if we perform our construction in stages, then at each stage,

we shall have in all “hypotheses”:

– a sequent Γ ` ∆ of L [α].

– a distinguished formula B in Γ ` ∆.

– a finite set {α1, ..., αq} of ordinals, containing all ordinal parameters

of Γ ` ∆; this set will change only when the rule used is (r∀o) or

(l∃o)... .

We proceed exactly as in 6.1.13:

(i) Assume that Γ ` ∆ is a weakening of a sequent Γ′ ` ∆′ of L [α] of

one of the following forms:

B ` B

` ᾱi < ᾱj for some αi < αj (1 ≤ i, j ≤ q)

ᾱi < ᾱj ` for some αj ≤ αi (1 ≤ i, j ≤ q)

` B where B is a proper axiom of T ;

(we assume that these axioms are closed...).

Then the portion of proof is:

Γ′ ` ∆′

...

Γ ` ∆

weakenings
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This portion of proof has no hypothesis; we have clearly obtained an

α-proof of Γ ` ∆.

(ii) Assume that we are not in case (i) and that B occurs in ∆; then we

have the following possibilities:

1. B† is atomic; let C be the smallest formula (in the sense of the

Gödel numbering 10.1.9 (i)) which does not occur in Γ ` ∆, and

whose parameters are among α1, ..., αq; then our portion of proof

is

Γ ` C,∆ Γ, C ` ∆

CUT

Γ ` ∆

The distinguished formulas and parameters will be described later

on... .

2. B† is a conjunction B1 ∧B2; the portion of proof is

Γ ` B1,∆ Γ ` B2,∆

r∧
Γ ` ∆

3. B† is a disjunction B1 ∨B2; the portion of proof is

Γ ` B1, B2,∆

r1∨
Γ ` B1 ∨B2, B2,∆

r2∨
Γ ` ∆

4. B† is a negation ¬B1; the portion of proof is

Γ, B1 ` ∆

r¬
Γ ` ∆

5. B† is an implication B1 → B2; the portion of proof is
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Γ, B1 ` B2,∆

r →
Γ ` ∆

6. B† is ∀xτ B1(xτp ), with τ 6= o; the portion is

Γ ` B1(xτp ),∆

r∀τ
Γ ` ∆

where xτp is a variable which does not occur in Γ ` ∆.

7. B† is ∃xτ B1(xτp ), with τ 6= o; the portion is

Γ ` B1(tτ0 ), ..., B1(tτn ),∆

r∃τ
Γ ` B1(tτ1 ), ..., B1(tτn ),∆

r∃τ
...

Γ ` B1(tτn ),∆

r∃τ
Γ ` ∆

if n is the “stage” and t0, ..., tn are the first n+ 1 terms of type τ

according to the Gödel numbering, whose only ordinal parameters

are among α1, ..., αq.

8. B† is ∀xo B1(xop ); the portion is

... Γ ` B1(ξ̄),∆ ... all ξ < α

4∀o
Γ ` ∆

9. B† is ∃xo B1(xop ); the portion is
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Γ ` B1(ᾱ1), ..., B1(ᾱq),∆

r∃o
Γ ` B1(ᾱ2), ..., B1(ᾱq),∆

r∃o
...

Γ ` B1(ᾱq),∆

r∃o
Γ ` ∆

(α1, ..., α1 are the distinguished parameters associated with the

hypothesis Γ ` ∆).

(iii) Assume that we are not in case (i) and that B occurs in Γ; then we

have the following possibilities:

1. If B† is atomic; the portion is

Γ ` C,∆ Γ, C ` ∆

CUT

Γ ` ∆

where C is defined as in (ii) 1.

2. B† is a conjunction B1 ∧B2; the portion of proof is

Γ, B1, B2 ` ∆

l2∧
Γ, B1, B1 ∧B2 ` ∆

l1∧
Γ ` ∆

3. B† is a disjunction B1 ∨B2; the portion of proof is

Γ, B1 ` ∆ Γ, B2 ` ∆

l∨
Γ ` ∆

4. B† is a negation ¬B1; the portion of proof is
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Γ ` B1,∆

l¬
Γ ` ∆

5. B† is an implication B1 → B2; the portion of proof is

Γ ` B2,∆ Γ, B2 ` ∆

l→
Γ, B1 → B2 ` ∆

6. B† is ∀xτp B1(xτp ), with τ 6= o; the portion of proof is

Γ, B1(t0), ..., B1(tn) ` ∆

l∀τ
Γ, B1(t1), ..., B1(tn) ` ∆

l∀τ
...

Γ, B1(tn) `
l∀τ

Γ ` ∆

where t0, ..., tn are the first n+ 1 terms of type τ of L, according

to the Gödel number whose only ordinal parameters are among

α1, ..., αq.

7. B† is ∃xτp B1(xτp ), with τ 6= o; assume that xτp is not free in

Γ ` ∆; then our portion of proof is

Γ, B1(xτp ) ` ∆

l∃τ
Γ ` ∆

8. B† is ∀xop B1(xop ); our portion of proof is
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Γ, B1(ᾱ1), ..., B1(ᾱq) ` ∆

l∀o
Γ, B1(ᾱ2), ..., B1(ᾱq) ` ∆

l∀o
...

Γ, B1(ᾱq) ` ∆

l∀o
Γ ` ∆

if α1, ..., αq are the distinguished parameters associated with the

“hypothesis” Γ ` ∆.

9. B† is ∃xop B1(xop ); our portion of proof is

... Γ, B1(ξ̄) ` ∆ ... all ξ < α

l∃o
Γ ` ∆

The distinguished formulas in the hypotheses of the portion of proofs

constructed in (ii) or (iii) are determined exactly as in 6.1.13; we must also

define the distinguished set of parameters: let us say that, at stage 0, in

the sequent A, this set is void (A contains no ordinal parameters); if at

stage n, the distinguished parameter of Γ ` ∆ are α1, ..., αq, and Γ′ ` ∆′ is

one of the “hypotheses” constructed above Γ ` ∆ by means of (ii) or (iii),

then the distinguished parameters associated with Γ′ ` ∆′ are

– α1, ..., αq in (ii) 1–7 and 9, and (iii) 1–8.

– α1, ..., αq, ξ in (ii) 8 and (iii) 9, when Γ′ ` ∆′ is the ξth “hypothesis”

Γ ` B1(ξ̄),∆ or Γ, B1(ξ̄) ` ∆.

The next step is to prove that the definition of the pre proofs πα is

functorial, i.e. that, when f ∈ I(α, β), that fπβ = πα.

We prove by induction on n, that the truncated proofs πnα, obtained at

stage n enjoy fπnβ = πnα; more precisely if Γ ` ∆ is an hypothesis of πnβ,

corresponding to Γ′ ` ∆′ in πnα w.r.t. the mutilation process w.r.t. f , and

if B†, B′†, α1, ..., αq, α
′
1, ..., α

′
q, are the respective distinguished formulas

and parameters, then:
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– B† and B′† correspond one to another (e.g. if B† is the ith formula of Γ,

B′† is the ith formula of Γ′...).

– q‘ = q and α1 = f(α′1), ..., αq = f(α′q).

The details are left to the reader; but observe that in step (ii) 1, the

fact that dCe is “functorial” is absolutely essential; furthermore, since the

parameters of C are among α1, ..., αq, and α1, ..., αq ∈ rg(f), then fC is

defined... .

Hence, we have clearly defined a pre β proof π; if π(α) is an α-proof,

i.e. is well-founded, then so is π(β) for all β ≤ α (because π(β) = fπ(α)

for some f). In particular, if m is any β-model of T such that m(o) ≤ α,

it will be immediate that all closed instantiations of A are valid in m. On

the other hand, if π(α) is not an α-proof, consider a s.d.s. Γn ` ∆n in this

pre proof; more precisely, we can require that, for all n, Γn ` ∆n is an

“hypothesis” at stage n, and that Γn+1 ` ∆n+1 is one of the hypotheses of

the portion of proof above Γn ` ∆n.

Assume that αn1 , ..., α
n
qn are the distinguished parameters associated

with Γn ` ∆n; if τ is a type and m is any integer, then one can find

m′ ≥ m s.t. the distinguished formula of Γm′ ` ∆m′ is ∃xτ B(xτ ) and

belongs to ∆m′ , for some B in which x occurs at least once; then the first

m+ 1 terms t of type τ (according to their Gödel number), whose ordinal

parameters are among αn1 , ..., α
n
qn , occur in Γm′+1 ` ∆m′+1. This plainly

shows that a term t occurs in some Γn ` ∆n iff all its ordinal parameters

belong to X, where X is the set {αni ; 1 ≤ i ≤ qn}.
We define a model m for L as follows:

– |m|τ is the set of all terms of type τ occurring in some Γn ` ∆n.

– m(f)(t1, ..., tk) = ft1...tk.

– m(p)(t1, ..., tk) = † if for some n, pt1...tk belongs to Γn.

– m(p)(t1, ..., tk) = f if for some n, pt1...tk belongs to ∆n.

We prove the following lemma:
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10.1.24. Lemma.

If B is a formula of L whose ordinal parameters belong to X, there is an

integer n such that b belongs to Γn ` ∆n, but not to both sides of the

sequent.

Proof. Similar to 6.1.14. 2

Hence the definition just given is sound. We now establish that

10.1.25. Lemma.

(i) m |= B ↔ ∃n (B occurs in Γn).

(ii) m |= ¬B ↔ ∃n (B occurs in ∆n) when all ordinal parameters of B

are in X.

Proof. We prove (i) and (ii) by induction on the degree of B; the proof is

exactly 6.1.15, except that must we must consider two additional cases:

(8) If B is ∀xo B1(xo): (i) assume that B occurs in Γn, and let ξ ∈ X,

and choose k such that ξ = αki for some i s.t. 1 ≤ i ≤ qk; now choose

m ≥ n, k such that B is the distinguished formula of Γm ` ∆m; then

Γm+1 = Γm, B1(αm1 ), ..., B1(αmqm), hence, by the induction hypothesis B1(ξ̄)

is true inm; since ξ was arbitrary in X, and |m|o = {ξ̄ ; ξ ∈ X}, it follows

that B is true in m.

(ii) Assume that B occurs in ∆n; then B is the distinguished formula

of Γp ` ∆p for some p ≥ n, and ∆m+1 = B1(ξ̄),∆m for some ξ ∈ X; using

the induction hypothesis, B1(ξ̄) is false in m, and it follows that B is false

in m as well.

(9) If B is ∃xo B1(xo): symmetric to (8). 2

Now, m is not a β-model, since |m|o is not an ordinal; but if f ∈
I(β, α) is such that rg(f) = X, it is plain that we can construct a β-model

m′ which is isomorphic to m. It is immediate that the axioms of m and

¬A are true in m (and in m), hence we have found a β-model m′ of T in

which (some closed instantiation of) A fails; furthermore, |m|o ≤ α. The

essential property of 10.1.23 is therefore established... .
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Now, everything done is clearly prim. rec. in the data; if T is a recursive

theory, then the trees πn will clearly be recursive... . If πn is an n-proof

for all n, then the function which associates to n the height of the tree πn

is recursive, and from that it follows that it will be possible to define a

recursive function {e}n ' dπne ... details are left to the reader. 2

Proof of 10.1.22. If A is β-valid in T and π is the pre β-proof constructed

in 10.1.23, then π(α) must be an α-proof for all α, hence π is a β-proof;

moreover, if T is recursive, so is π. 2

10.1.26. Theorem.

The following sets are Π1
2-complete:

(i) the set of all codes of recursive β-proofs (for a suitable T ).

(ii) the set of all codes of recursive dilators.

(iii) the set of all codes of recursive flowers.

Moreover, “recursive” can be strenghtened into “primitive recursive”

in (i), (ii), (iii)... .

Proof. Recall that X ⊂ IN is Π1
2-complete iff:

– X is a Π1
2 subset of IN .

– Any Π1
2 subset Y of IN can be expressed as {z ; f(z) ∈ X} for some

prim. rec. function f .

We first observe that the sets considered in (i)–(iii) are Π1
2: in the three

cases, this is for the same reason: each of these sets can be expressed by

e ∈ X ↔ ∀f
(
WO(f)→ WF

(
πe(f)

))
∧ A

(A arithmetic, WO is the predicate “is a well-order”, WF is the predicate

“is well-founded”); such a formula of L2
pr is plainly (equivalent to a) Π1

2

(formula):

(i) A is the formula expressing that e is the index of a recursive pre

β-proof: {e}n is defined for all n, and is the index of an n-proof. Hence we
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only need to express that the pre α-proofs πα are well-founded for all α; by

an argument akin to 8.2.7, it suffices to look for α < ℵ1, But denumerable

ordinals can be encoded by means of functions, and WO(f) expresses that

f is the code of an ordinal < ℵ1. Now, if {e}n = dπne = d(Dn, ϕn), we

define a tree Tf by: 〈..., xi, ..., xj, ...〉 ∈ Tf ↔ all underlined xj’s are such

that f(xj, xj) = 0, and if one replaces all underlined elements xj1 , ..., xjk
by x′j1 , ..., x

′
jk

in such a way that: f(xjp , xjq) = 0 ↔ x′jp ≤ x′jq (all p, q),

then the sequence 〈..., xi, ..., x′j, ...〉 belongs to Dn, with n = sup
j

(x′j + 1).

The requirement ∀α ∈ 0n πα is an α-proof can be rewritten as ∀f
(
WO(f)

→ WRT (Tf )
)
. (In fact Tf cannot be expressed by a term t(f, e) of L2

pr,

because of the use of the partial function {e} · in it; but z ∈ Tf can be

expressed by means of an arithmetic formula T (f, e, z), and WTR(Tf ) can

be written as ∀g∃n ¬T
(
f, e, g∗(n)

)
in L2

pr... .)

(ii) A is the formula expressing that e is the index of a recursive

predilator Pe: {e} 〈z0, ..., zn〉 is defined for all strictly increasing sequences

z0 < ... < zn and is equal to 〈z′0, ..., z′m〉 for some m and z′0, ..., z
′
m; moreover

1. {e} 〈0, ..., n〉 is equal to a sequence of the form 〈0, ...,m〉.

2. If 〈z0, ..., zn〉, 〈y0, ..., yzn〉 are two sequences, consider {e} 〈z0, ..., zn〉 =

〈z′0, ..., z′m〉, {e} 〈y0, ..., yzn〉 = 〈y′0, ..., y′p〉 and {e} 〈yz0 , ..., yzn〉 = 〈y′′0 , ...,
y′′q 〉; then we have p = z′m and y′′0 = y′z′0

, ..., y′′q = y′z′m .

When f is the code of a denumerable well-order, we define the value of

our predilator on f by means of the normal form theorem:

– The trace of Pe consists of those pairs 〈z, n〉 such that z < lh({e} 〈0, ..., n〉)−
1 and if 〈z0, ..., zm〉 is such that z0 < ... < zm = n, and z = ({e} 〈z0, ...,

zm〉)i for some i ≤ z, then necessarily m = n.

– Pe(f) consists of all finite sequences 〈z, x0, ..., xn−1〉 such that 〈z, n〉 is

in the trace of P , and x0, ..., xn−1 are pairwise distinct, and f(x0, x1) =

f(x1, x2) = ... = f(xn−2, xn−1) = 0.

– Pe(f) is ordered as follows: 〈z, x0, ..., xn−1〉 < 〈z′, x′0, ..., x′n′−1〉 is defined

as follows: choose integers i0, ..., in−1, j0, ..., jn′−1 < n + n′ such that
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ik < jk ↔ f(xk, x
′
e) = 0 and xk 6= x′e (k < n, l < n′) and consider the

sequences s = {e} 〈i0, ..., in−1, n + n′〉 and s′ = {e} 〈j0, ..., jn′−1, n + n′〉;
then (s)z < (s′)z′ .

The linear order Pe(f) is obviously expressed by a formula which is

arithmetical, and Pe is a dilator iff:

A(e) ∧ Af
(
WO(f)→ WO

(
Pe(f)

))
.

(iii) Exactly as in (ii) except that a third condition is required in the

formula A(e):

3. If n ≤ m, then {e} 〈0, ..., n−1,m〉 is of the form 〈0, ..., p−1, q〉 for some

q and p ≤ q.

Hence the three sets considered are Π1
2 sets; now we establish the es-

sential part of Π1
2-completeness:

(i) By 10.1.5, for a suitable prim. rec. β-theory T the set {A ; T `β

A} is Π1
2-complete. In fact, it is immediate that all β-models of T are

such that m(o) is infinite, (equivalently |= Inf, where Inf is the formula

∃xo∀yo∃zo ¬(z ≤o y) hence the set X = {A ; T `β Inf → A} is

Π1
2-complete. Now we apply 10.1.23; we consider the following prim. rec.

function

– If n is the Gödel number of a formula A of L, then f(n) is the index of

the pre β-proof of Inf → A constructed in 10.1.23 (since Inf → A is valid

in all p-models, with p < ω, it follows that the pre β-proof of Inf → A is

recursive; its index is a prim. rec. function of dAe...).

– Otherwise f(n) = 0.

Then,, if Y is any Π1
2 set, we can find a prim. rec. function g such that

Y = {n ; g(n) ∈ X}, and then Y =
{
n ; f

(
g(n)

)
is the code of a recursive

β-proof
}

.

(ii) We shall construct a prim. rec. function h with the following prop-

erties:

– If e is the code of a recursive pre β-proof, then h(e) is the code of a

recursive predilator.
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– e is the code of a recursive β-proof iff h(e) is the code of a recursive

dilator.

(Using such an h, the Π1
2 set Y of (i) can be expressed as Y ={

n ; h
(
f
(
g(n)

))
is the code of a recursive dilator

}
.) We proceed as follows:

If e is the code of the pre β-proof (πα), then h(e) is a code of the predila-

tor LINq(D), where D is the pre shqd s.t. πω = (D,ϕ); the details are

straightforward, and left to the reader... .

(iii) We construct a prim. rec. function h′ with the following properties:

– If e is a code for a recursive predialtor, then h′(e) is a code for a recursive

preflower.

– e is a code for a recursive dilator iff h′(e) is a code for a recursive flower.

If e is a code for the recursive predilator F , then h′(e) is defined to be

the code of the recursive predilator
∫
F (y)dy, which is a preflower... .

The remaining properties of the theorem are left as exercises for the

reader (see 10.1.27). 2

10.1.27. Exercise.

(i) Show that the set of codes of recursive sh dendroids is Π1
2-complete.

(ii) Using (i), show that the set of codes of prim. rec. sh dendroids is

Π1
2-complete.

(Hint. If D is a sh dendroid, and s ∈ D ↔ {e} s ' 0, define D′

by: s ∈ D′ ↔ lh(s) − 1 = 〈(lh(s) − 1)0, (lh(s) − 1)1〉 ∧ ∃m ≤ lh(s)

(T1(e, (s)(lh(s)−1)0 ,m) ∧ U(m) = 0).)

(iii) Using (ii) show that the set of all codes of prim. rec. dilators (resp.

flowers) is Π1
2-complete.

(iv) Find a prim. rec. β-theory T such that the set of all indices of prim.

rec. β-proofs in T is Π1
2-complete.

(Hint. Observe that we have a prim. rec. bound on the height of the

n-proof πn of Inf → A constructed as in 10.1.23, and conclude that

π is prim. rec.)
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10.1.28. Exercise.

Prove the analogue of the β-completeness theorem for “βω-logic”, i.e. the-

ories in languages with distinguished types L and o, L being treated as in

Chapter 6, and o as in Chapter 10. Is it possible to derive this result from

the β-completeness theorem?

10.1.29. Exercise.

(i) Prove the analogue of the β-completeness theorem when ordinals are

replaced by linear orders. Call the resulting proofs “OL-proofs”.

(ii) Show that OL-proofs are of height uniformly bounded by some in-

teger N .

(iii) Using (ii) find an effective way of replacing OL-proofs by finitary

proofs (in usual Σ0
1 logic) in a system containing an additional axiom

“≤o is a linear order”.

10.1.30. Exercise.

Assume that D is a dilator; a D-model is a β-model whose ordinal part

m(o) is of the form D(α), for some α ∈ 0n; a D-proof is a family (πα)

such that, for all α ∈ 0n, πα is a D(α)-proof, and for all f , α, β, s.t.

f ∈ I(α, β), πα = D(f)πβ.

Prove the analogue of the β-completeness theorem. What can you say

concerning the following particular cases:

(i) D = ω.

(ii) D = Id.

(iii) D = 1 + Id.

10.1.31. Exercise.

Assume that α ∈ 0n and X ⊂ α; we define the concept of (α,X)-proof as

follows:

– Axioms whose ordinal parameters are in X are (α,X)-proofs.
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– All rules (except (r∀o) and (l∃o)) preserve the concept of (α,X)-proof.

– If (πz)z<α are (α,X ∪{z})-proofs of Γ ` A(z̄),∆ (resp. Γ, Az̄ ` ∆), then

one can construct an (α,X)-proof of Γ ` ∀xo A(x),∆ (resp. Γ,∃xo A(x) `
∆).

(i) Give a definition of the concept of pre (α,X)- proof.(∗)

(ii) Assume that f ∈ I(α, β) and that f(X) = Y ; if π is a (β, Y )-proof,

show that fπ always exists and is an (α,X)-proof. Prove the same

result for preproofs.(∗) What does happen when f(X) ⊃ Y ? When

f(X) ⊂ Y ?

(iii) Show that, if π is an (α,Xi)-proof for all i ∈ I (I 6= ∅), then π is an

(α,
⋂
i

Xi)-proof; conclude that there is a smallest subset X0 ⊂ α s.t.

fπ exists for all f s.t. rg(f) ⊃ X0. If (πα) is a β-proof, show that

πα is an (α, ∅)-proof for all α. Extend these results to preproofs.(∗)

(iv) Show that π is an (α, ∅)-proof, iff given any sequent Γ ` ∆ occurring

in π, whose ordinal parameters are z1, ..., zn, it is possible to find

rules (R1), ..., (Rn) “below” Γ ` ∆ such that for all i (Ri) is (r∀o)

or (l∃o) and Γ ` ∆ is above the zth
i premise of Ri. Similar question

for preproofs. Find a characterization of (α,X)-proofs; conclude the

exercise by finding a direct construction of the set X0 of (iii).

10.1.32. Exercise.

Assume that (πα) is a family of (α, ∅)-proofs in sequent calculus; using

the large cardinal axiom ∃x(x→ (ω1)<ωω ), construct a β-proof of the same

sequent.

(Hint. If f ∈ I(n, x), define fπ; fπ varies through a denumerable set D;

define a partition (Xi)i∈D of
⋃
i

I(n, x) by f ∈ Xi ↔ fπ = i. The large

cardinal axiom says that there is a homogeneous set Y ⊂ α of order type

ω1 (= ℵ1); in other terms if f, g ∈ I(n, α) are such that rg(f), rg(g) ⊂ Y ,

1(∗) The question of the extension to preproofs is an interesting way of testing one’s
understanding of the technique of “preobjects”.
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then fπ = gπ. Then consider π′ω1
= hπ, where h ∈ I(ω1, x) is defined by

rg(h) = Y . Prove that there is a unique β-proof (λα) such that λω1 = π′ω1
.)

(Remark. In some situations, this result is the only way of obtaining β-

completeness, for instance for the negative fragment of intuitionistic β-

logic, w.r.t. an ad hoc concept of β-model; see the work of Vauzeilles

[96] for more details; an open question is whether a general completeness

theorem of that kind implies some large cardinal axiom of the kind used

here... .)
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10.2. Predecessors of a β-proof

The problem is the following: functorial proofs (β-proofs,...) appear

as functors from categories like ON into categories of proofs (in the more

familiar sense of: infinitary proofs). The most obvious way of dealing

with such functorial proofs is to work on their values for such and such

argument (i.e. object of the initial category); for instacne, when π = (πα)

is a β-proof, then we work on the α-proofs πα. (A typical example can be

found in the cut-elimination theorem of 10.A.12: for each α we define a cut-

free α-proof N(πα), then we observe that N is a functor, hence
(
N(πα)

)
defines a β-proof.) Roughly speaking, the new functorial viewpoint does

not bring much when β-proofs are used in such a way: the constructions

already exist for α-proofs, and what we do is only to verify that they

are compatible with the new functorial framework. (Of course, for the

“philosophy” of the subject, the fact that “infinitary” operations can be

controlled by means of finitary approximations, makes an essential change

of viewpoint!) But anyway, the functorial side is rather external to the

constructions, and by no means affects the “deep structure” of what is

going on. Let us label this inessential use of functoriality as the pointwise

techniques. Non pointwise techniques, which make an essential use of

functoriality are called global. A typical example is the cut-elimination

theorem of Chapter 11 (11.4.1); let us explain why there is no pointwise

cut-elimination theorem in that case: we are working with a β-theory T

which is such that T [α] is inconsistent for many values α (for instance, for

all α < ωCK1 ); we prove a cut-elimination theoremm for T ; but this theorem

cannot be obtained through a cut-elimination theorem for the T α’s, since

they can be inconsistent, whereas cut-elimination implies inconsistency: a

pointwise cut-elimination is therefore impossible.

The natural question to ask is the following: which tool can we use when

we work directly on proofs-as-functors (i.e. globally)? The natural answer

is the following: given a functorial proof, make it appear as the succession

of application of specific rules applying to functorial proofs without passing

through “pointwise” proofs.

The situation here is very close to the results of Chapter 9: predecessors
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of dilators and predecessors of β-proofs are indeed closely related.

Our concept of β-proof is too restrictive and we shall consider a more

general concept of F -proof:

10.2.1. Definition.

Assume that F is a dilator; then

(i) An F -model of a β-theory is a β-model of T whose ordinal part

m(o) is of the form F (α), for some α ∈ 0n.

(ii) An F -proof in T is a family (πα) such that, for all α, πα is a F (α)-

proof, and if f ∈ I(α, β), F (f)πβ = πα.

10.2.2. Remarks.

(i) This concept was considered in Exercise 10.1.30, where we proved

completeness of F -proofs w.r.t. F -models.

(ii) In the sequel, we shall be mainly concerned with a+ Id-proofs, where

a ∈ 0n. When a = 0, this notion corresponds to the concept of β-

proof; the predecessors of Id-proofs are in general not Id-proofs, but

a+ Id-proofs, for some a 6= 0.

10.2.3. Definition.

Assume that π = (πα) is an a+ Id-proof; then we define

(i) The last rule of π: consider the a + α-proof πα; and let (Rα)

be the name of the last rule of πα (e.g. (Rα) = (Ax), (l∃), (r1∨),

(l∃o), (CUT), ...); an immediate property is that (Rα) = (Rβ) for all

α, beta ∈ 0n; the last rule of π is by definition this (Rα).

(ii) If (R) is the last rule of π, the conclusion of (R): assume that

Γα ` ∆α is the conclusion of πα; then Γα ` ∆α is a sequent of

L [a+α], and, if f ∈ I(α, β), we have (Ea+f)(Γβ ` ∆β) = (Γα ` ∆α):

this means that the ordinal parameters of Γβ ` ∆β are obtained

from those of Γα ` ∆α by an application of the function Ea + f . In

particular, if ξ is an ordinal parameter of Γα ` ∆α, then the ordinal
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(Ea + f)(ξ) depends only on β, and this is only possible if ξ < a: we

have shown that Γα ` ∆α is a sequent of L [α], which is independent

of α; this sequent is by definition the conclusion of π.

(iii) If (R) is the last rule, and Γ ` ∆ is the conclusion of π, the premises

of (R), and their proofs:

1. If (R) is (Ax), (R) has no premise; we can figure it by:

π =

 Ax

Γ ` ∆

.

2. If (R) is (rW ), (lW ), (rC), (lC), (rE), (lE), (l1∧), (l2∧), (r1∨),

(r2v), (r¬), (l¬), (r →), (r∀τ ), l∀τ ), (r∃τ ), l∃τ ) with τ 6= o,

(l∀o) or (r∃o), then one can write:

πα =



λα
...

Λα ` Πα

R

Γ ` ∆

.

Observe that (λα) defines an a+ Id-proof λ (since (Ea+f)λβ = λα

when f ∈ I(α, β)); if Λ ` Π is the conclusion of this proof, we say

that the premise of (R) is Λ ` Π, and its proof is λ:

π =



λ
...

Λ ` Π

R

Γ ` ∆

.

3. If (R) is (r∧), (l∨), (l→), (CUT), then write:

πα =



λ′α
... λ′′α

...

Λ′α ` Π′α Λ′′α ` Π′′α
R

Γ ` ∆
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and observe that (λ′α) and (λ′′α) define a + Id-proofs λ′ and λ′′,

the conclusions of which are Λ′ ` Π′ and Λ′′ ` Π′′; the premises of

(R) are Λ′ ` Π′ and Λ′′ ` Π′′, respectively proved by λ′ and λ′′:

π =



λ′
... λ′′

...

Λ′ ` Π′ Λ′′ ` Π′′

R

Γ ` ∆

.

4. If (R) is (r∀o) or (l∃o), then write:

πα =



λα,β
...

... Λα,β ` Παβ ... all β < α

R

Γ ` ∆

.

Here the situation is more delicate, because: the number of R is

variable, and the sequents Λα,β ` Πα,β do not belong in general to

L [a]. But observe that, if f ∈ I(α, α′), then (Ea+f)λα′,(Ea+f)(β) =

λαβ. Hence, if β ∈ 0n, consider the ordinal bβ = sup (a, β + 1),

and let cβ = bβ−a; the family (χβα)α∈0n defined by: χβα = λcβ+α,β

defines a bβ + Id-proof χβ:

(Ebβ+f)χβα′ = (Ea+Ecβ+f)λcβ+α′,β = λcβ+α,β = χβα .

The sequent Λα,β ` Παβ therefore belongs to L [bβ], say Λα,β `
Πα,β is Θβ ` Ξβ; the premises of (R) are the sequents Θβ ` Ξβ,

and their proofs are the bβ + Id- proofs χβ:

π =



χβ
...

... Θβ ` Ξβ ... all β ∈ 0n

R

Γ ` ∆

.

This rule is very special, since it requires a proper class of premises;

however, the premises are not generated in an arbitrary way; for

instance the family (χβ) is itself functorial! (See 10.2.7.)

When (R) is (r∀o), then one can write:
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π =



χβ
...

... Γ ` A(β̄),∆′ ...

r∀o
Γ ` ∀xo A(xo),∆′

and when (R) is (l∃o), we have:

π =



χβ
...

... Γ′, A(β̄) ` ∆

r∃o
Γ′, ∃xo A(xo) ` ∆

.

10.2.4. Definition.

(i) Assume that π = (πα) is a G-proof, and that T ∈ I1(F,G); then we

eventually define an F -proof Tπ = (λα) by λα = T (α)π.

(ii) A particular case is G = b+Id, F = a+Id, and f ∈ I(a, b), T = f+E1
Id;

then we use the notation fπ instead of Tπ.

10.2.5. Remark.
Tπ is defined exactly when T (α)πα is defined for all α; if f ∈ I(α, β), and

Tπ is defined, then T (β)F (f) = G(f)T (α), and so G(f)T (α)πβ is defined

and equal to T (α)(G(f)πβ) = T (α)πα = λα, and F (f)λβ = F (f)(T (β)λβ) is

defined and equal to λα. (This establishes that (λα) is an F -proof.) The

fact that F (f)λβ is defined is a consequence of:

10.2.6. Lemma.

Assume that g ∈ I(γ, δ), and that g = g′g′′; assume that the δ-proof χ is

such that gχ and g′χ are defined; then g′′(g
′
χ) is defined and is equal to

gχ.

Proof. Left to the reader. 2

Applied to g = G(f)T (α) and g′ = T (β), g′′ = F (f).
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10.2.7. Proposition.

With the notations of 10.2.3 (iii) 4, we have, when f ∈ I(γ, γ′):

(Ea+f+E1)χa+γ′ = χa+γ .

Proof. Easy exercise for the reader. (See the proof 10.2.14 (iv) for a close

argument.) 2

10.2.8. Definition.

We define the relation � : “is a predecessor of” between a + Id-proofs,

as follows:

(i) The immediate predecessors of π are (with the notations of 10.2.3):

– if (R) is 1-ary, the proof λ of 10.2.3 (iii) 2.

– if (R) is 2-ary, the proofs λ′, λ′′ of 10.2.3 (iii) 3.

– if (R) is 0n-ary, the proofs of χβ of 10.2.3 (iii) 4.

(ii) π � π′ means that there is a sequence π = π0, ...,πn = π′ such that

n 6= 0, and for all i < n πi is an immediate predecessor of πi+1.

10.2.9. Theorem.

The relation � is well-founded.

Proof. Otherwise, there is a sequence π = π0, ...,πn, ... such that, for all

n, πn+1 is an immediate predecessor of πn; if πn is an an + Id-proof, then

an ≤ an+1 for all n; then let a = sup
n

an, and let a′ = ωa; then an + a′ = a′

for all n, and, if πn = (πnα), then we can consider the a′-proofs πna′ : if (Rn)

is the last rule of πn, then

– if (Rn) is unary, then πn+1
a′ is a strict subproof of πna′ .

– if (Rn) is binary, then πn+1
a′ is a strict subproof of πna′ .

– if (Rn) is 0n-ary, and πn+1 is of the form χβ, then β < an+1 ≤ a ≤ a′,

and χβa′ is a strict subproof of πnan+1+a′ = πna′ .
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We have found a s.d.s. for the relation “is a strict subproof”, starting

with π0
a′ = πa′ ; this contradicts the well-foundedness of πa′ . 2

10.2.10. Remark.

We shall now compare the relations� that have been defined between dila-

tors, and between proofs; however, the relation � between dilators must

be modified into�′: in 9.4.2 replace (i) by (i)′: H 6= 0→ G �′ F+G+H.

This is a variant of the concept of predecessor of a dilator, which has

the following features:

– � is still well-founded.

– but the class of predecessors of a given element is not necessarily linearly

ordered.

10.2.11. Definition.

(i) Assume that π is an α-proof; then we define an ordinal Lin(π) as

follows:

• If π consists of an axiom, Lin(π) = 0.

• If the last rule of π is unary, and is applied to λ, then Lin(π) =

Lin(λ) + 1.

• If the last rule of π is binary, and is applied to λ′ and λ′′ then

Lin(π) = Lin(λ′) + 1 + Lin(λ′′) + 1 (of course λ′ is the “leftmost”

predecessor...).

• If the last rule of π is α-ary and is applied to the λξ’s, then Lin(π) =(∑
ξ<α

Lin(λξ) + 1
)
.

(ii) Assume that π is a β-proof, that f ∈ I(α, β), and that fπ is defined;

then we define a function Lin(f,π) ∈ I
(

LIN(fπ), Lin(π)
)

as follows:

• If π consists of an axiom, Lin(f,π) = E0.

• If π comes from λ by means of a unary rule (the rules (r∀o)

and (l∃o) are not considered as unary, even when β = 1 !), then

Lin(f,π) = Lin(f,λ) + E1.
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• If π comes from λ′ and λ′′ by means of a binary rule (if β = 2,

(r∀o) and (l∃o) are not considered as binary!), then Lin(f,π) =

Lin(f,λ′) + E1 + Lin(f,λ′′) + E1.

• If π comes from (λξ)ξ<β by means of (r∀o) or (l∃o), then Lin(f,π) =∑
ξ<f

(Lin(f,λf(ξ)) + E1).

(iii) Assume that (πα) = π is an a+ Id-proof; then we define LIN(π) by:

LIN(π)(α) = Lin(πα)

LIN(π)(f) = Lin(f,πβ) when f ∈ I(α, β) .

10.2.12. Theorem.

If π is an a + Id-proof, then LIN(π) is a dilator; more precisely, let (R)

be the last rule of π:

(i) If (R) = (Ax), then LIN(π) = 0.

(ii) If (R) is unary, and the immediate predecessor of π is λ, then

LIN(π) = LIN(λ) + 1.

(iii) If (R) is binary, and the immediate predecessors of π are λ′ and λ′′,

then LIN(π) = LIN(λ′) + 1 + LIN(λ′′) + 1.

(iv) If (R) is 0n-ary, and the immediate predecessors of π are (χβ)β∈0n,

consider the two-variable dilator

F (x, y) = Lin(χa+y
x ) F (f, g) = Lin(g + E1 + f ; χa+y′

x′ )

(when f ∈ I(x, x′), g ∈ I(y, y′)), and let G =
∫

(F + 1)dy; then

LIN(π) =
∑
ξ<α

(LIN(χξ) + 1) + UN(G).

10.2.13. Corollary.

If π � π′, then LIN(π) �′ LIN(π′).

Proof. Since� and�′ are transitive, it suffices to investigate the case “π

immediate predecessor of π′”;
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1. If the last rule (R) of π′ is unary, then LIN(π′) = LIN(π) + 1 and

LIN(π) is a predecessor of LIN(π′).

2. If the last rule (R) of π′ is binary, and if π′′ is the other immediate

predecessor of π′, then

either LIN(π′) = LIN(π) + 1 + LIN(π′′) + 1

or LIN(π′) = LIN(π′′) + 1 + LIN(π) + 1

in both cases LIN(π) �′ LIN(π′).

3. If the last rule (R) of π′ is 0n0ary, and if π is χξ, then observe that

the partial sums Hη =
∑
ζ<η

(LIN(χζ) + 1) are predecessors (for �) of

LIN(π).

(Proof. If η ≤ a, then LIN(π) = Hη+H ′ for some H ′ 6= 0; if η ≥ a, say

η = a+η′, then the dilator Ha +SEP UN(G)(·, η′) = Ha +G(·, η′) is a

predecessor of LIN(π); but G(·, η′) =
∑
ζ<η′

(LIN(χa+ζ)+1), hence Ha+

G(·, η′) = Hη is a predecessor of LIN(π). Hξ+1 = Hξ + LIN(χξ) + 1

shows that LIN(χξ) is a predecessor of LIN(π) (for �′). 2)

Proof of 10.2.12. The fact that LIN(π) is a dilator (and that F in (iv)

preserves direct limits and pull-backs) is left to the reader; we verify (i)–

(iv): (i)–(iii) are completely trivial, hence it remains to check (iv): let

H = LIN(π); then H(α) =
∑
α<β

Lin(λαβ)+1 (with the notations of 12.2.3).

But λαβ is equal to χα−cβ , i.e.

H(α) =
∑
β<α

LIN(χβ)(a− cβ) =

∑
ξ<α

(LIN(χξ)(α) + 1) +
∑
β<α

(
LIN(χa+β)

(
α− (β + 1)

)
+ 1

)
.

But
∑
β<α

(
LIN(χa+β)

(
α − (β + 1)

)
+ 1

)
=
∑
β<α

(F (α − (β + 1), β) + 1) =

UN(G)(α) by 9.3.18. This shows that LIN(π) and
∑
ξ<α

(LIN(χξ) + 1) +

UN(G) take the same values on ordinals; the case of morphisms is similar.



Predecessors of a β-proof 249

2

10.2.14. Theorem.

The “rules” of inference defined in 10.2.3 are valid for β-proofs; more

precisely, to each application of one of these rules corresponds a transfor-

mation of a+ Id-proofs.

Proof. Concretely this means that, if we are given a family of functo-

rial proofs which is such that rule (R) can be applied, then the result of

applying the rule can be directly obtained by a functorial proof:

(i) If (R) is 0-ary (axiom), this means that Γ ` ∆ is an axiom of T [a],

hence of T [β] for all β ≥ a. The proofs:

πα =

 Ax

Γ ` ∆

define an a+ Id-proof of Γ ` ∆.

(ii) If (R) is 1-ary, and is applied to λ, for instance, R is (r∃o) and λ is

an a+ Id-proof of Γ ` A(ξ̄),∆, with ξ < a, then

πα =



λα
...

... Γ ` A(ξ̄),∆

r∃o
Γ ` ∃xo A(xo),∆

defines an a+ Id-proof of Γ ` ∃x A,∆.

(iii) If (R) is binary, and is applied to λ′ and λ′′, for instance (R) =

(CUT), then

πα =



λ′α
... λ′′α

...

Γ ` A,∆ Λ, A ` Π

CUT

Γ,Λ ` ∆,Π
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defines an a+ Id-proof.

(iv) The interesting case is when (R) is 0n-ary, typically (R) = (r∀o):

assume that we are given a family χβ)β∈0n, such that, for all β, χβ

is a bβ + Id-proof of Γ ` A(β̄),∆, with bβ = sup (α, β + 1): (R) can

be formally written as:

χβ
...

... Γ ` A(β̄),∆ ... all β ∈ 0n

r∀o
Γ ` ∀xo A(xo),∆

.

But we make an extra assumption on the family (χβ): the family

must enjoy 10.2.7, i.e. if f ∈ I(γ, γ′):

(Ea+f+E1)χa+γ′ = χa+γ .

We consider now the proofs

πα =



λαβ = χβα−cβ
...

... Λ ` A(β̄),∆ ... all β < α

Γ ` ∀xo A(xo),∆

.

If f ∈ I(α, α′), then we show that (Ea+f)λα′,(Ea+f)(β) = λα,β: this will

prove that (Ea+f)πα′ = πα, i.e. that (πα) defines an a+ Id-proof:

1. If β < a, then (Ea + f)(β) = β, and λα′,β = χβα′−a;
(Ea+f)χβα′−a =

χβα−a = λα,β.

2. If β = a + γ, then (Ea + f)(β) = a + f(γ) = β′; if a + α′ = β′ + δ′,

define h ∈ I(β + δ′, α′) by:

h(x) = (Ea + f)(x) if x < β

h(β + x) = β′ + x

and g ∈ I(α, β + δ′) by:
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g(z) = z if z < β

g(β + z) = β +
(
(Ea + f)(β + z)− β′

)
.

Clearly Ea+f = hg, hence (Ea+f)λα′,β′ = g(hλα′β′); but h can be written

as : h = Ea + h′ + E1 + Eδ′−1, hence h(λα′β′) = ((Ea+h′+E1)χβ
′
)δ′−1 =

χβδ′−1; now observe that g can be written as: g = Ea + Eγ + E1 +

g′ for some g′ and δ such that g′ ∈ I(δ − 1, δ′ − 1); then gχβδ′−1 =

χβδ−1 = λα,a+γ+1+δ−1 = λα,β (a more complete proof would contain a

justification of the existence of (Ea+fπα...). 2

10.2.15. Remarks.

(i) In fact 10.2.3 and 10.2.14 are reciprocal transformations, as one can

easily verify... .

(ii) The problem of the β-completeness raised by Mostowski was: “find

a “β-rule”, analogous to the ω-rule, complete w.r.t. validity in all

β-models”. The answer given in 12.1 does not give a specific rule (in

the case of the ω-rule:

A(0̄), ..., A(n̄) ...

∀x A(x)

).

Now, 10.2.3 and 10.2.14 answer this question satisfactorily: the β-

rule is exactly the rule (stated here only for ∀o): from bβ + Id-proofs

χβ of Γ ` A(β̄),∆ such that f ∈ I(γ, γ′) → Ea+fχa+γ′ = χa+γ, we

can conclude that Γ ` ∀xo A(xo),∆.

Moreover, it is possible to define a system of deduction using, as

rules, the usual rules of sequent calculus, together with the β-rule

(10.2.27).

(iii) The β-rule, as described in (ii) has a rather uncommon feature: in

usual rules, we say: assume that the sequents Γi ` ∆i are provable,

then... . (We do not need to know anything about the proofs of the

sequents Γi ` ∆i.) Here we must look at the given proofs πi of
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Γi ` ∆i (= Γ ` A(i),∆) and verify an inner functoriality condition

(10.2.7). This is a very rare situation, since the applicability of the

rule depends not only on the provability of the premises, but also on

their proofs.

We now investigate the more general case of F -proofs, where F is arbi-

trary; this case is of interest if we have in mind the cut-elimination theorem

of Chapter 11, where F -proofs play an essential role.

10.2.16. Theorem.

We can define canoncial bijections between the following sets (F is a dila-

tor):

(i) The set F (0).

(ii) The set of dilators F ′ such that F = F ′ + 1 + F ′′ for some F ′′,

depending on F ′.

(iii) The set of all a ∈ F (0n) s.t. a ∈ rg F (E00n) (i.e. the set of all points

(z0 ; ; 0n)F ).

(iv) The set of all functions 0n from 0n to itself such that: ∀xt(x) <

F (x) ∧ ∀x∀x′∀f ∈ I(x, x′) F (f)
(
t(x)

)
= t(x′).

(v) The set I1(1, F ).

Proof. The theorem is rather trivial; for instance

(i) → (iii): To each z0 ∈ F (0) (hence (z0 ; 0) ∈ Tr(F )), associate

(z0 ; ; 0n)F .

(iii) → (iv): To (z0 ; ; 0n)F , associate the function t(x) = (z0 ; ; x)F ;

then F (f)
(
(z0 ; ; x)F

)
= (z0 ; ; x′)F .

(iv) → (v): If t belongs to (iv), define T ∈ I1(1, F ), by T (x)(0) = t(x);

then the diagrams

T (x)
1 F (x)

E1 F (f)

1 F (y)
T (y)
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are commutative.

(v) → (ii): If T ∈ I(Id, F ), write T as a sum T =
∑
i<f

Ti; necessarily

f = E1 LH(F ), and T0 = E1
1. Then

F =
∑
i<f(0)

Fi + 1 +
∑

f(0)<i<LH(F )

Fi ,

i.e. F = F ′ + 1 + F ′′... .

The other bijections are obtained by combining these five basic bijections... .

2

10.2.17. Definition.

An F -term is a member of the set defined in 10.2.16 (iv).

10.2.18. Remark.

The reader who has still problems with dilators, can prefer to define F -

terms by (iii), because this is in this variant that the operations on F -terms

can be the most easily hand led by the beginner... .

10.2.19. Proposition.

Assume that for all α ∈ 0n Γα ` ∆α is a sequent of L [F (α)], and that
F (f)(Γβ ` ∆β) = Γα ` ∆α when f ∈ I(α, β); then all ordinal parame-

ters of Γα ` ∆α are of the form t1(α), ..., tk(α), for some F -terms t1, ..., tk.

(Conversely if Γα ` ∆α is a sequent of the form

Γ
(
t1(α), ..., tk(α)

)
` ∆

(
t1(α), ..., tk(α)

)
where Γ(xo1 , ..., x

o
n ) ` ∆(xo1 , ..., x

o
n ) has no ordinal parameters, then F (f)(Γβ `

∆β) = Γα ` ∆α for all α, β and f ∈ I(α, β).)

Proof. Write Γα ` ∆α as: Γ(ξ̄1
α, ..., ξ̄

q
α) ` ∆(ξ̄q+1

α , ..., ξ̄rα); then the hypoth-

esis F (f)(Γβ ` ∆β) = Γα ` ∆α shows that, for i = 1, ..., r F (f)(ξiα) = ξiβ.

Hence the ξi’s are F -terms. 2

10.2.20. Definition.

When L is a β-language and F is a dilator, we define the language L [F ]

to consist of those families (Aα)α∈0n such that Aα ∈ L [F (α)] for all α, and
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F (f)Aβ = Aα for all α, β and f ∈ I(α, β).

10.2.21. Remark.

Equivalently, a formula of L [F ] is a formula whose ordinal parameters are

F -terms (by 10.2.19). Using 10.2.16, it is possible to represent L [F ] as an

ordinary language, in several equivalent ways:

– by 10.2.16 (i) L [F ] can be identified with the language consisting of all

formulas with parameters in F (0).

– by 10.2.16 (iii) these parameters can be chosen in F (0n): they can be

identified with the points (z0 ; ; 0n)F .

In particular, when F = a+ Id, we see that L [F ] can be identified with

L [α].

10.2.22. Definition.

We identify, when F ′ is of the form F ◦ (a+ Id), the language L [F ] with a

sublanguage of L [F ′]; the identification works as follows: to each F -term

t, we associate an F ′-term t′ by t′(x) = t(a+x). If A is a formula of L [F ],

we identify A with the formula of L [F ′] obtained by replacing the F -terms

t1, ..., tk occurring in A, by t′1, ..., t
′
k.

10.2.23. Remark.

The essential thing in 10.2.22 is the identification of F -terms with certain

F ′-terms; it may be of interest to see how this identification looks like when

we consider F -terms through the equivalent viewpoints of 10.2.16:

(i) F ′-terms can be identified with F ′(0) = F (a); then ( )′ can be viewed

as the function F (E0a) from F (0) to F ′(0).

(ii) If F = G+ 1 +G1, then F ′ = G ◦ (a+ Id) + 1 +G1 ◦ (a+ Id). If F -

terms are identified with such G’s, then ( )′ appears as composition

with a+ Id.

(iii) If (z ; ; 0n)F and (z′ ; ; 0n)F ′ are the points in F (0n) and F ′(0n) cor-

responding to t and t′ respectively, then observe that 0n = a + 0n,

hence
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(z ; ; 0n)f = F (Ea0n)
(
(z ; ; a)F

)
= F ′(E00n)

(
(z ; ; a)F

)
=

F ′(E00n)
(
(z′ ; ; 0)F ′

)
= (z′ ; ; 0n)F ′ .

Hence (z ; ; 0n)F = (z′ ; ; 0n)F ′ (the ordinal classes corresponding

to these points are equal; moreover z′ = (z ; ; a)F ).

(iv) T ∈ I1(1, F ) is changed into T ◦ E1
a+Id ∈ I1(1, F ′).

Observe that in case (iii) everything is slightly simpler, since the ordi-

nal classes corresponding to t and t′ are exactly the same... .

10.2.24. Definition.

Assume that π is an F -proof; then we define the last rule of π, the con-

clusion of π, the premises of π, and their proofs as follows:

(i) The last rule of π is defined exactly as in 10.2.3 (i).

(ii) If Γα ` ∆α is the conclusion of πα, then clearly the family (Γα ` ∆α)

defines a sequent of L [F ].

(iii) The premises of π and their proofs are defined exactly as in 10.2.3,

when the arity of (R) is 0, 1, or 2. Let us look at the case:

4. (R) is (r∀o) or (l∃o); write

πα =



λα,β
...

... Λα,β ` Παβ ... all β < F (α)

R

Γ ` ∆

.

If β < F (0n), write β = (z0 ; x0, ..., xn−1 ; 0n)F , and let cβ be the

smallest ordinal such that x0, ..., xn−1 < cβ. Let Fβ = F ◦ (cβ+Id);

then, we can define a Fβ-proof χβ by: χβα = λcβ+α,(z0 ;x0,...,xn−1 ; cβ+α)F .

The fact that χβ defines an Fβ-proof is left to the reader.

10.2.25. Proposition.

Assume that f ∈ I(cβ, cβ′) is such that β′ = F (f + E0n)(β) (i.e. β =
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(z0 ; x0, ..., xn−1 ; 0n)F , and β′ = (z0 ; f(x0), ..., f(xn−1) ; 0n)F ); consider

Ff ∈ I(Fβ, Fβ′): Ff = EF ◦ (f + Id); then

Ffχβ = χβ .

Proof. Left to the reader. 2

10.2.26. Remarks.

(i) In the particular case where F is a + Id, then β is an ordinal, cβ

computed as in 10.2.24 equals the cβ of 10.2.3, Fβ = a+ cβ + Id, i.e.

bβ + Id, etc... .

(ii) Hence the last rule of π (in 10.2.24 (iii) 4) can be written as:

π =



χβ
...

... Θβ ` Ξβ ... β ∈ F (0n)

R

Γ ` ∆

.

The sequents Θβ ` Ξβ are in the language L [Fβ]; Θβ ` Ξβ is the

family

(
Λcβ+α,(z0 ;x0,...,xn−1 ; cβ+α)F ` Πcβ+α,(z0 ;x0,...,xn−1 ; cβ+α)F

)
when a ∈ 0n.

(iii) Let us rewrite the premises in the two possible cases for (R), with

the convention that F -terms are represented by points < F (0n); one

gets

π =



χβ
...

... Γ ` A(β̄),∆′ ... β ∈ F (0n)

r∀o
Γ ` ∀xo A(xo),∆′

and
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π =



χβ
...

... Γ′, A(β̄) ` ∆ ... β ∈ F (0n)

l∃o
Γ′, ∃xo Axo ` ∆

and we see that the premises of (R), provided we choose representa-

tion 10.2.16 (iii) of F -terms, are very naturally written!

(iv) The analogue of 10.2.14 still holds here; essentially, this means that,

if (χβ)β<F (0n) is a family of Fβ-proofs of Γ ` A(β̄),∆, with the

property 10.2.25, then it is possible to construct an F -proof of Γ `
∀xo A(xo),∆, as follows:

πα =



λα,β
...

... Λ ` A(β̄),∆ ... all β < F (α)

r∀o
Γ ` ∀xo A(xo),∆

.

(By defining, when β = (z0 ; x0, ..., xn−1 ; α)F , λα,β =

χ
(z0 ;x0,...,xn−1 ; 0n)F
α−cβ .) The details are left to the reader.

10.2.27. Remark.

One question essentially remains; we have been able to replace locally

functorial proofs by rules of a new kind; what happens if we iterate that

process? Clearly we obtain a new sequent calculus, whose rules are exactly

the usual ones, except for (r∀o) and (l∀o). The passage from a proof in

this calculus to a functorial proof (and its converse) is easily done, and left

to the reader. But one last remark: the rules (r∀o) and (l∀o) can only be

applied when the proofs of the premises satisfy compatibility conditions

(10.2.7 or 10.2.25), and it is necessary to define Tπ (10.2.4) when π is a

proof in the sequent calculus just considered; this can be easily defined,

for instance:
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if π is

χβ
...

... Θβ ` Ξβ ... all β < F ′(0n)

r∀o
Γ ` ∆

then

Tπ =



TβχT (0n)(β) ...

... TΘβ ` TΞβ ... all β < F (0n)

r∀o
TΓ ` T∆

with Tβ ∈ I(Fβ, F
′
T (0n)(β)) defined by Tβ = T ◦ Ecβ+Id...).

This basic step can be iterated to define Tπ; the details are left to

the reader. Observe that we have succeeded in writing β-logic, β-proofs

in tree-like form, and then there is a natural mutilation process for these

trees, but the mutilation is done w.r.t. natural transformations.

I have only indicated the possibility of such an approach; I am not con-

vinced, at this stage of the work, of the interestof this alternative presen-

tation; it is important to have it in mind, but presumably this alternative

approach is too complicated to be really useful; in the sequel, we shall

prefer to work only “locally” in this calculus, i.e. extract the last rule, the

last premises, and their proofs, but express them as functorial proofs.

10.2.28. Exercise.

(i) Adapt the main results of this sections to ωβ-logic.

(ii) Is it possible to do the same thing with pre-β-proofs, i.e. is it possible

to find last rules, premises, conclusions, and their pre-β-proofs?
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Annex 10.A. The calculus Lβω

I introduced this calculus in 1978, in analogy with Lω1ω; the precise

mathematical results which follow have been proved in the following years

(1979–82) by several people (M.C. Ferbus, J.F. Husson, J. Vauzeilles).

10.A.1. Definition.

We start with a language L containing two types of objects o and τ ; we

assume that the only terms of L of type o are variables; then we con-

struct, for any ordinal α, a language Lαω, as follows (the notation is not

very satisfactory: in the context of Π1
1-logic, Lω1ω means the use of con-

junctions and disjunctions of length < ω1, whereas here Lαω means the

use of conjunctions and disjunctions of length α...):

(i) The terms of Lαω are defined by

1. the variables xτn (n ≥ 0) are terms of type τ .

2. for all ξ < α, ξ̄ is a term of type Oo.

3. if f is a (n,m)-ary function letter of L (hence taking as values

objects of type τ ), if ξ̄1, ..., ξ̄n are terms of type o, if t1, ..., tm are

terms of type τ , then f(ξ̄1, ..., ξ̄n, t1, ..., tm) is a term of type τ .

4. all terms of Lαω are given by 1–3.

(ii) The formulas of Lαω are defined by:

1. if p is a (n,m)-ary predicate letter of L, if t1, ..., tm are terms of

type τ , if ξ1, ..., ξn < α, then p(ξ̄1, ..., ξ̄n, t1, ..., tm) is a(n atomic)

formula of Lαω.

2. if A is a formula of Lαω, so is ¬A.

3. if A, B are formulas of Lαω, so are A ∧B, A ∨B, A→ B.

4. if A is a formula of Lαω, if x is a variable of type τ , then ∀xA and

∃xA are formulas of Lαω.

5. if (Aξ)ξ<α is a family of formulas of Lαω, involving only finitely

many free variables of type τ : x1, ..., xk, then M
ξ<α

Aξ and W
ξ<α

Aξ

are formulas of Lαω.
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6. the only formulas of Lαω are those given by 1–5.

10.A.2. Definition.

(i) Assume that t is a term of Lβω and that f ∈ I(α, β); then we (even-

tually) define a term f−1(t) ∈ Lαω, as follows:

f−1(t) is defined if and only if all ordinal parameters of t are of the

form f(ξ) for some ξ < α; if this condition is fulfilled, then f−1(t) is

defined as the result of the replacement in t of all subterms f(ξ) by

terms ξ̄, for all ξ < α.

(ii) Assume that A is a formula of Lβω and that f ∈ I(α, β); then we

(eventually) define a formula f−1(A) ∈ Lαω, as follows:

1. When A is atomic, f−1(A) is the result of the replacement of all

ordinal parameters of A by their inverse image under f ; hence

f−1(A) is defined iff all ordinal parameters of A belong to the

range of f .

2. f−1(¬A) is defined iff f−1(A) is; in that case f−1(¬A) = ¬f−1(A).

3. f−1(A ∧ B), f−1(A ∨ B), f−1(A → B) are defined iff f−1(A) and

f−1(B) are both defined; in that case f−1(A ∧ B) = f−1(A) ∧
f−1(B), f−1(A∨B) = f−1(A)∨f−1(B), f−1(A→ B) = f−1(A)→
f−1(B).

4. f−1(∀xA), f−1(∃xA) are defined iff f−1(A) is; in that case f−1(∀xA)

= ∀xf−1(A), f−1(∃xA) = ∃xf−1(A).

5. f−1
(
M
ξ<β

Aξ
)
, f−1(W Aξ) are defined iff for all ξ ∈ rg(f), f−1(Aξ)

is defined; in that case f−1
(
M
ξ<β

Aξ
)

= M
ξ<α

f−1(Af(ξ)),

f−1
(
W
ξ<β

Aξ
)

= W
ξ<α

f−1(Af(ξ)).
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10.A.3. Definition.

(i) We define a category FORL as follows:

• objects: pairs (α,A), where A is a formula of

• morphisms: the sets I(α,A ; β,B) consisting of those f ∈ I(α, β)

such that f−1(B) is defined and f−1(B) = A.

(ii) The language Lβω consists of all functors F from ON to FORL such

that:

• F (α) is of the form (α, Fα) (α ∈ 0n).

• F (f) = f (for all f ∈ I(α, β)).

10.A.4. Remarks.

(i) The analogue of Lβω when L contains several types of objects 6= o

can be easily defined. One can also consider the combination Lβ,ω1ω

of Lβω and Lω1ω, i.e. when denumerable conjunctions Ṁ
n<ω

An are

allowed (with f−1
(
Ṁ
n<ω

An
)

= Ṁ
n<ω

f−1(An)). All these things are

minor and easy-going variants of our definition.

(ii) Another variant would consist in allowing partial conjunctions and

disjunctions, when λ ≤ µ ≤ α:

M
λ<ξ<µ

Aξ , M
λ≤ξ<µ

Aξ , M
λ<ξ≤µ

Aξ , M
λ≤ξ≤µ

Aξ

with

f−1
(
M

λ<ξ<µ

Aξ
)

= M
f−1(λ)<ξ<f−1(µ)

f−1(Af(ξ))

f−1
(
M

λ<ξ≤µ
Aξ
)

= M
f−1(λ)<ξ≤f−1(µ)

f−1(Af(ξ))

f−1
(
M

λ≤ξ<µ
Aξ
)

= M
f−1(λ)≤ξ<f−1(µ)

f−1(Af(ξ)) etc... .
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However, if we have specific symbols t and f for true and false,

we can replace such partial conjunctions by total ones, e.g. replace

M
λ≤ξ<µ

Aξ by M
ξ<α

A′ξ, with A′ξ = t if ξ < λ or µ ≤ ξ < α, A′ξ = Aξ if

λ ≤ ξ < µ.

(iii) In contrast with Lω1ω, the binary connectives ∧ and ∨ cannot any

longer be defined from M and W in Lβω. However, the formula

Fα = M
ζ<α

M
ξ<α

Gζξα

(with Gζξα = Aα if ζ ≤ ξ, Gζξα = Bα if ξ < ζ) defines, given two

formulas A(α) = (α,Aα), B(α) = (α,Bα), another formula F (α) =

(α, Fα) of Lβω, which has the property that Fα ↔ Aα ∧ Bα for all

α ≥ 2... . This is the best that we can do in that direction.

(iv) Of course, formulas of Lβω can be viewed as families (Fα)α∈0n such

that:

1. for all α ∈ 0n, Fα is a formula of Lαω.

2. for all α, β ∈ 0n and f ∈ I(α, β), f−1(Fβ) is defined and equals

Fα.

(v) It would have been bad taste to consider the quantifiers ∀xo A(xo)

and ∃xo A(xo), since we have the obvious translations:

∀xo A(xo) ; M
ξ<α

A(ξ̄)

∃xo A(xo) ; W
ξ<α

A(ξ̄) .

This shows that, for instance, the usual β-logic of Section 10.1

can be translated in Lβω... .

10.A.5. Example.

Let us give one of the most typical examples of formula, deeply connected

with the results of Chapter 11: we shall consider the case where Lmakes no
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use of the type O, i.e. when no atomic formula of Lαω contains any ordinal

parameter ξ̄, for all α and ξ < α: let Φ = Φ(X, x) be a positive operator in

L; then we can consider, for all ξ and α > ξ formulas Aξα(x): assume that

Aζα(x) has been defined for all ζ < ξ; the formula obtained by replacing

in Φ all atoms X(t) by formulas Aζα(t) is denoted by Φ(λyAζα(y), x); we

define

Aξα = W
ζ<ξ

Φ(λyAζα(y), x)

(partial conjunctions have been introduced as abbreviations in 10.A.4 (iii)).

One easily shows (induction on ξ) that, if f ∈ I(α, β), then f−1(Af(ξ)β) is

defined and equals Aξα.

The formulas Aα = W
ξ<α

Aξα are such that:

f−1(Aβ) = W
ξ<α

f−1(Af(ξ)β) = W
ξ<α

ξα = Aα .

Hence A(α) = (α,Aα) is a formula of Lβω. (As usual it is deceiving to say

that the construction is made by induction on ξ; there is a tree-like version

of Lβω, and the construction just made can be handled in this framework,

without using induction on ordinals ... see 10.A.15.)

10.A.6. Definition.

Let D be a dilator; then we define the language LDω to consist of those

functors F from ON to FORL of the form: (also called D-formulas)

F (α) = (D(α), Fα)

F (f) = D(f) .

In particular, Lβω can be identified with LIdω.

10.A.7. Definition.

If F is a formula of LDω, then we define the immediate subformulas of

F : (compare with 10.2.24)

writing F (α) = (α, Fα), it is possible to find a “first symbol” of F , namely

the first symbol of all Fα’s; let us call it by S:
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(i) If S = ¬, the formula E of LDω defined by Fα = ¬Eα is the only

immediate subformula of F .

(ii) If S = ∧,∨ →, the formulas E ′ and E ′′ of LDω defined by: Fα = E ′α∧
E ′′α (resp. E ′α ∨ E ′′α, E ′α → E ′′α) are the only immediate subformulas

of F .

(iii) If S = ∀,∃, consider the formulas Eα such that Fα = ∀xEα (resp.

∃xEα); then the immediate subformulas of F are all formulas G of

LDω of the form Gα = Eα(t) for some term t of type s.

(iv) If S = M ,W , consider the formulas Eξα (ξ < α) defined by Fα =

M
ξ<D(α)

Eξα (resp. W
ξ<D(α)

Eξα). If ξ < D(0n), write ξ = (z0 ; x0, ...,

xn−1 ; 0n)D, and let cξ = inf {u ; x0, ..., xn−1 < u}; we define a for-

mula Eξ of LD ◦ (cξ+Id)ω by:

Eξ(α) = E(z0 ;x0,...,xn−1 ; cξ+α)Dcξ+α .

Then the immediate subformulas of F are exactly the formulas Eξ.

A particular case is when D is of the form a+ Id; then it is immediate

that all immediate subformulas of F are in some Lb+Id (b ∈ 0n).

The subformula relation is the order relation generated by the strict

subformula relation.

10.A.8. Remarks.

(i) If F is a formula of LDω and T ∈ I1(D′, D), then one defines (eventu-

ally) a formula T−1(F ) of LD′ω by T−1(F )α = T (f)−1(Fα). In 10.A.7

(iv), if one takes f ∈ I(cξ, cξ′) such that ξ = (z0 ; x0, ..., xn−1 ; 0n)D,

ξ′ = (z0 ; f(x0), ..., f(xn−1) ; 0n)D, then

f + E1
Id ∈ I

(
D ◦ (cξ + Id), D ◦ (cξ′ + Id)

)
and clearly (f + E1

Id)−1(Eξ′) = Eξ.

(ii) The process of finding subformulas can be inverted into a process of

building formulas:
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1. If E is a formula of LDω, then it is possible to define ¬E in LDω

as follows: (¬E)α = ¬Eα.

2. If E ′, E ′′ are formulas of LDω, one defines formulas E ′∧E ′′, E ′∨E ′′,
E ′ → E ′′ of LDω as follows:

(E ′ ∧ E ′′)α = E ′α ∧ E ′′α ,

(E ′ ∨ E ′′)α = E ′α ∨ E ′′α ,

(E ′ → E ′′)α = E ′α → E ′′α .

3. If E is a formula of LDω and x is a variable of type τ , we define

formulas ∀xE and ∃xE of LDω by (∀xE)α = ∀xEα, (∃xE)α =

∃xEα.

4. If Eξ is a D ◦ (cξ + Id)-formula for all ξ < D(0n), enjoying the

condition of (i) above, then we define formulas M
ξ<D(0n)

Eξ and

W
ξ<D(0n)

Eξ of LDω as follows:

(
M

ξ<D(0n)

Eξ
)
α

= M
ξ<D(α)

Eξ′

α′ ,
(

W
ξ<D(0n)

Eξ′
)

= W
ξ<D(α)

Eξ′

α′

(with, when ξ = (z0 ; x0, ..., xn−1 ; α)D: ξ′ = (z0 ; x0, ..., xn−1 ; 0n)D,

and α = cξ′ + α′).

It is possible to prove many results which are generalizations of results

already obtained for Lω1ω and for usual β-logic. We shall indicate some of

them, but we shall present these things as exercises... .

10.A.9. Exercise (trace).

We define the functor Tr from FORL to ON by Tr
(
(α, f)

)
= α, Tr(f) = f ;

show that

(i) If
(
(αi, Fi), fij

)
is a direct system in FORL, and

(
(α, F ), fi

)
enjoys

8.1.11 (i)–(iii) w.r.t.
(
(αi, Fi), fij

)
; then the direct system has a direct

limit
(
(β,G), gi

)
in FORL, and (β, gi) = lim

−→
(αi, fij).

(ii) Assume that fi ∈ I(αi, Fi ; β,G) (i = 1, 2); then the pull-back f1∧f2

in FORL exists and equals f1 ∧ f2 in ON.
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(iii) If FG is a formula in LDω, show that F preserves direct limits and

pull-backs. Conclude that the family (Fn)n<ω determines F unam-

biguously.

10.A.10. Exercise.

If α ∈ 0n and X ⊂ α, we define the concept of an (α,X)-formula as

follows:

• p(ξ1, ..., ξn, t1, ..., tm) is an (α,X)-formula iff all the ordinal parameters

occurring belong to X.

• If A is an (α,X)-formula, so are ¬A, ∀xA, ∃xA.

• If A and B are (α,X)-formulas, so are A ∧B, A ∨B, A→ B.

• If Aξ is a (α,X ∪ {ξ})-formula for all ξ < α, M
ξ<α

Aξ and W
ξ<α

Aξ are

(α,X)-formulas.

(i) Assume that f ∈ I(α, β) and that f(X) = Y ; if A is a (β, Y )-formula

show that f−1(A) always exists and is an (α,X)-formula. What does

happen when f(X) ⊃ Y ? When f(X) ⊂ Y ?

(ii) Show that, if F is an (α,Xi)-formula for all i ∈ I (I 6= ∅), then F is

an
(
a,
⋂
i

Xi)-formula. Conclude that there exists a smallest subset

X0 ⊂ α such that f−1(F ) exists for all f s.t. rg(f) ⊃ X0. If F is a

formula of Lβω, show that F is an (α, ∅)-formula for all α ∈ 0n.

(iii) If D is a dilator, define a concept of D(α,X)-formula, with the fol-

lowing properties:

• If G is a D(β, Y )-formula and f(X) = Y , then D(f)−1(G) exists

and is a D(α,X)-formula.

• If G is a formula of LDω, then for all α ∈ 0n G(α) is a D(α, ∅)-
formula.
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10.A.11. Exercise (completeness theorem; Husson).

(i) Define for all α a sequent calculus LKαω corresponding to the obvi-

ous intended meaning of the connectives M and W . Define the mu-

tilations as well as functorial proofs: the resulting system is named

LKβω. A model for LKβω is a structure m for L (but m(o) = ∅
is possible). Define a notion m |= A, when A is a closed formula of

L [m]βω, in such a way that: if ` A is provable in LKβω then all

closed instantiations of A in m are true in m.

(ii) Prove the converse of (i), i.e. completeness.

(Hint. More precisely, if T is a theory in the language Lβω with only

denumerably many proper axioms, and if the closed formula A is true

in all models of T , then we construct a functorial proof of the sequent

` A in T +LKβω.)

10.A.12. Exercise (cut-elimination; Husson).

(i) Define, for any two proofs π, π′ of LKαω, and any two finite sets of

integers {i0, ..., in−1} = I {j0, ..., jm−1} = J , a proof NIJ(π,π′), with

the following properties:

1. If Γ ` ∆ and Γ′ ` ∆′ are the respective conclusions of π and

π′, and if ∆ = (A0, ..., Ak), Γ′ = (B0, ..., Bl) and Ai0 = ... =

Ain−1 = Bj0 = ... = Bjm−1 , then NIJ(π,π′) is a proof of Γ,Γ′1 `
∆1,∆

′, where Γ′1 (resp. ∆1) has been obtained from Γ′ (resp. ∆)

by removing A0, ..., Ak (resp. B0, ..., Bl).

2. If f ∈ I(α′, α) and f−1(π) and f−1(π′) are defined then f−1
(
NIJ(π,

π′)
)

= NIJ

(
f−1(π), f−1(π′)

)
.

3. The cut-degree ofNIJ(π,π′) is≤ the supremum of the cut-degrees

of π, π′ and the degree of A0, B0.

Why is it delicate to define when A is a formula of Lαω, a proof

NA(π,π′) of Γ,Γ′ ` ∆−A,∆′, in such a way that f−1
(
NA(π,π)

)
=

Nf−1(A)

(
f−1(π), f−1(π′)

)
?



268 10. The β-rule

(ii) Define, for any proof π in LKαω, a cut-free proof N(π) of the same

sequent, enjoying the following property:

if f ∈ I(α′, α) and f−1(π) is defined, then f−1
(
N(π)

)
is defined and

equals N
(
f−1(π)

)
.

(iii) Show the existence, for any proof π in LKβω, of a cut-free proof

N(π) of the same sequent. Does the result hold for LDω ?

10.A.13. Exercise (interpolation; Vauzeilles, [96]).

(i) Define, for any sequent Γ ` ∆ of Lαω (with Γ = (A0, ..., An−1),

∆ = (B0, ..., Bm−1)), any I ⊂ n, J ⊂ m, any proof π of Γ ` ∆ in

LαωK, proofs Int′I,J(π), Int′′I,J(π) in Lαω, such that:

1. If Γ′ = (Ai0 , ..., Aip−1), Γ′′ = (Ai′0,...,i′p′−1
), if ∆′ = (Bj0 , ..., Bjq−1),

∆′′ = (Bj′0
, ..., Bj′

q′−1
) (with (i0, ..., ip−1), (i′0, ..., i

′
p′−1), (j0, ..., jq−1),

(j′0, ..., j
′
q′−1) enumerations of I, n − I, J , m − J , in strictly in-

creasing order), then Int′J,J(π) is a proof of a sequent of the form

Γ′ ` C,∆′ whereas Int′′I,J(π) is a proof of a sequent of the form

Γ′′, C ` ∆′′ (the same C) and all predicate letters which occur pos-

itively (resp. negatively) in C occur positively (resp. negatively)

in Γ′ ` ∆′ and negatively (resp. positively) in Γ′′ ` ∆′′.

2. If f ∈ I(α′, α) and f−1(π) exists, then f−1
(

Int′I,J(π)
)

and

f−1
(

Int′′I,J(π)
)

exist and they are respectively equal to Int′I,J
(
f−1(π)

)
and Int′′I,J

(
f−1(π)

)
.

(ii) Prove the interpolation lemma for Lβω: if A ` B has a proof in

Lβω, one can find an interpolant C such that:

1. A ` C and C ` B are provable in Lβω.

2. The predicates occurring positively (resp. negatively) in C occur

positively (resp. negatively) in both of A and B.

(iii) We want to extend this result to a sharper version: we assume that

the only function letters of L are constants c0, ..., cn, ... of type τ .

Why is it impossible to directly adapt (i) and (ii) above in such a
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way that the interpolation holds for constants as well?

(Hint. In the case where the last rule is (l∀), one must distinguish

several subcases that are not preserved by f−1(·).)
In order to prove interpolation in that case, we consider instead of

formulas, pairs (F,X), where X is a subset of the set {c0, ..., cn, ...}
such that all constants of F are among the constant in X. Show that

every proof in Lβω can be modified in such a way that formulas are

replaced by pairs (F,X) as above, without losing functoriality. We

prove the interpolation as follows: let

Γ′ ` ∆′ = (A′0, X
′
0), ..., (A′p−1, X

′
p−1) ` (B′0, Y

′
0), ..., (B′q−1, Y

′
q−1)

Γ′′ ` ∆′′ = (A′′0, X
′′
0 ), ..., (A′′p′−1, X

′′
p′−1) `

(B′′0 , Y
′′

0 ), ..., (B′′q′−1, Y
′′
q′−1) .

Then all parameters of type τ of the interpolant C belong to (X ′0 ∪
... ∪X ′p−1 ∪ Y ′0 ∪ ... ∪ Y ′q−1) ∩ (X ′′0 ∪ ... ∪X ′′p′−1 ∪ Y ′′0 ∪ ... ∪ Y ′′q−1).

10.A.14. Exercise (bounds for cut-elimination; Ferbus, [97]).

(i) Show that the majoration theorems obtained in Chapter 6 for Lω1ω

are still true for the calculi LKαω; moreover, show that these re-

sults (mainly 6.B.6) are compatible with mutilations: assume that

f ∈ I(α1, α), that π is an α-proof, and that f−1(π) exists; assume

that (ϑ, λ), (ϑ1, λ1) are majorations of π and π1 (= f−1(π)) respec-

tively, and that h ∈ I(λ1, λ) is such that:

ϑ1
T1 λ1

ϕ h

T λ
ϑ

is a commutative diagram (T and T1 are the trees associated with π

and π1, ϕ is the function from T1 to T corresponding to mutilation

w.r.t. f ; eventually see 10.A.15). Assume too that δs, µ) and δs1, µ1)

are graduations for π and π1 respectively and that k ∈ I(λ1, λ) ren-

ders all diagrams
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δs1
U1,s µ1

ψs k

Uϕ(s) µ
δs

commutative (with: s ∈ T1 s.t. the rule applied “at stage s” is a

cut; U1,s the underlying tree of the cut-formula of this cut, Uϕ(s) its

homologue under the mutilation function; if A1,s and Aϕ(s) are the

corresponding formulas, then f−1(Aϕ(s)) = A1,s, hence the mutila-

tion function induces a function ψs from U1,s to Uϕ(s)...).

Assume that all these conditions are fulfilled; let π′ = (T ′, ϕ′),

π′1 = (T ′1, ϕ
′
1) be the associated cut-free proofs constructed in 6.B.6;

show that f−1(π′) exists and equals π′1. Furthermore, if
(
ϑ, V (µ, λ)

)
and

(
ϑ′1, V (µ1, λ1)

)
are the associated majoration, show that

ϑ′1
T ′1 V (µ1, λ1)

χ V (k, h)

T ′ V (µ, λ)
ϑ′

is commutative, χ being the function from T ′1 to T ′ induced by the

mutilation of π′ w.r.t. f .

(Hint. The complete result may be rather long to prove, and it is

perhaps sufficient to prove the analogue of 6.2.5–6.2.8–6.3.6 to have

a good idea of what is going on... .)

(ii) Prove the majoration theorem for functorial proofs: assume that π

is a proof in LKβω; a majoration for π is a pair (ϑα, D) where

• D is a dilator.

•
(
ϑα, D(α)

)
is a majoration of πα for all α ∈ 0n.

• The diagrams
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ϑα
Tα D(α)

ϕf D(f)

Tβ D(β)
ϑβ

are commutative (when f ∈ I(α, β), and ϕf is the function from

Tα to Tβ induced by the mutilation of πβ w.r.t. f).

Show that there exists at least one majoration of π, when π is

an arbitrary proof in LKβω.

A graduation for π is a pair (δsα, E) where

• E is a dilator.

• For all α ∈ 0n,
(
δsα, E(α)

)
is a majoration of πα.

• The diagrams

δsα
Uα,s E(α)

ϕsf E(f)

Uβ′ϕf (s) E(β)
δ
ϕf (s)
β

are commutative (the precise meaning of the symbols will easily

be found by the reader, using (i)). Show that, if π is a proof in

LKβω, there is at least one graduation for π.

Given π, together with a majoration (ϑα, D) and a graduation

(δsα, E) for π, construct a cut-free proof π′ of the same sequent in

LKβω, together with a majoration (ϑ′α, F ), where F is the dilator

F (α) = V
(
E(α), D(α)

)
F (f) = V

(
E(f), D(f)

)
.

(iii) What happens for proofs in LKPω, when P is an arbitrary dilator?

If π′ = T−1(π), state a result involving commutative diagrams of

majorations and graduations, in the spirit of (i).
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(iv) The cut-free proofs constructed in (i) and (ii) depend heavily on the

choice of the graduation. Prove a variant of these results where the

cut-free proofs obtained do not any longer depend on the gradua-

tions, but V is replaced by the original Veblen hierarchy:

W (α, β) = V (ωα, β)

W (f, g) = V (ωf , g) .

10.A.15. Exercise.

(i) Define the concepts of formula, of proof in LKβω using the tree-like

spirit of 6.A.3, 6.A.7; in particular the associated trees are quasi-

dendroids. Define the concept of prim. rec. formulas and proofs in

this context. Define similarly (using 10.A.14) prim. rec. majorations

and graduations. Show that the constructions of 10.A.14 (ii), when

applied to prim. rec. data, yield prim. rec. cut-free proofs and majo-

rations.

(ii) Define the concept of preformula, preproof by dropping all well-foundedness

assumptions. Can we still formulate and prove 10.A.13 and 10.A.14

in this new context?
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Annex 10.B. Generalized β-rules

The following generalization of the β-rules was suggested by several

persons (Feferman, Jervell, Ressayre): Consider a class C of models of a

given finite or denumerable language L, which is closed under submodels;

from C̃, we can form a category C̃ as follows:

– objects: models m of T belonging to C.

– morphisms from m to m′: the set IC(|m|, |m′|) consisting of all func-

tions f from |m| to |m′| such that:

+ f is injective.

+ m |= A(ā1, ..., ān) ↔ m′ |= A(fa1, ..., fan) for all atomic formula

A(x1, ..., xn).

A C-language is nothing but a language with several types objects,

whose restriction to type C is (isomorphic to) L; a C-theory is a (denu-

merable) theory in a C-language; a C-model of a C-theory T is a model

m whose restriction to L belongs to C.

If m ∈ C, then an m-proof is the following:

– It uses axioms ` A(ā1, ..., ān) (resp. A(1̄1, ..., ān) `) when ` A(a1, ..., an)

is a true (resp. false) atomic formula of L [m].

– It uses the m-rule, i.e. the following:

Γ, A(ā0) ` ∆ ... Γ ` A(ā),∆ ... all a ∈ |m|
l∀C r∀C

Γ,∀xCA ` ∆ Γ ` ∀xCA,∆

with a0 ∈ |m| in the (l∀C).

... Γ, A(ā) ` ∆ ... (all a ∈ |m| Γ ` A(ā0) ` ∆

l∃C r∃C
Γ,∃xCA ` ∆ Γ ` ∃xCA ` ∆

with a0 ∈ |m| in the (r∃C).
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When f ∈ IC(m,n) and π is a n-proof, we (eventually) define an

m-proof f−1(π), in the now familiar way. A C-proof is a family π(m)

s.t.:

(i) For all m ∈ C π(m) is an m-proof.

(ii) If f ∈ IC(m,n), then f−1
(
π(m)

)
= π(n).

Then the reader will prove the:

10.B.1. Exercise (C-completeness; Feferman, Jervell, Ressayre 1978).

Γ ` ∆ is valid in all C-models of T iff there is a C-proof of this sequent in T .

10.B.2. Remark.

Of course, 10.B.1 is of no interest, unless we can relativize it to the re-

cursive context: T recursive, and recursive C-proofs. What is a recursive

C-proof essentially depends of structural properties of C:

(i) For obvious (direct limit) reasons, a C-proof is completely deter-

mined by its values on denumerable objects; hence it is likely that

one can extend the family π(m) to all m which are models of L, en-

coded by a subset of IN . (Of course, if m 6∈ C, then π(m) needs not

to be well-founded... .) If 10.B.1 is proved by following our method

of 10.1.23, then π(m) is ipso facto defined on arbitrary models of

L. Then one easily checks that m ; π(m) is a continuous type 2

functional, and so it makes sense to style it recursive, prim. rec... .

This is the abstract answer to the question raised.

(ii) But in practice, we are more interested in specific categories, for

instance when C is a category of ptykes, as in Chapter 12. Then the

main property of these categories is the existence of a denumerable

subset (finite dimensional objects) which is dense w.r.t. direct limits;

moreover, finite dimensional objects (and their morphisms) can be

enumerated in a prim. rec. way. Since a C-proof will be uniquely

determined by its restriction to finite dimensional objects, it can be

encoded by: n→ π(mn), where (mn) is the prim. rec. enumeration
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of the finite dimensional objects... . From this one gets another notion

of recursive, prim. rec. C-proof.

(iii) It is not difficult to extend the Theorem 10.B.1 in such a way that,

if T is recursive, then the C-proof is prim. rec... .

10.B.3. Examples.

(i) The category ON is of the form C̃: the language L consists of ≤ and

0̄, and the models are of the form: an ordinal, ordered by m(≤) and

whose bottommost element is m(0̄)... . Then m can be identified

with 1 +x; the embeddings f ∈ I(1 +x, 1 + y) can be identified with

the functions E1 + g, where g ∈ I(x, y).

(ii) The same thing holds with the category DIL: the language L consists

of:

– a predicate ≤.

– for any n and linear order σ on n, a binary predicate pσ.

– a constant 0̄.

And we require that:

1. m(≤) is a linear order, with bottommost elements m(0̄).

2. If a ≤ b in m(≤), then one and only one of the formulas pσ(ā, b̄)

holds in m; p∅(0̄, 0̄), where ∅ is the void order on 0.

3. m |= ∀x, y, z
(
x ≤ y ≤ z ∧ p(x, y)∧ p(y, z)→ pσ∧τ (x, z)

)
(Condi-

tions 1–3 express that m encodes a predilator of the form 1 + F ,

in the sense of 8.G.10.)

4. The predilator encoded by m is a dilator.

One easily checks that embeddings can be identified with natural

transformations E1 + T... .

(iii) The same thing holds for more general categories of ptykes, but the

relation is rather abstract, compared to the elegant expressions (i)

and (ii). The details are left to the reader.
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10.B.4. Exercise (Π1
n-completeness of ptykes).

(i) Define the concept of DIL-proof (C-proof, when C̃ = DIL), and

prove that the concept of prim. rec. DIL-proof is Π1
3-complete.

(ii) If π is a DIL-proof, construct a ptyx of type (O → O) → O,

LIN(π), which “majorizes” π.

(Hint. We want to linearize π(F ) for all F , in a functorial way;

the essential idea is to give a functorial well-order of the set Tr(F ),

which occurs in the “F -rule”

... Γ ` A(a),∆ ... all a ∈ Tr(F )

r∀C
Γ ` ∀xCA,∆

We can well order Tr(F ) by:

a ≤ b↔ (z0 ; 0, ..., n− 1 ; ω)F < (z1 ; 0, ...,m− 1 ; ω)F

if a = (z0 ; n) and b = (z1 ; m)).)

Conclude that the set of prim. rec. ptykes of type 2 = (O →
O)→ O, is Π1

3-complete.

(iii) By induction on n (= (n − 1) → O), show that the set of all prim.

rec. ptykes of type n is Π1
n+1-complete.

CHAPTER 11

INDUCTIVE DEFINITIONS

Had this book been written a few years ago, inductive definitions would

have occupied the central chapter in the part concerning Π1
1-logic. But the

proof-theoretical analysis of inductive definitions by means of the concepts

of Π1
1-logic, although doable, is not very satisfactory; following Takeuti,

[98], people proved cut-elimination theorems for inductive definitions, but

these theorems are only partial results (the full-calculus does not enjoy

cut-elimination); see annex 11.A.
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In 1979 I initiated a new treatment of inductive definitions based upon

Π1
2-logic. This new method gives a full-cut-elimination theorem (and a sub-

formula property) for theories of inductive definitions, and it is essentially

this method and its applications that we shall consider in this chapter.

11.1. Inductive definitions

Inductive definitions are familiar from practice; for instance integers

are defined by:

(1) 0̄ is an integer.

(2) If n is an integer, so is Sn.

(3) All integers given by (1)–(2).

The definition of O (5.A.3) is an inductive definition; but one can define

wf -trees by an inductive definition too:

(1) If 〈 〉 ∈ T and
(
∀i(〈i〉 ∈ T → T〈i〉 is a wf -tree)

)
, then is a wf -tree.

(2) All wf -trees are given by (1).

Let us give an example from current mathematical practice: we induc-

tively define the concept of a Borel set:

(1) An interval ]r, r′[ of IR is a Borel set.

(2) If B is a Borel set, so is IR−B.

(3) If (Bn)n∈IN are Borel sets, so is
⋃
n

Bn.

(4) All Borel sets are given by (1)–(4).

In the sequel we shall only be concerned with inductive definitions of

sets of integers; this will enable us to study the integers, O, but also wf -

trees, since one can express the accessible part of a tree T by:
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(1) If s ∗ 〈n〉 ∈ Acc(T ) for all n such that s ∗ 〈n〉 ∈ T , and s ∈ T , then

s ∈ Acc(T ).

(2) All elements of Acc(T ) are given by (1).

And T is a wf -tree iff 〈 〉 ∈ Acc(T ).

11.1.1. Definition.

Assume that L is a language; a positive operator in L is a formula

Φ(X, x) of the language L [X] obtained from L by adding a new unary

predicate letter X, and x is a variable (in the case of several types, we

require that Xx is a corrct formula of L [X]) such that all occurrences of

X in Φ(X, x) are positive. (There may be free variables 6= x in Φ(X, x).)

11.1.2. Examples.

(i) N (X, x): x = 0̄∨∃y < x (x = Sy∧Xy) is a positive operator in L0.

(ii) O(X, x): x = 1̄∨∃y < x (x = 2̄ · y∧Xy)∨∃y < x ∃z < x
(
x = 〈y, x〉+

1̄∧∀t ∃u
(
T1(z, t, u)∧XU(u)

)
∧∀t ∀u ∀u′

(
T1(z, t, u)∧T1(z, St, u′)→

U(u) <0 U(u′)
)
∧Xy

)
is a positive operator in Lpr.

(iii) T (X, x): TR(f) ∧ f(x) = 0̄ ∧ Seq(x) ∧ ∀n
(
f(x ∗ 〈n〉) = 0̄→ X(x ∗

〈n〉)
)

is a positive operator in L2
pr.

11.1.3. Definition.

Assume that m is a model for the language L and Φ (= Φ(X, x)) is a pos-

itive operator in L. We assume that x is the only free variable in Φ(X, x).

We define a function m(Φ) from P (|m|) to P (|m|) as follows: if A ⊂ |m|,
extend m to a model m(A) of L(X) as follows: (m(A) |= Xā)↔ a ∈ A;

then let m(Φ)(A) = {a ∈ |m| ; m(A) |= Φ(X, ā)}.

11.1.4. Remarks.

(i) The function m(Φ) is obviously increasing: A ⊂ A′ →m(Φ)(A) ⊂
m(Φ)(A′): this comes from the fact that Φ is positive.
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(ii) When L has several types of objects, then for instance x is of type

τ and X takes arguments of type τ . Then one must of course define

m(Φ) as a function from P (|m|τ ) to itself. (|m|τ is the set of

objects of m of type τ .)

(iii) When Φ(X, x) contains free variables y1, ..., ym distinct from X, and

if c1, ..., cm are elements of m of the appropriate types, then one can

define m
(
Φ(c1, ..., cm)

)
, since the substitution of the c̄i’s for the yi’s

define a positive operator Φ(c̄1, ..., c̄m)(X, x) in L [m] whose only

free variable is x... .

11.1.5. Definition.

(i) Under the hypotheses of 11.1.3, we define subsets m(IΦα) of P (|m|),
for all ordinals α:

m(IΦα) =
⋃

α′<α

m(Φ)
(
m(IΦα′)

)
.

(ii) The ordinal α0 defined by:

α0 = µξ
(
m(IΦξ+1) = m(IΦξ)

)
is called the closure ordinal of Φ (w.r.t. m); in many contexts, m

is clear, and we shall speak of the closure ordinal of Φ.

11.1.6. Remarks.

(i) The equality
(
m(IΦξ) = m(IΦξ+1)

)
implies m(IΦξ′) = m(IΦξ)

for all ξ′ > ξ, hence the iteration “stops” at the closure ordinal;

nothing new happens after α0.

(ii) One easily proves that m(IΦα) ⊂m(Φ)
(
m(IΦα)

)
by induction on

α.

(iii) Hence another description of the
(
m(IΦα)

)
’s is
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m(IΦ0)

m(IΦα+1) = m(Φ)
(
m(IΦα)

)
m(IΦλ) =

⋃
λ′<λ

m(IΦλ′) for λ limit .

11.1.7. Examples.

(i) In 11.1.2 (i), one gets:

m(INα) = {c | c ∈ |m| ∧ ∃n < α m |= c̄ = n̄} .

(ii) In 11.1.2, if m is the standard model of Lpr, one gets:

m(IOα) = {e | e ∈ O ∧ ‖e‖ < α} .

(iii) In 11.1.2 (iii), if m is the standard model of L2
pr and f is a function

from IN to IN which is the characteristic function of a tree T , one

gets

m(T (f)α) = {s ∈ T ; WTR(Ts) ∧ ‖Ts‖ < α} .

(iv) In the cases (i), (ii), (iii), the respective closure ordinals are ω, ωck1 ,

and α0 = sup (‖Ts‖ ; s ∈ I ∧ Ts wf -tree).

11.1.8. Definition.

(i) Under the hypothesis of 11.1.3, we define a new language L [Φ̄] by

adding to L a new unary predicate letter Φ̄.

(ii) Under the hypothesis of 11.1.5, we define a model m [Φ̄] for the lan-

guage L(Φ̄) by saying that

m [Φ̄] |= Φ̄c̄↔ c ∈m(IΦα0)

where α0 is the closure ordinal of Φ w.r.t. m.
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11.1.9. Examples.

In 11.1.7 (i)–(iii), then the interpretation m(Φ̄) of Φ̄ in m [Φ̄] is:

(i) The set {c ∈ |m| ; ∃n m |= c̄ = n̄}.

(ii) O.

(iii) lThe set {s ∈ T ; WTR(Ts)}.

11.1.10. Remark.

In general, when Φ depnds on additional variables y1, ..., yk, then Φ̄ is a

k + 1-ary predicate letter such that Φ̄y1...ykx is a correct formula of the

language.

11.1.11. Theorem.

m(Φ̄) is the smallest fixed point of the function m(Φ) (w.r.t. inclusion):

m(Φ̄) =
⋂ {A ; A ⊂ |m| ∧Φ(m)(A) = A} .

Proof. If aα = m(IΦα), it is clear from 11.1.6 (iii) that, if α0 is the closure

ordinal of Φ, then aα0 = Φ(m)(aα0). Hence aα0 (=m(Φ̄)) is a fixed point

of m(Φ). Now assume that m(Φ)(A) ⊂ A; we prove by induction on α

that aα ⊂ A; the non trivial case is the successor case: if aα ⊂ A, then

m(Φ)(aα) ⊂ m(Φ)(A) ⊂ A... . By the way observe that we have proved

slightly more: m(Φ̄) is the smallest A ⊂ |m| such that m(Φ)(A) ⊂ A. 2

11.1.12. Corollary.

Assume that m is a denumerable model of L; then the set m(Φ̄) is Π1
1 in

m.

Proof. z ∈m(Φ̄) can be written

∀A ⊂ |m| ∀c ∈ |m|
((
m(A) |= Φ(A, c̄)

)
→ c ∈ A

)
and this is clearly Π1

1 in the data, i.e. m. 2

11.1.13. Remark.
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11.1.12 expresses the general way of writing an inductive definition under

a Π1
1 form; one sees that “inductive definitions are Π1

1”.
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11.2. Theories of inductive definitions

There are many theories of inductive definitions (in the familiar sense

of Σ0
1-logic); we shall essentially consider theories of the form ID1 (non-

iterated inductive definitions), which are the interesting case. In practice,

it is often useful to iterate inductive definitions, and this yields various

systems that we shall also consider: these iterated systems areconnected

with the Π1
1-comprehension axiom, Π1

1-CA. Classical results (equivalence

of systems of inductive definitions with systems of Π1
1-comprehension...)

can be found in [99].

11.2.1. Definition.

Let L be a first order language containing the language L0 of arithmetic,

let Φ be a positive operator in L; then we define a theory ID1(T ,Φ) in

the language L [Φ̄], by adding to T the following axioms:

(i) Usual induction axioms involving Φ̄:

A(0̄) ∧ ∀x
(
A(x)→ A(Sx)

)
→ ∀z A(z̄) .

(ii) The closure axiom

Φ(Φ̄, x)→ Φ̄(x) .

(iii) The generalized Φ induction axioms:

∀y
(
Φ(λxB(x), y)→ B(y)

)
→ ∀z

(
Φ̄(z)→ B(z)

)
.

(In (i) and (iii), the formulas A, B, are arbitrary in L [Φ].)

11.2.2. lemma.

The equality axiom x = y →
(
Φ̄(x) → Φ̄(y)

)
is a theorem of ID1(T ,Φ)

+ equality axioms of T .

Proof. Consider the formula B(x): ∀y
(
y = x → Φ̄(y)

)
; if Φ(λxB(x), y),

then since the only occurrence of Φ̄ in this formula are inside occurrences

of B(t) for some terms t, it is immediate that Φ(λxB(x), y) ∧ y = y′ →
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Φ(λxB(x), y′). Using the fact that Φ is positive, and ∀z
(
B(z) → Φ(z)

)
,

we obtain: Φ(λxB, y) → ∀y′
(
y = y′ → Φ(Φ̄, y′)

)
, and so by the closure

axiom (ii): Φ(λxB, y)→ B(y); hence we may apply generalized induction

to B, and we get:

∀z
(
Φ̄(z)→ B(z)

)
,

which can be read as:

∀z ∀y
(
y = z ∧ Φ̄(z)→ Φ̄(y)

)
. 2

11.2.3. Example.

Assume that T is PApr; then the theory ID1(O,T ) contains a closure axiom

(ii) that can be rewritten as:

• Ō(1̄).

• Ō(x)→ Ō(2x).

•
[
Ō(y)∧∀t ∃u

(
T1(z, t, u)∧Ō

(
U(u)

))
∧∀t ∀u ∀u′

(
T1(z, t, u)∧T1(z, St, u′)→

U(u) <0 U(u′)
)]
→ Ō(〈y, z〉+ 1).

11.2.4. Remarks.

(i) The natural idea is to iterate this construction of ID1(T ,Φ), obtain-

ing thus, from a positive operator Ψ in L [Φ̄] a theory ID2(T ,ΦΨ),

etc... . This process can even be iterated transfinitely many times,

along, say, a recursive ordinal V ; this leads to the iterated theory of

inductive definitions IDV , which are studied in [3]; see 11.4.12.

(ii) However, the pattern of iteratins is slightly tricky: it is not true that

ID2(T ,Φ,Ψ) = ID1(ID1(T ,Φ),Ψ). The reason is simple: if we do

twice the ID1 construction, then the only provable generalized Φ in-

ductions will be the ones where B does not contain Ψ̄, and this will be

definitely too weak. ID2(T ,Φ,Ψ) is therefore the theory containing:

1. usual induction axioms on all formulas.

2. closure axioms for Φ and Ψ.
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3. Φ and Ψ-inductions on all formulas.

(iii) Another way of overcoming the difficulty rised in (ii) would be to

consider theories of inductive definitions as schematical theories,

i.e. the principle of Φ-induction has to apply to any extension of the

language... .

(iv) If we look more closely, it is plain that it would be also possible

to define ID0(T ,Φ) simply as ID1(T ,Φ), but without the usual

induction axioms (i). Then for instance ID0(EA,N ) is obtained

from EA by adding the extra principles:

• N̄ (0̄)

• N̄ (x)→ N̄ (Sx)

• B(0̄) ∧ ∀z
(
B(z)→ B(Sz)

)
→ ∀y N̄ (y)→ B(y)

and this theory (if all quantifiers are restricted to N̄ (·)) is essentially

Peano arithmetic.

Peano arithmetic is therefore the simplest case of theory of induc-

tive definitions; the theories ID1 are already theories of inductive def-

initions iterated twice, and this is the reason why (recall (ii) above)

we must add to the closure and Φ-inductions, the usual induction

axioms which are just N -inductions... .

11.2.5. Definition.

In the language L2
2 of second-order arithmetic, we consider the following

positive operator:

ΦY (X, t) : t ∈ Y ∧ Tr(Y ) ∧ ∀n (t ∗ 〈n〉 ∈ Y )→ t ∈ X .

(Tr(Y ) is the formula: 〈 〉 ∈ Y ∧ ∀s ∀s′ (s ∈ Y ∧ s <∗ s′ → s′ ∈ Y ).)

We define a theory IND as follows: the language consists of L2, to-

gether with a new function letter mapping objects of type s into them-

sleves: if T is a term of type s, so is AccT . The precise definition of the

terms of type s is as follows:

• Variables X, Y, Z, ... of type s are terms of type s.
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• If T is a term of type s, so is AccT .

• If A is a formula involving no quantifiers of type s, then λxT is a term

of type s.

• The only terms of type s are given by these conditions.

The atomic formulas are formulas t ∈ T , where t and T are terms

of respective types i and s. We do the usual identification between the

formulas t ∈ λxA(x) and A(t).

The axioms of IND are the following:

(i) The sequent calculus corresponding to the language; the rules for the

quantifiers of type s being:

Γ ` A(X),∆ Γ, A(T ) ` ∆

r∀s l∀s
Γ ` ∀X A(X),∆ Γ, ∀X A(X) ` ∆

Γ ` A(T ),∆ Γ, A(X) ` ∆

r∃s l∃s
Γ ` ∃X A(X),∆ Γ, ∃X A(X) ` ∆

(in (r∀s) and (l∃s) X is not free in Γ ` ∆; in (l∀s) and (r∃s)

T is a term of the language, of type s).

(ii) The full induction axiom:

A(0̄),∀z
(
A(z)→ A(Sz)

)
` A(t) .

(An arbitrary formula of the language.)

(iii) The axioms of PRA.

(iv) Equality axioms x ∈ X ∧ x = y → y ∈ X.

(v) Closure axioms:

ΦT (AccT , x)→ x ∈ AccT .
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(vi) Φ-induction axioms:

∀y
(
ΦT (λxB, y)→ B(y)

)
→ ∀z

(
z ∈ AccT → B(z)

)
where B is an arbitrary formula of the language; hence λxB need

not to be a term!

11.2.6. Interpretation.

Let us look at the standard interpretation of IND in the structure mainly

consisting of IN and P (IN). First the interpretation of Φ: if Y is not a

tree, then ΦY (X,n) is always false, hence we may assume that Y is a tree;

then ΦY (X, s) is satisfied iff s ∈ Y is s.t. all its immediate predecessors

s ∗ 〈n〉 in Y are already in X. In other terms, let Xξ = m(Φξ
Y ) (m is the

standard model
(
IN, P (IN)

)
, m(Φξ

Y ) is defined as in 11.1.5); obviously:

s ∈ Xξ ↔ s ∈ Y ∧ ∀n (s ∗ 〈n〉 ∈ Y → ∃ξ′ < ξs ∈ Xξ) .

The reader will have no difficulty in establishing that:

s ∈ Xξ ↔ Ys is a wf -tree and ‖Ys‖ < ξ .

The standard interpretation m(Φ̄Y ) is therefore (11.1.8)

m(Φ̄Y ) = ∅ if Y is not a tree

m(Φ̄Y ) = {s ; Ys is a wf -tree} if Y is a tree .

But if we apply the ΦY -induction axiom to the set m(Φ̄Y ) = Z, we see

that

∀y (ΦY (Z, y)→ y ∈ Z) , hence ∀z (z ∈ AccY → z ∈ Z) .

But Z is the smallest set such that ΦY (Z) ⊂ Z (11.1.11), and ΦY (AccY ) ⊂
AccY : hence Z = AccY .

We have thus established that, in the standard model
(
IN, P (IN)

)
the

interpretation of AccY , when Y is a tree, is the set of all s ∈ Y s.t. Ys is a

wf -tree.

11.2.7. Theorem (Feferman, [99]).
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The Π1
1-comprehension axiom is a theorem of IND.

Proof. Let A be a Π1
1 formula; we shall explicitly construct a term T in

the language of IND such that: ∀z
(
z ∈ T ↔ A(z)

)
is a theorem of IND;

then of course

` ∀z
(
z ∈ T ↔ A(z)

)
r∃s

` ∃X ∀z
(
z ∈ X ↔ A(z)

)
gives the desired proof.

We start with a formula A of the form ∀X B(X), where B does not

contain any second order quantifiers; then it is possible to build a term U

such that the equivalence

∀X B(X)↔ WTR(U)

is a theorem of IND.

(Sketch of the proof. By replacing the set quantifiers ∀X by quantifiers

over functions, we can place ourselves inside PRA2, where a similar re-

sult (5.2.4) has already been obtained; we use Σ0
1-CA∗ to reduce the for-

mula to the form ∀f ∃n t(f, n) = 0̄. The next step is to translate back

this result in IND: the function quantifiers can be replaced by quantifiers

∀X (Fnc(X)→ −) where Fnc(X) stands for ∀n ∃!m 〈n,m〉 ∈ X; the pos-

sibility of translating terms and proving Σ0
1-CA∗ comes from the obvious

remark that arithmetical comprehension is provable in IND, and in order

to do these translations all we need is arithmetical comprehension. Fi-

nally, we obtain a term U s.t. Tr(U) is provable, and ∀X B(X) is provably

equivalent to the following formula (abbreviated as WTR(U))

∀X
(

Fnc(X)→ ∃s (∀n < lh(s) 〈n, (s)n〉 ∈ X ∧ s 6∈ U)
)
. 2)

We now establish in IND the formal equivalence

WTR(U)↔ 〈 〉 ∈ Acc .

(Proof. ← Consider the formula B(x): x ∈ U ∧WTR(Ux). Then assume

that ∀nx ∗ 〈n〉 ∈ U → B(x ∗ 〈n〉); then if Fnc(X) let n0 be the unique
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integer s.t. 〈0, n0〉 ∈ X and define X ′ by: 〈a.m〉 ∈ X ′ ↔ 〈Sa,m〉 ∈ X (i.e.

X ′ = λx 〈S(x)0, (x)1〉 ∈ X); the hypothesis B(x ∗ 〈n0〉) ∨ x ∗ 〈n0〉 6∈ U

shows that:

– If x ∗ 〈n0〉 6∈ U then s 6∈ Ux, with s = 〈n0〉, and since 〈0, n0〉 ∈ X, one

concludes that B(x).

– If B(x ∗ 〈n0〉), apply the definition of WTR(Ux ∗ 〈n0〉) with X ′ defined as

above; then there is a s s.t. s 6∈ Ux ∗ 〈n0〉 and ∀n < lh(s) 〈n, (s)n〉 ∈ X ′.
Let s′ = 〈n0〉 ∗ s; then s′ 6∈ Ux ∗ 〈n0〉∧∀n < lh(s′) 〈n, (s′)n〉 ∈ X. Summing

up we obtain a proof of:

ΦU(λxB(x), z)→ B(Z)

hence by the ΦU -induction axiom:

x ∈ AccU → WTR(Ux)

hence

〈 〉 ∈ AccU → WTR(U) .

→ Roughly speaking, the idea wholly lies in the Kleene Basis theorem

(5.6.7): we shall construct a s.d.s. in U , which is recursive in AccU (hence

encodable by a term of the language); assume that 〈 〉 6∈ AccU ; then, by the

closure axiom, we obtain ¬ΦU(AccU , 〈 〉), i.e. ∃n (〈n〉 ∈ U ∧ 〈n〉 6∈ AccU).

By a trivial induction on p we obtain:

∀p ∃s (lh(s) = p ∧ s ∈ U ∧ s 6∈ AccU) .

Therefore define a set X by:

s ∈ X ↔ Seq(s) ∧ s ∈ U ∧ s 6∈ AccU ∧

∀i < s ∀n < (s)i
(
(s̀| i) ∗ 〈n〉 ∈ AccU ∨ (s̀| i) ∗ 〈n〉 6∈ U

)
.

X can be described by an abstraction term involving AccU . And if one

considers X ′ defined by

X ′ = λx ∃s (Seq(s) ∧ x = 〈lh(s), s〉 ∧ s ∈ X)
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then it is immediate how to prove that:

∀s
(
(∀n < lh(s) 〈n, (s)n〉 ∈ X ′)→ s ∈ U)

(this follows from ∀s (s ∈ X → s ∈ U ∧ s 6∈ AccU), proved by a trivial

induction on lh(s)...).

We have just established that

〈 〉 6∈ AccU → ¬WTR(U) . 2)

Summing up we have obtained in IND the provability of the equivalence

A↔ 〈 〉 ∈ AccU .

If A depends on a variable z of type i, let T = λz (〈 〉 ∈ AccU(z)); then

we have proved that

A(z)↔ z ∈ T . 2

11.2.8. Remarks.

(i) The original result of Feferman [99] makes use of IDω (ω-times it-

erated inductive definitions) which is a system roughly equivalent

to the one we are presenting.∗ We have chosen our presentation be-

cause it is more flexible to be in the same language as second order

arithmetic ... the formalism IDω has the dubious advantage of elimi-

nating second order variables... . Of course, what must absolutely be

eliminated is the use of second order quantifiers inside comprehen-

sion axioms: our system appears as something formally predicative

... this point will be clarified when we shall use β-logic... .

(ii) Something the reader must absolutely know, even if he never works

with the formalism IDω, is that this theory is not the union of the

1∗ In fact, IDω is equivalent to (Π1
1-CA) + (BI), where (BI) (Bar-Induction) stands

for the scheme

∀X
(
WTR(X)→ TI(X,A)

)
.

A here is arbitrary. In the framework of Π1
2-logic, principles s.t. (BI) usually have a

purely logical proof... .
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IDn’s! The union of the IDn’s os something is denoted by ID<ω.

IDω is a system where one has a predicate P (n,m) together with

axioms expressing that P (n, ·) is the nth iterated inductively defined

predicate. It is clear on general ground, that IDω is likely to be

strictly stronger than ID<ω.

(iii) In fact one would easily show that IND is nothing but the standard

system for Π1
1 comprehension. Using 11.1.12, it is easy to replace the

sets AccY by Π1
1 comprehensions. Since

t ∈ Accy ↔ ∀X (∀x (ΦY (X, x)→ x ∈ X)→ t ∈ X

is provable by axioms (v) and (vi), we see that t ∈ AccY is formally

equivalent to a Π1
1 formula B(x, Y ), and the use of AccY can be

eliminated if one assumes that ∃X ∀x
(
x ∈ X ↔ B(x, Y )

)
, i.e. the

Π1
1-comprehension axiom ... details are left to the reader.

(iv) It is legitimate to ask: what is the status of ID1 in this context; the

answer is that ID1 obviously corresponds to a specific instance of Π1
1-

comprehension, ∃X ∀x
(
x ∈ X ↔ B(x)

)
, namely when B contains

no free variable of type s; this restricted form of comprehension is

sometimnes styled as “Π1
1-comprehension without parameters”. In

practice the study of ID1 (i.e. Π1
1-comprehension without parame-

ters) is more rewarding (and simpler) than the study of the iterated

IND (or IDω). IND is especially useful if one is interested in the

ordinal analysis of Π1
1-CA ... but this a merely ideological question,

which follows by a straightforward iteration of the basic pattern of

ID1. The results on ID1 alone have a lot of applications outside

proof-theory, that we shall also consider. After all these consid-

erations, the reader will not be too surprised to discover that the

emphasis in the next sections is placed on the theory ID1... .
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11.3. Inductive logic

What we call inductive logic is just the use of β-logic to yield a specific

formalism for theories of inductive definitions; as explained above, we shall

essentially work with the theories ID1(T ,Φ)... .

11.3.1. Definition.

(i) Under the conditions of Definition 11.2.1, assume that α and β are

two ordinals and that α < β; then we introduce a language Lαβ (we

must also denote Φ, for instnace LαβΦ , but we shan’t): Lαβ consists

of L, together with the unary predicate Φ̄ and IΦλ, for all λ < β.

(ii) Under the conditions of (i), we define a theory T αβ, whose axioms

and rules are

1. the axioms of T .

2. the rules of ω-logic for quantifiers of type l

... Γ ` A(n̄),∆ ... all n < ω Γ, A(n̄0) ` ∆

r∀l l∀l
Γ ` ∀x A(x),∆ Γ,∀x A(x) ` ∆

Γ ` A(n̄0),∆ ... Γ, A(n̄) ` ∆ ...

r∃l l∀l
Γ ` ∃x A(x),∆ Γ,∃x A(x) ` ∆

3. the rules expressing that IΦλ is Φ iterated λ times

Γ ` Φ(IΦµ, t),∆ ... Γ,Φ(IΦµ, t) ` ∆ ...

rIλ lIλ

Γ ` IΦλ(t),∆ Γ, IΦλ(t) ` ∆

In (rIλ), µ is an arbitrary ordinal < λ, whereas in (lIλ), µ varies

through the set of all ordinals < λ.

4. the rules for Φ̄:



Inductive logic 293

Γ ` Φ(IΦµ, t),∆ ... Γ,Φ(IΦµ, t) ` ∆ ...

r̄ l̄

Γ ` Φ̄(t),∆ Γ, Φ̄(t) ` ∆

In (r̄), µ is an arbitrary ordinal < β, whereas in (l̄), µ varies

through the set of all ordinals < α.

11.3.2. Comments.

(i) The rules (rIλ) and (lIλ) exactly express what is expected, namely

that:

IΦλ =
⋃
µ<λ

Φ(IΦµ, ·) .

(ii) The interpretation of the rules for Φ̄ is more problematic, because

these rules are asymmetric:

– if we allow the notation IΦβ, then clearly (r̄) says that

IΦβ ⊂ Φ̄ .

– similarly, the meaning of (l̄) is that

Φ̄ ⊂ IΦα .

Since we are in systems with cuts, it is possible to derive from

that, by transitivity of inclusion (this is the use of cut):

IΦβ ⊂ Φ̄ ⊂ IΦα

and since α < β, it follows that IΦ = IΦα+1, i.e. these rules express

that α is the closure ordinal of Φ.

(iii) In practice, if one considers, say, T = PApr, Φ = O, then the theories

T αβ will be consistent iff α ≥ ωCK1 ; in particular, for most of values

α, T αβ cannot enjoy any reasonable cut-elimination theorem (which

would force T αβ to be consistent).
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11.3.3. Theorem.

If Γ ` ∆ is provable in ID1(T ,Φ), then it is provable in T αβ for all α and

β > α.

Proof. The usual induction axioms can be proved by the ω-rule, as usual;

in order to prove the closure axioms, let us consider:

Φ(IΦλ, x̄) ` Φ(IΦλ, x̄)

rIα

... Φ(IΦλ, x̄) ` IΦα(x̄) ... all λ < α

l̄

Φ̄(x̄) ` IΦα(x̄)

Now, using the positivity of Φ, it is not difficult to build a (cut-free)

proof of

Φ(Φ̄, ȳ) ` Φ(IΦα, ȳ)

and we conclude as follows:

Φ(Φ̄, ȳ) ` Φ(IΦα, ȳ)

r̄

Φ(Φ̄, ȳ) ` Φ̄(ȳ)

r →
... ` Φ(Φ̄, ȳ)→ Φ̄(ȳ) ...

r∀l
` ∀y

(
Φ(Φ̄, y)→ Φ̄(y)

)
and we have therefore proved the closure axiom; in this proof the asym-

metry between (r̄) and (l̄) was crucial. In order to prove Φ-induction, let

B(x) be a formula, and let B0 be ∀z Φ(λxB, z) → B(z); then, for each

λ < α, we produce a proof πzλ of the segments:

B0, IΦ
λ(z̄) ` B(z̄) .
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πzλ



πz
′
µ

B0, IΦ
µ(z̄′) ` B(z̄′)

...

B0,Φ(IΦµ, z̄) ` Φ(λxB, z̄) B(z̄) ` B(z̄)

l →
B0,Φ(IΦµ, z̄),Φ(λxB, z̄)→ B(z̄) ` B(z̄)

l∀l
... B0,Φ(IΦµ, z̄) ` B(z̄) ... all µ < λ

lIλ

B0, IΦ
λ(z̄) ` B(z̄)

(As usual: either you say that the proof is constructed by induction on

λ (this is the traditional way of expressing it) or you say that you start

with the conclusion, then write some portion of the proof above, then do

the same with the premises, etc...).

A similar construction would give:

...

... B0,Φ(IΦλ, z̄) ` B(z̄) ... all λ < α

l̄

B0, Φ̄(z̄) ` B(z̄)

r →
... B0 ` Φ̄(z̄)→ B(z̄) ...

r∀l
B0 ` ∀z

(
Φ̄(z)→ B(z)

)
r →

` B0 → ∀z
(
Φ̄(z)→ B(z)

)
and we have therefore proved the Φ-induction axiom. 2

11.3.4. Definition.

(i) Under the hypotheses of 11.2.1, let F be a dilator of the form a+ Id +

1 + F ′ (to simplify the understanding, the reader can imagine that

F = Id + 1); then we define a language LF as follows:

LF consists of L, togethjer with the unary predicates Φ̄ and Φt, for
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all F -terms t (10.2.17).

(ii) A proof in T F of a sequent Γ ` ∆ of LF consists in a family (πα)α∈0n

such that:

1. For all α, πα proves Γ(α) ` ∆(α) (which is the result of replacing

in Γ and ∆ all F -terms t by their value t(α) at α) in the system

T a+αF (α).

2. For all α, β ∈ 0n and f ∈ I(α, β), F (f−1)(πβ) is defined and equals

πα. (The definition of F (f)−1 is straightforward and therefore is

left to the reader... .) These proofs are also called F -proofs.

11.3.4. Examples.

(i) The proof (in T α,α+1) of ` ∀y
(
Φ(Φ̄, y)→ Φ̄(y)

)
given in 11.3.3 (let’s

call it λα) is such that:

(Id + 1)−1(λβ) = λα when f ∈ I(α, β) ,

hence (λα) defines a Id + 1-proof of the closure axiom.

(ii) In a similar way, the proofs (in T α,α+1) of the Φ-induction axiom on

B define a proof in T Id+1 of this axiom.

11.3.5. Remark.

We have already remarked that the theories T αβ are most often inconsis-

tent, and in particular cannot enjoy cut-elimination; for the theories T F

the situation is different: they are all consistent (provided T is itself consis-

tent), hence there is no a priori reason why the proofs in T F , considered as

whole entities, should not enjoy reasonable cut-elimination theorems. We

shall see in the next section that from a given proof in T F it is possible to

build a cut-free proof of the same thing, provided the dilator F is changed

into some F ′, and the parameters are subsequently modified... .

11.3.6. Theorem.

Let T be a prim. rec. theory, Φ a positive operator, and let Γ ` ∆ be a

closed sequent of L [Φ̄]; the following are equivalent:
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(i) Γ ` ∆ is true in any ω-model of L [Φ̄] of the form m [Φ̄] (see 11.1.8).

(ii) Γ ` ∆ is provable in T F for some dilator F of the form a+ Id+1+F ′.

(Moreover the proof can be chosen prim. rec. and one can assume

that F = Id + 1.)

Proof. (ii)→ (i); choose an ω-model of T , saym; inm, Φ has a closure or-

dinal, say α0; we show that m can be extended into a model of T a+α0,F (α0):

we simply define m(IΦλ) as in 11.1.5; of course we must verify that the

rules (rIλ), (lIλ), (r̄), (l̄) are valid for this interpretation:

• The validity of (rIλ) amounts to verifying that

m(Φ)
(
m(IΦµ)

)
⊂m(IΦλ) when µ < λ .

• The validity of (lIλ) amounts to verifying that

m(IΦλ) ⊂ ⋃
µ<λ

m(Φ)
(
m(IΦµ)

)

and these two formulas are simply trivial by construction.

• The validity of (r̄) amounts to verifying that

m(IΦF (α0)) ⊂m(Φ̄) .

• The validity of (l̄) amounts to verifying that

m(Φ̄) ⊂m(IΦa+α0)

but since α0 is the closure ordinal of Φ in m, it is plain that

m(Φ̄) = m(IΦa+α0) = m(IΦF (α0))

(we use the fact that a+ α0 < F (α0)).

Now, if (πα)is any proof in T F of Γ ` ∆, then πα0 will be a proof in

T a+α0 F (α0) of the sequent Γ(α0) ` ∆(α0), which is equal to Γ ` ∆, and

since m can be extended to a model of T a+α0 F (α0), it follows that Γ ` ∆

is true in m [Φ].

(i) → (ii): The first thing is to obtain a completeness theorem w.r.t.

the following theories T α consisting of:
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1. T .

2. The rules of ω-logic.

3. The rules (rIλ), (lIλ) for all λ < α.

4. The rules (r̄), (l̄); in (r̄) µ is < α.

5. The additional axiom: ` ∀y
(
Φ(Φ̄, y)→ Φ̄(y)

)
.

Then a straightforward adaptation of the β-completeness theorem shows

that, if Γ ` ∆ is true in all ω-models of the form m [Φ̄], then it has a prim-

itive recursive β-proof of the form (πα):

• πα is a proof of Γ ` ∆ in T α.

• If f ∈ I(α, β) then f−1(πβ) = πα.

(Sketch of the proof. Take for instance a system of βω-logic where IΦ

appears as a two variables predicate IΦ(λ̄, n̄)l the βω-models of such a

theory are exactly those models whose restriction to L [Φ̄] is an ω-model of

the form m [Φ]; of course the rules (rIλ), (lIλ), (r̄), (l̄) must be rewritten

as axioms, say:

(a) ∀λ ∀n
(
IΦ(λ, n)↔ ∃µ < λ Φ(IΦ(µ, ·), n)

)
(b) ∀n

(
Φ̄(n)↔ ∃λ Φ(IΦ(λ, ·), n)

)
.

The β-completeness theorem enables us to find a prim. rec. βω-proof of

Γ ` ∆, in this modified formalism. Then, for instance, we can replace

the axioms (a) and (b) by their obvious proofs by means of (rIλ), (lIλ),

(r̄), (l̄). A straightforward cut-elimination procedure enables us to elimi-

nate all ordinal quantifiers ... then replacing all the IΦ(λ̄, n) by IΦλ(n)

we obtained the desired proof. Of course, it is also possible to use the

completeness for Lβω, using translations:

IΦλ(n̄) : W
µ<λ

Φ(IΦµ, n̄)

Φ̄(n̄) : W
λ<α

Φ(IΦλ, n̄) .



The cut-elimination theorem 299

But of course a direct adaptation of the β-completeness argument is the

simplest solution, if not the shortest! 2)

Now, we modify our proof (πα) simply by replacing all uses of the closure

axiom 5 by its proof in T αα+1, as described in 11.3.3; the resulting proof

(π′α) is a prim. rec. Id + 1-proof of Γ ` ∆. 2

11.3.7. Remark.

The simultaneous use of ω and β-logics is slightly inelegant; we shall see

later on how to define variants of these constructions (by considering ID1

as a twice-iterated inductive definition) making use of β-logic only... .
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11.4. The cut-elimination theorem

This section is devoted to a syntactial proof of the following:

11.4.1. Theorem (Girard, 1979, [100]).

Assume that Γ ` ∆ is a sequent of L [Φ̄], π = (πα) is a proof of Γ ` ∆ in

T F , and F and π are prim. rec. (typically: F = Id + 1); then it is possible

to construct explicitly a recursive dilator F ′ together with a recursive proof

π′ of Γ ` ∆ in T F ′ , such that all cut-formulas of the proofs π′α belong to

L.

Proof. The syntactial proof of this fact is, as in the case of most cut-

elimination results, long and tedious; the reader is advised of the exis-

tence of a purely model-theoretic argument, discovered by Buchholz (1982,

[101]); see 11.4.9 (iii). We first indicate the main ideas of the cut-elimination

theorem; let us assume that F = Id + 1 + F ′.

The reader already knows how to eliminate all cuts whose cut-formula

is not atomic; the new cases arise with cut-formulas of the form IΦλ(n̄)

and Φ̄(n̄); the elimination of a IΦλ-cut is straightforward

πα



... π′α
... π′′ν,α

Γ ` Φ(IΦµ, n̄),∆ ... Γ′,Φ(IΦν , n̄) ` ∆′ ... all ν < λ

rIλ lIλ

Γ ` IΦλ(n̄),∆ Γ′, IΦλ(n̄) ` ∆′

CUT

Γ,Γ′ ` ∆,∆′

This typical example will obviously be replaced by:

... π′α
... π′′µ,α

Γ ` Φ(IΦµ, n̄),∆ Γ′,Φ(IΦµ, n̄) ` ∆′

CUT

Γ,Γ′ ` ∆,∆′

The case of a cut whose cut-formula is Φ̄(n̄) is completely different:
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πα



... π′α
... π′′ν,α

Γ ` Φ(IΦµ, n̄),∆ ... Γ′,Φ(IΦν , n̄) ` ∆′ ... all ν < α

r̄ l̄

Γ ` Φ̄(n̄),∆ Γ′, Φ̄(n̄) ` ∆′

CUT

Γ,Γ′ ` ∆,∆′

What makes the situation hopeless is that µ is any ordinal < F (α) (typi-

cally: µ = α), whereas the premises of the (l̄) rule vary only over ordinals

< α. This technical remark is just another way of remarking that the the-

ories T αα+1 cannot enjoy any reasonable cut-elimination (11.3.2 (iii)). But

we have also remarked that no such a priori limitation applies to proofs-as-

functors (11.3.5). So, instead of trying to eliminate the cuts in π = πα for

each separate value of the ordinal α, we make a cut-elimination procedure

which is not pointwise in the sense that it applies to the family (πα) as a

whole!

The idea is essentially to form π′′µ,F (α) and then to form the cut:

... π′α
... π′′ν,F (α)

Γ ` Φ(IΦµ, n̄),∆ Γ′,Φ(IΦµ, n̄) ` ∆′

CUT

Γ,Γ′ ` ∆,∆′

If we look more closely, we see that:

1. the coefficients in Γ′ ` ∆′ have been modified.

2. the proof obtained is now a F ◦ F -proof.

3. in fact in the rules (l̄) above the right premise of the cut, we have F (α)

premises, that is obviously too much ... but too many premises are no

handicap ... simply chop all premises of index ≥ α.

4. in the more general case F = a+ Id + 1 +F ′, instead of forming F ◦ F ,

we form F ◦ (Id + 1 + F ′)... .

Let us now enter into the heart of the matter... .
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11.4.2. Definition.

Assume that π = (πα) is a F -proof whose last rule (10.2.24) is a cut

Γ(α) ` A(α),∆(α) Γ′(α), A(α) ` ∆′(α)

CUT

Γ(α),Γ′(α) ` ∆(α),∆′(α)

This cut is said to be of:

kind I : when A(α) is a formula of L.

kind II : when A(α) is neither a formula of L, nor a formula Φ̄(n̄).

kind III : when A(α) is a formula of the form Φ̄(n̄).

11.4.3. Theorem.

Assume that π = (πα) is a F -proof of a sequent Γ ` ∆ of LF ; then one

can construct (recursively in the data) a F -proof π′ = (π′α) of the same

sequent Γ ` ∆ such that:

(i) all cuts in π′ are of kind I or III.

(ii) if no cut-formula of π contains Φ̄, then all cuts in π′ are of kind I.

Proof. This is a rather straightforward theorem, not essentially differ-

ent from cut-elimination for the sequent calculus Lβω... . The idea is to

replace any cut of kind II by other cuts of smaller complexity, until we

obtain only cuts of kinds I and III... . We can for instance do this for

all proofs πα separately; if the result of this process is denoted N(πα),

then we simply observe that, if f ∈ I(α, β) and F (f)−1(πβ) = πα, then

F (f)−1
(
N(πβ)

)
= N(πα). The very details are boring, very close to proofs

we have already produced several times in this book, and I don’t think se-

riously that a reader who has succeeded in getting through the book up to

this chapter can have the slightest hesitation on such a theorem! However,

let us compute explicitly a concept of degree, which computes the number

of steps from A to cut-formulas of kinds I or III:

d0(A) = −1 when A ∈ L or A = Φ̄(n̄)

d0
(
IΦλ(n̄)

)
= ω · λ
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d0(A→ B) = d0(A ∨B) = d0(A ∨B) = sup
(
d0(A), d0(B)

)
+ 1

when A and B are not both in bol

d0(∀x A) = d0(∃x A) = d0(¬A) = d0(A) + 1 when A 6∈ L .

Then cuts of kind II correspond exactly to d0(A) 6= −1; the degree is

functorial, i.e.

ω · F (f)−1
(
d0(A)

)
= d0

(
F (f)−1(A)

)
(A ∈ La+β,F (β)...) ;

moreover, d0
(
Φ(IΦµ, n̄)

)
< d0

(
IΦλ(n̄

)
when λ < µ... . And 11.4.3 is sim-

ply the fact that the global cut-degree can be lowered to 0, i.e. the only

cuts are of degree −1... . But it’s enough for this! 2

11.4.4. Theorem.

(i) To each 3-uple (π, F,Γ ` ∆) such that

1. F is a dilator of the form a+ Id + 1 + F ′

2. Γ ` ∆ is a sequent of LF

3. π is a proof of Γ ` ∆ in T F such that π has no cuts of kind II

we associate a 3-uple ϑ(π, F,Γ ` ∆), improperly denoted by (π̃, F̃ , Γ̃ `
∆̃) (the definition of π̃ depends also on F ; the definition of F̃ depends

also on π) such that:

1. F̃ is a dilator of the form F + F ′′.

2. Γ̃ ` ∆̃ is the result of replacing in Γ ` ∆ all atomic formulas

IΦt(n) where t is a non- constant F -term (i.e. t(α) ≥ a + α for

all α) by Φ̄(n).

3. π̃ is a F̃ -proof of Γ̃ ` ∆̃; the only cuts of π̃ are of kind I.

(ii) The construction is functorial in the following sense: let G = b′+ Id+

1+G′, and assume that T ∈ I1(G,F ) is of the form f+E1
Id +E1

1 +T ′,

and assume that T−1(Γ ` ∆) = Γ′ ` ∆′ exists, as well as T−1(π) =

π′; then if we consider (π̃′, G̃, Γ̃′ ` ∆̃′), we can define T̃ ∈ I1(F̃ , G̃) of

the form T + T ′′ s.t. T̃−1(π̃) = π̃′ (T̃−1(Γ̃ ` ∆̃) = Γ̃′ ` ∆̃′ is trivial).
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(iii) The construction˜has the following extra properties:

a. Ẽ′F = E1
F̃

.

b. If (π, F,Γ ` ∆)
T−→ (π′, F ′,Γ′ ` ∆′)

and (π′, F ′,Γ′ ` ∆′)
T ′−→ (π′′, F ′′,Γ′′ ` ∆′′)

(standard notations for the situation of (ii)) then since one has

(π′, F,Γ ` ∆)
T ′T−→ (π′′, F ′′,Γ′′ ` ∆′′) one can define T̃ , T̃ ′, T̃ ′T ;

then T̃ ′T = T̃ ′T̃ .

c. If (πi, Fi,Γi ` ∆i)
Ti−→ (π′, F ′,Γ′ ` ∆′) (i ∈ I, I directed) are

such that:

i < j → rg
(

Tr(Ti)
)
⊂ rg

(
Tr(Tj)

)
if (π, F,Γ ` ∆)

T−→ (π′, F ′,Γ′ ` ∆′) and rg
(

Tr(T )
)

=⋃
i∈I

rg
(

Tr(Ti)
)

then rg
(

Tr(T̃ )
)

=
⋃
i∈I

rg
(

Tr(T̃i)
)
.

d. If (πi, Fi,Γi ` ∆i)
Ti−→ (π, F,Γ ` ∆) (i = 1, 2, 3) and rg

(
Tr(T1)

)
=

rg
(

Tr(T2)
)
∩ rg

(
Tr(T3)

)
(i.e. T1 = T2 ∧ T3) then T̃1 ∧ T̃2 = T̃3.

(Part (iii) of the theorem, which is the longest to state, is also the obvious

part; the proof will be omitted... .)

Proof. First a remark on notatins: we shall often need to compute F̃ in

several “contexts”, for instance in (π, F,Γ ` ∆) and (π′, F,Γ′ ` ∆′), and

of course we cannot use F̃ as a notation for both cases; so what we do is the

following; we say “consider (π′, F ′,Γ′ ` ∆′), with F ′ = F ′′ ... then we use

F̃ ′ to speak of F̃ in the context of (π′, F,Γ′ ` ∆′). In order to carry out the

proof, it will be necessary to analyze proofs as we did in Sec. 10.2... . One

must therefore give a last rule, and premises for all F -proofs... . Assuming

this has been done, then the proof of the theorem requires looking through

a certain number of cases: we work by induction on π (10.2.9):

1. If π is an axiom of T : let π̃ = π, F̃ = F .

2. If the last rule (R) of π is unary, there are three subcases

subcase a (R) is (r̄): let us write
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π



π′
...

Γ ` Φ(IΦλ, n̄),∆

r̄

Γ ` Φ̄(n̄),∆

The induction hypothesis, applied to (π′, F ′,Γ ` Φ(IΦλ, n̄),∆) with F ′ =

F , yields a 3-uple (π̃′, F̃ ′, Γ̃ ` ˜
Φ(IΦλ, n̄), ∆̃) enjoying the properties of the

theorem; if λ is a constant F -term, then
˜

Φ(IΦλ, n̄) = Φ(IΦλ, n̄), hence

one can define:

π̃ =



... π̃′

Γ̃ ` Φ(IΦλ, n̄), ∆̃

r̄

Γ̃ ` Φ̄(n̄), ∆̃

and F̃ = F̃ ′. But, if λ is not a constant F -term, then
˜

Φ(IΦλ, n̄) = Φ(Φ̄, n̄).

Here we use a lemma:

11.4.5. Lemma.

Given a F -proof of Γ ` ∆, say π, it is possible to construct a F + 1-proof

of Γ1 ` ∆1, where Γ1 ` ∆1 is obtained from Γ ` ∆ by replacing some

positive occurrences of Φ̄ in Γ ` ∆ by corresponding occurrences of IΦt,

where t is the F + 1-term t(x) = F (x).

Furthermore, the construction is functorial in the following sense: if

T = f + E1
Id + E1

1 + T ′ ∈ I1(G,F ) and Γ′ ` ∆′ = T−1(Γ ` ∆), then

Γ′1 ` ∆′1 = T−1
1 (Γ1 ` ∆1) if T−1(π) = π′, then T−1

1 (π1) = π′1, with

T1 = T + E1
1.

Proof. The formulation of the lemma is more complicated than its proof:

simply replace all occurrences of Φ̄ which are “ancestors” of those occur-

rences of Φ̄ in Γ ` ∆ one wants to modify, by corresponding occurrences

of IΦt. (The precise formulation of this would be terribly pedantic.) Of

course, this forces us to rename some rules: some (r̄) appear now as rules

(rIt). The very details are left to the reader. The functorial property is

immediate. 2
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We apply the lemma to π̃′, in order to get a proof π̃′1 of Γ̃ ` Φ(IΦt, n̄), ∆̃,

with t(α) = F (α) for all α. This is a F̃ ′ + 1-proof, and one defines

π̃ =



π̃′
...

Γ̃ ` Φ(IΦt, n̄), ∆̃

r̄

Γ̃ ` Φ̄(n̄), ∆̃

and one defines F̃ = F̃ ′ + 1.

The functorial part of the theorem is left to the reader. (Let T̃ =

T + E1
1.)

subcase b (R) is (rIλ) with λ a non constant F -term. Then

π



π′
...

Γ ` Φ(IΦµ, n̄),∆

rIλ

Γ ` IΦλ(n̄),∆

The situation is very close to subcase a:

– If µ is a constant F -term, let

π̃ =



... π̃′

Γ̃ ` Φ(IΦµ, n̄), ∆̃

r̄

Γ̃ ` Φ̄(n̄), ∆̃

and F̃ = F̃ ′.

– π̃

π̃′1
...

Γ̃ ` Φ(IΦt, n̄), ∆̃

r̄

Γ̃ ` Φ̄(n̄), ∆̃

with F̃ = F̃ ′ + 1.

subcase c in all other cases, one can write
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π



... π′

Γ′ ` ∆′

R

Γ ` ∆

and it will be possible to define F̃ = F̃ ′,

π̃



... π′

Γ̃′ ` ∆̃′

R

Γ̃ ` ∆̃

3. The last rule (R) is binary; one must consider two subcases:

subcase a (R) is not a cut of kind III; assume that

π



... π′
... π′′

Γ′ ` ∆′ Γ′′ ` ∆′′

R

Γ ` ∆

Let us apply the induction hypothesis to the 3-uples (π′, F ′,Γ′ ` ∆′),

(π′′, F ′′,

Γ′′ ` ∆′′), with F ′ = F ′′ = F . We obtain (π̃′, F̃ ′, Γ̃′ ` ∆̃′), (π̃′′, .F̃ ′′, Γ̃′′ `
∆̃′′); the main problem comes from the fact that, in general, F̃ ′ 6= F̃ ′′.

Here again, we need a lemma:

11.4.6. Lemma.

Given a F -proof π of Γ ` ∆ such that:

1. π contains no cuts of kind II or III.

2. if IΦλ occurs in Γ ` ∆, then λ is a constant F -term

and given G and T ∈ I1(F,G), T = E1
a+E1

Id +E1
1 +T ′, then it is possible to

define a G-proof of Γ ` ∆, say T (π), in such a way that T−1
(
T (π)

)
= π.

The construction is functorial in the following sense: assume that the

diagram
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T
F G

U V

F1 G1
T1

is commutative (U = f + E1
Id + E1

1 + U ′, V = f + E1
Id + E1

1 + V ′...) and

V ∧ T1 = V T = T1U , then

V −1
(
T1(π1)

)
= T

(
U−1(π1)

)
.

Proof. One easily checks that all negative occurrences of some IΦλ in πα

correspond to λ < a+α. (Easy subformula argument: the premises of the

rules (l̄) and (lIµ) for µ < a+α introduce negative IΦλ’s with λ < a+α !!!)

We define π′ = T (π) as follows: inπα, replace everywhere all IΦλ’s by

IΦλ′ , with λ′ = T (α)(λ); we rename the rules accordingly: (rIλ) becomes(
rIT (α)(λ)

)
, whereas (lIλ) is unchanged, since, as remarked, λ < a + α,

hence T (α)(λ) = λ. The fact that π′α is a a + α, G(α)-proof is trivial;

but it is essential to remark that it works because the negative IΦλ’s are

unchanged! The functorial property is immediate: assume that U−1(π1)

is defined, then T
(
U−1(π1)

)
is so to speak “the image of π1 under the

partial morphism TU−1”; the hypothesis V ∧ T1 = V T = T1U is another

way of expressing that TU−1 = V −1T... . 2

We use Lemma 11.4.6 as follows: write F̃ ′ = F +F1, F̃ ′′ = F +F2; then

we define F̃ = F + F1 + F2 and we consider the natural transformations

T ′ ∈ I1(F̃ ′, F̃ ), T ′′ ∈ I1(F̃ ′′, F̃ ) defined by: T ′ = E1
F̃ ′

+ E1
0F2

, T ′′ = E1
F +

E1
0F1

+ E1
F2

. Then we can obviously consider:

π̃



... T (π̃′)
... T ′′(π̃′′)

Γ̃′ ` ∆̃′ Γ̃′′ ` ∆̃′′

R

Γ̃ ` ∆̃

The functorial property is left to the reader. (If

(π′, F ′,Γ′ ` ∆′)
T ′2−→ (π′2, G,Γ

′
2 ` ∆′2)

(π′′, F,Γ′′ ` ∆′′)
T ′′2−→ (π′′2, G,Γ

′′
2 ` ∆′′2)
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(π, F,Γ ` ∆)
T−→ (π2, G,Γ2 ` ∆2)

with T ′2 = T ′′2 = T , and if T̃ ′′2 = T + T ′′2 , let T̃ = T̃ ′2 + T ′′2 .)

subcase b (R) is a cut of kind III (CRUCIAL CASE )

π



... π′
... π′′

Γ′ ` Φ̄(n̄),∆′ Γ′′ ` Φ̄(n̄) ` ∆′′

CUT

Γ,Γ′ ` ∆,∆′

The induction hypothesis applied to (π′, F ′,Γ′ ` Φ̄(n̄),∆′) and (π′′, F ′′,Γ′′,

Φ̄(n̄) ` ∆′′) yields (π̃′, F̃ ′, Γ̃′ ` Φ̄(n̄), ∆̃′) and (π̃′′, F̃ ′′, Γ̃′′, Φ̄(n̄) ` ∆̃′′).

Write F̃ ′ = a+ F ′1, and let F̃ = F̃ ′′ ◦ F ′1. Observe that, since F̃ ′′ is of the

form a+ Id +1+ ..., F̃ is of the form a+F ′1 +1+ ..., i.e. F̃ ′+1+ something,

say F̃ = F̃ ′ + 1 + F ′2.

• We first apply Lemma 11.4.5 to π̃′: we obtain a F̃ ′ + 1-proof π̃′1
of Γ̃′ ` IΦt(n̄), ∆̃′, with t(α) = F̃ ′(α) for all α. Next we apply Lemma

11.4.6 to π̃′1, with T = E1
F̃ ′+1

+ E1
0F ′2

: we obtain therefore a F̃ -proof λ′ of

Γ̃′ ` IΦt(n̄), ∆̃′.

• Consider the proof π̃′′. We use here an analogue of Lemma 11.4.5 for

negative occurrences of Φ̄.

11.4.7. Lemma.

Given a F -proof π of Γ ` ∆, it is possible to construct a F -proof π2 of

Γ2 ` ∆2, where Γ2 ` ∆2 is obtained by replacing some negative occur-

rences of Φ̄ in Γ ` ∆ by corresponding occurrences of IΦu, where u is the

F -term u(α) = a+ α.

Furthermore the construction is functorial in the following sense: if

T = f + E1
Id + E1

1 + T ′ ∈ I1(G,F ) and Γ′ ` ∆′ = T−1(Γ ` ∆), Γ′2 ` ∆′2 =

T−1(Γ2 ` ∆2), if T−1(π) = π′, then T−1
1 (π1) = π′1.

Proof. Straightforward; we only use the fact that (l̄) and (lIa + α) have

the same premises... . 2

Applying 11.4.7 to π̃′′, we obtain a F̃ ′′-proof π̃′′2 of Γ̃′′, IΦu(n̄) ` ∆̃′′.

Our problem is to render u equal to t ! Consider the F̃ ′(α), F̃ (α)-proofs
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(π̃′′2)F ′1(α). These proofs can easily be changed into a+ α, F̃ (α)-proofs λ′′α:

simply in each use of (l̄) in (π̃2)F ′1(α), chop all premises of index ≥ a+ α !

One easily checks that (λ′′α) defines a F̃ -proof of Γ̃′′, IΦt(n̄) ` ∆̃′′ (because

u
(
F ′1(α)

)
= a+ F ′1(α) = F̃ (α) = t(α)).

• Then we define

π1



... λ′
... λ′′

Γ̃′ ` IΦt(n̄), ∆̃′ Γ̃′′, IΦt(n) ` ∆̃′′

CUT

Γ̃′, Γ̃′′ ` ∆̃′, ∆̃′′

The cut used here is of kind II and its cut-formula does not involve Φ̄... .

Finally π is obtained from π2 by means of 11.4.3.

The functoriality is trivial, as usual. (If T = f+E2
Id+... and T̃ ′ = f+T ′2,

T̃ ′′ denotes T̃ computed in the “contexts” π′, π′′, then T̃ computed w.r.t.

π is T̃ ′′ ◦ T ′2.)

4. The last rule (R) of π is b-ary for some b ∈ 0n. (This case covers

the following rules:

– the ω-rules (r∀L) and (l∃L): b = ω.

– the rules (lIt) when t is a constant F -term (hence t = b < a).)

The treatment is completely similar to the subcase 3a assume that

π



... π′

... Γi ` ∆i ... i < b

R

Γ ` ∆

then we apply the induction hypothesis to the 3-uples (πi, Fi,Γi ` ∆i) with

Fi = F : we obtain 3-uples (π̃i, F̃i, Γ̃i ` ∆̃i), and let us write F̃i = F + F ′i ;

we define F̃ = F +
∑
j<b

F ′j , and we consider the natural transformations:

Ui = E1
F + E1

0
∑
j<i

F ′j

+ E1

0
∑

i<j<b

F ′j

and we define:
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π



Ui(π
i)

...

... Γ̃i ` ∆̃i ... i < b

R

Γ̃ ` ∆̃

The functoriality property is proved as follows:

• If (R) is (r∀L) or (l∃L), consider Gi = G, Ti = T (i < ω); write

T̃i = T + T ′i ; then

T̃ = T +
∑
i<ω

T ′i .

• If (R) is (lIt), then t is the constant F term which equals b; if T =

f + ... then the fact that T−1(π) is defined implies that b ∈ rg(f), say

b = f(b′). Define g ∈ I(b′, b) to be the restriction of f , and Gi (i < b′) to

be G, Ti ∈ I1(Gi, Fg(i)) to be T . Write T̃i = T + T ′i ; then T̃ = T +
∑
i<g

T ′i .

5. The last rule (R) of π is 0n-ary or more. (This case coverse the

following rules:

– (l̄) (0n-ary).

– (lIt) when t is a non-constant F -term.)

Let us treat these two subcases

subcase a (R) = (l̄)

π



πλ
...

... Γ,Φ(IΦλ, n̄) ` ∆ ... all λ ∈ 0n

l̄

Γ, Φ̄(n̄) ` ∆

(Here we denote by λ the constant term equal to λ.) π′λ is a Fλ-proof:

if a + µ = sup (a, λ + 1), then Fλ = F ◦ (µ + Id) (with the notations

of 10.2.3 µ = cλ). We apply the induction hypothesis to the 3-uples

(πλ, Fλ,Γ.Φ(IΦλ, n̄) ` ∆), and we obtain (π̃λ, F̃λ, Γ̃,Φ(IΦλ, n̄) ` ∆̃).

Write F̃λ = Fλ + F ′λ. We shall define Gy as follows:

Gy = F +
∑
i<a

F ′i +
∑
i<y

F ′a+i
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and if f ∈ I(y, y′), we shall defineGf ∈ I1(Gy, Gy′) by: Gf = E1
F+

∑
i<a

E1
F ′i

+∑
i<f

T ′a+i where the transformations T ′a+i ∈ I1(F ′a+i, F
′
a+f(i)) are defined by:

define natural transformations Tλ ∈ I1(Fλ, F(a+f)(λ)) as follows: Tλ = EFλ

when λ < a, Ta+µ = E1
F ◦ (ϕ− µ+ E1

Id), where ϕµ ∈ I(µ+ 1, f(µ) + 1) is

defined by: ϕµ(x) = f(x) for all x < µ.

Then, from the general results of 10.2.7, we obtain: T−1
a+µ(πa+f(µ)) =

πa+µ for all µ < y. Write T̃a+µ = T + T ′a+µ ... this defines the T ′a+i’s. Now

observe that G is

• a functor from ON to DIL (this results essentially from the induction

hypothesis (iii) (a,b) applied to the T̃λ’s).

• a functor preserving direct limits and pull-backs: (this results essentially

from the induction hypothesis (iii) (c,d)...).

• a functor preserving E: GEyy′ = EGyGy′ .

Hence the functor G, viewed as a functor from ON2 to ON is something

like a bilator; more precisely, either G does not at all depend on y, or G is

a bilator. In both cases one can define F̃ = UN(G) (if G does not depend

on y, F̃ = G).

The construction of G using sums makes it possible to give an explicit

definition of UN(G):(
UN(G)

)
(x) = F (x) +

∑
i<a

F ′i (x) +
∑
i<x

F ′a+i

(
x− (i+ 1)

)
(similar formula for functions); as a corollary

UN(G) ◦ (b+ 1 + Id) =

F ◦ (b+ 1 + Id) +
∑
i<a

F ′i ◦ (b+ 1 + Id) +

∑
i<b+1

F ′a+i ◦
(
(b+ 1)(i+ 1) + Id

)
+ ...

in other terms:

UN(G) ◦ (b+ 1 + Id) = F + ...+ F ′a+b + ...
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and from this one can easily construct a natural transformation U from

F̃a+b to UN(G) ◦ (b+ 1 + Id), since F̃a+b = F a+b + F ′a+b.

In a similar way, since UN(G) = F + ... + F ′λ + ..., when λ < a, it is

possible to define Uλ ∈ I1
(
F̃λ,UN(G)

)
. Hence we have obtained natural

transformations:

Uλ ∈ I1
(
F̃λ, F̃ ◦ (cλ + Id)

)
(recall that λ+ cλ = sup(a, λ+ 1).

We apply now Lemma 11.4.6, and we obtain proofs λλ = Uλ(π̃
λ); λλ

is a F̃ ◦ (cλ + Id)-proof, and, when f ∈ I(y, y′) we have

(f + E1 + E1
Id)−1(λa+y′) = λa+y ;

this proves that 

... λλ

... Γ̃,Φ(IΦλ, n̄) ` ∆̃ ... all λ ∈ 0n

l̄

Γ̃, Φ̄(n̄) ` ∆̃

defines a F̃ -proof, which is by definition π̃.

If V ∈ I1(F1, F ), let us look at the definition of Ṽ ; write V = f +

E1
Id+1 + V ′, f ∈ I(a1, a); then we consider Ṽλ, computed from

(πλ1 , F1,λ,Γ1,Φ(IΦλ, n̄) ` ∆1)
Vλ−→ (πλ′ , Fλ′ ,Γ,Φ(IΦλ′ , n̄) ` ∆)

with λ′ = f(λ) if λ < a1, λ′ = a + µ if λ = a1 + µ, πλ1 = V −1
λ (πλ),

Vλ = V = f +E1
Id+1 +V ′, F1,λ = F1, Γ1 ` ∆1 = V −1(Γ ` ∆). We can write

Ṽλ = V + V ′λ, and it is therefore possible to define W y ∈ I1(Gy
1, G

y) by:

W y = V +
∑

i<f+Ey

V ′i .

Then W defines a natural transformation from G1 to G, and it suffices to

define Ṽ = UN(W ).

subcase b (R) = (lIt) with t non constant F -term; since t(0n) ≥ 0n, it

will be possible to extract from π proofs πλ (λ ∈ 0n), in such a way that:
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π′



... πλ

... Γ,Φ(IΦλ, n̄) ` ∆ ... λ < 0n

l̄

Γ, Φ̄(n̄) ` ∆

is a F -proof. (Simply we omit all premises of (lIt) whose indices are ≥
0n...). Then we apply subcase a to (π′, F ′,Γ, Φ̄(n̄) ` ∆), and we obtain a

3-uple (π̃′, F̃ ′, Γ̃, Φ̄(n̄) ` ∆̃); but since ˜IΦt(n̄) = Φ̄(n̄), one can define:

π̃ = π̃′ , F̃ = F̃ ′ . 2

End of the proof of 11.4.1. Apply 11.4.3, then 11.4.4. 2

11.4.8. Remark.

A traditional technique of proof-theory is that of ordinal assignment, which

goes back to the work of Gentzen; roughly speaking, we are given a proof

in ordinary logic (more usually: ω-logic), and we want to prove a syntactic

result, typically a cut-elimination theorem. Then we “assign” ordinals to

each node of the original proof-tree, i.e. we define a function: T → 0n

(usually increasing); the ordinal assignment is used to “measure” the sizes

of some significant data in the proof and to construct new proofs, together

with new (in general bigger) ordinal assignments.

(i) The advantage of the method is that we usually get simple proofs of

syntactical results by transfinite induction on the ordinals involved in

such assignments, e.g. ε0, η0... . This method is well-adapted for stan-

dard (abstract) metamathematical aims such as finding “the” ordinal

of a theory, etc... .

(ii) The obvious limitation of the method is its technicity; more pre-

cisely, besides the standard applications found in (i), it is hard to

say what these “assignments” mean; strictly speaking, they hardly

mean something... . In fact, they often reflect something close to the

height of the trees involved, which is not so bad, but which is perhaps

too much linked with the syntax of proofs, and for this reason, not a

very flexible notion.
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Our treatment of cut-elimination for inductive definitions implicitly

contains the use of ordinal assignments: the “ordinal” assignment (it would

be more correct to speak of a dilator assignment!) corresponds tot he values

t occurring in the positive occurrences of the IΦt’s... . Let us make it more

precise: it is possible to consider a variant of our systems of inductive logic

where the rule (r̄) is replaced by:

Γ ` Φ(Φ̄, n̄),∆

r̄′

Γ ` Φ̄(n̄),∆

Then one easily checks (see 11.4.9 (i)) that it is no longer necessary to use

IΦ positively! But the cut-elimination procedure cannot any longer be

carried out, unless we assign ordinals t (or F -terms t for some F ) to some

occurrences of Φ̄ in the proof, which (implicitly) become occurrences of

IΦt (see 11.4.9 (ii)), and the cut-elimination can therefore be performed

ont he model of what we did. The advantage of the use of IΦt (compared

to: occurrences of Φ̄ to which t is assigned) is that we have a clear se-

mantic, syntactic world in which the IΦt’s can live and make sense (and

have applications), whereas the roughly equivalent Φ̄, assigned with t, are

purely technical constructions. (Here again, the assignments are essen-

tially heights of trees... .)

11.4.9. Exercise.

We consider a variant of inductive logic where:

– only negative occurrences of IΦ are permitted.

– the rule (r̄) is replaced by (r̄′) (11.4.8).

(i) Show how to replace any F -proof of Γ ` ∆ by a proof in this variant of

Γ̂ ` ∆̂, where Γ̂ ` ∆̂ is obtained by replacing all positive occurrences

of some IΦt by corresponding occurrences of Φ̄.

(ii) Conversely, given a reasonably cut-free proof of Γ ` ∆ in this variant,

construct an F , together with a F -proof of Γ ` ∆ in inductive logic.

(Hint. Assume that the given proof is π = (πα), and let F = Id +
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1 + LIN(π); in πα, if Φ̄ occurs positively in Γ′ ` ∆′, then follow the

“descendants” of this occurrence, until such a descendant is “used”

in the premise of some (r̄′); let Γ′′ ` ∆′′ be this premise, and t be the

corresponding point in Lin(πα): the given occurrence of Φ̄ is replaced

by IΦα+1+t; if no descendant of the given occurrence is “used” in that

way, then do nothing... .)

(iii) (Buchholz, 1982, [101].) Give a direct proof of cut-elimination by

semantic methods.

(Hint. Show that the variant considered here is complete w.r.t. truth

in models m [Φ]; the cuts must be of trivial nature; then restore a

F -proof by means of (ii) above.)

We now investigate into some of the variants of inductive logic we have

already introduced, together with a few other ones; all the results are pre-

sented as exercises... .

11.4.10. Exercise (inductive logic without ω-rule).

(We consider ID1 as a twice iterated inductive definition, the first step

being the inductive definition of the integers... .) We introduce INλ (λ <

F (α)), and N̄ as we did for Φ in general; then given a positive operator

Φ, we replace it by Φ′: simply all number theoretic quantifiers ∀x, ∃x are

restricted to N̄ ; then we introduce IΦ′λ, Φ̄
′

as usual. The rules for the

calculus are exactly (rIλ), (lIλ), (r̄), (l̄), written for Φ and N .

(i) Prove a completeness theorem for this calculus.

(ii) Prove a cut-elimination theorem; show that, if we start with weakly

finite F , then the resulting F̃ is weakly finite.
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11.4.11. Exercise (cut-elimination for IND).

(i) Express a concept of F -proof corresponding to the system IND.

(ii) Prove a cut-elimination theorem for the system introduced in (i).

(Hint. First establish the analogue of 11.4.3 for this system, which

is not problematic. In order to find the analogue of 11.4.4, we must

associate a degree to the formulas n̄ εAccT (= Φ̄T (n̄)); this degree is

defined to be: sup {p + 1 ; p varying over the degrees of subformulas

t εAccU of the term T... . Then we show that, given a proof π without

cuts of kind II and of degree d ≤ ω, we can find another proof π′

without cuts of kind III or II. This is essentially the iteration of

11.4.4 and 11.4.3... .)

(iii) Adapt (i) and (ii) to the context of systems without ω-logic, as in

11.4.10 (ii).

11.4.12. Exercise (cut-elimination for IDν) (Girard, [102]).

R is a fixed prim. rec. well-ordering of a subset |R| of IN . We use µ, ν for

elements of |R|.
A fair operator (this formalism is essentially due to Feferman [99])

is a fomula Fr(X, Y, µ, x) depending on the only variables X, Y , µ, x, X

and Y being additional predicate variables, such that:

– X occurs only positively, and X is monadic.

– Y is a binary predicate.

The formalism of IDR (= IDR(Fr)) is:

(1) ∀ν ∀x
(
Fr(λxPν(x), λµx(Pµ(x) ∧ µ ≺ ν), ν, x)→ Pν(x)

)
.

(2)
(
∀ν ∀x (Fr λxBν(x), λµx(Pµ(x) ∧ µ ≺ ν), ν, x)→ Bν(x)

)
→

∀ν ∀x
(
Pν(x)→ Bν(x)

)
.

(Explanations. Pν(x) is a new atomic formula (= P (ν, x)); the quanti-

fiers ∀ν are short for: ∀ν ∈ |R|, Bν(x) = B(ν, x) is an arbitrary formula,

λxBν(x) is the set {x ; Bν(x)}, whereas λµx(...) is the set of all (µ, x) s.t.
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(...).)

(Remark. This is exactly the system corresponding to the idea of iterating

an inductive definition a transfinite number of times... . The standard way

of speaking of these systems is to call them IDν ; IDν is a system equivalent

to Π1
1 − CA.)

Assume that α < β < γ are ordinals; we introduce a system IDR(α, β, γ),

as follows:

• Let Acc(X, x) be the following positive operator:

Acc(X, x)↔ x ∈ |R| ∧ ∀y
(
y ≺ x→ X(y)

)
then we introduce, for all λ ≤ α, the unary predicates I Accλ (but no

Acc !), together with the rules (rIλ), (lIλ) corresponding to these pred-

icates.

• If λ ≤ α, we introduce a new binary predicate letter Qλ(ν, x) (= Qλ
ν(x)),

and we introduce the positive operators Frλν by:

Frλν (X, x)↔ Acc(I Accλ, ν) ∧ Fr(X,λµy(Qλ
µ(y) ∧ µ ≺ ν), ν, x)

together with the following rules:

Γ ` Frλν (I(Frλν )ϑ, n̄),∆

rIλϑ
′

Γ ` I(Frλν )ϑ
′
(n̄),∆

when: λ < α, ϑ < ϑ′ < γ.

... Γ, F rλν (I(Frλν )ϑ, n̄) ` ∆ ...

lIλϑ
′

Γ, I(Frλν )ϑ
′
(n̄) ` ∆

with: λ < α, ϑ varying over all points < ϑ′ < γ.

Γ ` Frλ′ν (I(Frλ
′
ν )ϑ, n̄),∆

r̄λ

Γ ` Qλ
ν(n̄),∆
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with: λ′ < λ ≤ α, ϑ < γ.

... Γ, F rλ
′
ν (I(Frλ

′
ν )ϑ, n̄) ` ∆ ...

l̄λ

Γ, Qλ
ν(n̄) ` ∆

with: λ′ varying over all points < λ ≤ α, ϑ varying over all points < β.

When F is a dilator of the form a + Id + 1 + F ′ and α < a, then we

define the theory IDR(α, F ); the proofs in IDR(α, F ) are families (πx)x∈0n,

where πx is a proof in IDR

(
α, a+ x, F (x)

)
for all x... .

(i) Prove the following completeness theorem: if Γ ` ∆ is true (in

the standard interpretation), then Γ,Acc(R) ` ∆ is α + 1 + Id + 1-

provable for all α ∈ 0n (in particular, with α = ‖R‖; observe that for

this value Acc(R) is provable...), with: Acc(R): ∀ν ∈ |R| I Accα(ν);

furthermore, if πα is the proof constructed, and f ∈ I(α, β), we have
T (πβ) = α, with T = f + E1 + E1

Id + E1
1.

(ii) Prove a cut-elimination theorem for the IDR(α, F )’s (F changes, of

course).

(iii) Adapt the formalism as to eliminate the ω-rule.

11.4.13. Exercise (Girard-Masseron [103]).

Our goal is to study monotonic inductive definitions; we start with an

operator Φ(X, x) with the property that:

T + Induction on formulas involving

X, Y ` X ⊂ Y → Φ(X) ⊂ Φ(Y ) .

We replace the rules (rIλ) and (lIλ) by:

Γ, IΦλ′ ⊂ C ` Φ(X, n̄),∆

rImλ

Γ ` IΦλ(n̄),∆

(X second order variable not occurring in Γ ` ∆) and
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... Γ, X ⊂ IΦλ′ ,Φ(X, n̄) ` ∆ ... all λ′ < λ

lImλ

Γ, IΦλ(n̄) ` ∆

(X not occurring in Γ ` ∆).

The reader will explicitly write the corresponding asymmetric rules (r̄m)

and (l̄m).

(i) Prove the axioms IΦλ(n̄) ` IΦλ(n̄) from the other axioms and rules.

(Hint. Use proofs of X ⊂ Y , Φ(X, m̄) ` Φ(Y, m̄).)

(ii) Prove a completeness theorem corresponding to this calculus.

(iii) Prove the analogue of 11.4.3 for this calculus.

(iv) Prove the analogue of 11.4.4 for this calculus.
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11.5. Ordinal bounds

Our goal here is to compute “the” ordinals of theories of inductive

definitions, and of the theory Π1
1 − CA.(∗)

The first of these values was obtained by Howard ([87]), and in general,

the equality |IDn| = ηn−1 was established by Pohlers [104]. The transfinite

IDν ’s were also analyzed by Pohlers [105], yielding ordinals ην (denoted

in the system of Buchholz by Θ̄(εΩν+1, 0)). In particular, the ordinal of

Π1
1 − CA (∗), which is the same as the ordinal of IDω is ηω. All these

results are exposed in detail in [3].

It is of course perfectly obvious that the cut-elimination theorem of

Section 11.4 will directly lead to an ordinal analysis of the same theories.

The only problem with the new methods coming from Π1
1-logic is that they

are too new: in particular, a certain number of very obivous things have

not yet been done. Among these obvious things, I must first mention the

problem of ordinal bounds for these cut-elimination results. There is not

the slightest doubt as to the answer, but there is here a technical work to

do, which requires a good familiarity with Π1
2-logic... . The work of marie-

Christine Ferbus [97], sketched in 10.A.14 partly fulfills this goal, by giving

explicit bounds that can be used without essential modifications in 11.4.3;

but the closely connected 11.4.4 has not yet been majorized.

However, since, as I said, the answer is not problematic, I shall try to

describe it in the main lines:

11.5.1. Majorization of 11.4.4.

The important thing one must majorize in (π̃, F̃ , Γ̃ ` ∆̃) is of course F̃ ;

now, if we look at the definition of F̃ , we see that F̃ is defined by iterating

the operation of composition (i.e. the case corresponding to a cut of kind

III), and all other operations on F̃ are just here to make it work, i.e. to

preserve increasivity, functoriality... . The iteration is done by induction

on the structure of the (functorial) predecessors of π.

It is now clear, on general grounds, that, if we replace π by a majorizing

1(∗) More precisely (Π1
1 − CA) + (BI), see 11.2.8 (i).
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dilator D, then F̃ will still be expressible as the iteration of composition

along the predecessors of D, i.e. by something close to ΛD. The equation

can therefore be written

F̃ = ΛcD

where Λc is a variant (presumably very minor) of Λ. The precise definition

will be given by the person which will treat the question, but it will not

be essentially different from Λ... .

11.5.2. Majorization in the iterated case.

If one looks closely, it will not only be possible to majorize F̃ by ΛcD,

but also π̃ and why not the result of applying 11.4.3 to π̃: we have only

perhaps to be a little more liberal in our choice of Λc... . (For instance

11.4.3 involves, by Ferbus’s theorem, a Veblen hierarchy, which is nothing

compared to a Λ !)

The n-times iterated IDn will therefore enjoy a majoration by means of

Λc iterated n times, Λn
c . Now, the precise definition of the cut-elimination

procedure for IDR will suggest an obvious way of “iterating Λc ν times”

(similar to the product of ν copies of a nice flower), and we shall therefore

obtain majorations by Λν
c for IDν .

11.5.3. Ordinals of theories.

(i) Assume that we work in ID1(PA, O); we want to investigate which

e ∈ O are such that

ID1(PA, O) ` Ō(ē) .

We convert our given finite proof of Ō(ē) into a Id+1-proof by means

of 11.3.3; it is easily checked that this Id + 1-proof, after elimination

of all cuts of kind II, can be majorized by means of a dilator built

up from Id, 1, +, −, exp, hence can be majorized by the dilator

ε0 = Id + (1 + Id)Id + (1 + Id)(1+Id)Id
+ ... . Now the results of 11.5.1

show that F̃ can be replaced by Λcε0; in particular we have a cut-free

proof of
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` IOΛcε0(x)(ē)

for all x, so, with x = 0: e ∈ IOΛcε0(0), equivalently ‖e‖ < Λcε0(0).

Conversely every ordinal < Λcε0(0) can be shown to be a well-

founded (for instance to be representable by a point in Ō). See 12.6

for more details.

(ii) In (i) we “answered” the question of the ordinal of ID1, and we found

Λcε0(0), which is obviously the Howard ordinal η0. The equation

Λcε0(0) = η0

comes from our way of introducing η0 in 9.A.30

|ΛLn(ω)| = [η0] η

and all reasonable variants of Λ must give the same values at rea-

sonable arguments, i.e.

sup
n

|ΛLn(ω)| = sup
n

[η0]n = η0 = Λcε0(0) .

(iii) In general, the same method will assign the ordinal ην = Λν
cε0(0) to

the theories IDν ; in particular, ηω to Π1
1 − CA. (Here we implicitly

assume that we know how to iterate a transfinite number of times

Λ and its variants. This offers no theoretical difficulty, but may be

painful in practice... .)

(iv) These ordinals are λ-ordinals; this means that they can be naturally

equipped with a structure of Bachmann collections of type ω, i.e. a

structure of elements of Kleene’s O, in such a way that the provably

total recursive functions of IDν can be expressed as those recursive

functins that are majorized by some λe, for some e < ην . Now, what

happens with the γ-ordinals? Two ways of answering:

• The way Λ is iterated yields something like

Λ1+ν
c = Λc ◦ Λν

c
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and from the similarity of Λ and Λc, it will not be hard to prove

that:

γη1+ν
= λην .

• Another way of doing the same thing is to replace IDν by a system

that does not use the ω-rule; this change essentially amounts to

replacing ν by 1 + ν; now if a formula ∀x ∃y R(x, y) is provable in

IDν , with R quantifier-free, then it is immediate that

∀x ∈ N̄ ∃y ∈ N̄ R(x, y)

will be provable in the modified version of IDν . If we take a cut-free

proof of this, and apply 11.4.5 and 11.4.7, then

∀x ∈ INα ∃y ∈ IN F̃ (α) R(x, y)

in particular the probably total function

f(x) = µz R(x, z)

is bounded by F̃ (x+ 1). In other terms, we obtain

f(n) ≤ (Λ1+ν
c Fp)(n) for some p ,

with F0 = Id, Fk+1 = Fk + (1 + Id)Fk .

But the values (Λ1+ν
c F )(n) and γΛ1+νL(n) are closely related

when F is the dilator induced by L... .

11.5.4. Final comment.

The situation of this section is a typical example of what I called a lack of

modularity: for instance we have been led to introduce three variants of

Λ:

– Λ itself.

– Λ on ladders.

– Λc for the majoration business.
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These variants are close one to another, but not exactly the same... .

Hence the question of establishing precise relationships between these vari-

ants of the same idea is very painful and not very exciting... . It can be

hoped that, in the future, a better framework will enable us to speak about

Λ, without these initiating details of variants that change according to the

context in which we are using it.

(It must, however, be noted that this is perhaps due to the fact that

the typical proof-theoretic questions (provably total functions, provable

ordinals) naturally lead to these questions of variants (because in these

questions, all the provable objects of some kind must be organized along

some ratherarbitrary linear principle), whereas the application of these

methods outside proof-theory does not suffer from similar limitations... .)
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11.6. Equivalents of Π1
1 − CA

This section is an analogue of 5.4, 6.4, where we listed a certain number

of formal equivalents to the axiom Σ0
1−CA∗; one of these equivalents was:

∀X (X well-order → 2X well-order), in other terms Σ0
1;CA∗ ↔ 2Id is a

dilator. Here the main equivalence will be: Π1
1−CA↔ Λ maps DIL into

BIL. (This can also be rewritten, replacing BIl by DIL, as “the preptyx

Λ of type (O → O) → (O → O) is a ptyx”.) In some sense, Λ is the

Π1
2 analogue of the exponential; this analogy is enhanced by the fact that

the precise definition of blam (the iteration of composition) is of the kind

“exponential”. Λ is therefore the “Π1
2 exponential”.

11.6.1. Theorem.

There is a specific Π1
1 formula A(f, g, x, y) with the property that: (x, f , g

are the only parameters of A)

PRA2 + Σ0
1 − CA∗ ` {(x, y) ; A(f, g, x, y)} =

h ∧ pil(f) ∧WO(g) ∧WO(f [h])→WO([λf) [g]) .

({(x, y) ; A(f, g, x, y)} = h is the comprehension axiom: ∀x ∀y
(
h(x, y) =

0 ↔ A(f, g, x, y)
)
; pil(f) is a formula saying that f is (the code of) a

predilator (there are many ways of encoding predilators; choose the one

that you prefer; my favourite one is the one of Exercise 8.G.10...); when

f is a predilator, g a linear order, f [g] is (the code of) f applied to g;

similarly, λf is (the code of Λp, if f encodes P . (We consider Λ as a

functor from DIL to DIL... . If we want to consider as a functor from

DIL to BIL, then replace A by A′(f, g, h, x, y)... .))

Proof. (sketched) The first thing is to express λ: this is done by computing

Λ on the category DILfd, and then extending it by direct limits: no doubt

that one gets the expression ΛP , encoded by a prim. rec. term λ(f), where

f is a code of P... . Hence if f is a predilator f is a well-defined predilator,

and we want to make sure that λf [g] is a well-order. Consider now all Σ0
1

linear orders with f , g as parameters; they can be enumerated by a formula

B(f, g, x, y, z): x � y modulo the order of index z; let us abbreviate this

into x �z y. The formula C(f, g, z) is: the order �z is a well-order.



Equivalents of Π1
1 − CA 327

Hence the set {z ; C(f, g, z)} is nothing but the set of all wll-orders which

are Σ0
1 in g, g; of course Σ0

1 is a Π1
1 formula. Here the following formula

A(f, g, x, y) defines a Π1
1 well-order:

x ≤ y ↔ C(f, g, (x)0) ∧ C(f, g(y)0) ∧(
(x)0 ≤ (y)0 ∨

(
(x)0 = (y)0 ∧ (x)1 �(x)0 (y)1

))
.

This typial Π1
1-well-order has the order type of the first ordinal not recursive

in g, g, say α; we shall use α rather than its encoding in the sequel... . But

our hypothesis is that {(x, y) ; x ≤ y} exists, i.e. we can use this order as a

two-places function of PRA2... . Now, the next hypothesis is WO(f [hg]);

if f encodes the predilator P , this means that P (α) is a well-order. Then

we prove that (ΛP )(β, γ) is a well-order, for all β, γ < α, i.e. for all well-

orders of the form �z,�z′ ... . The proof works by induction on the ordinal

(well-order) P (α) when P varies through predilators recursive in f , g; later

on, we shall justify the use of such an induction... .

(i) If P is of kind 0, then (ΛP )(β, γ) = γ trivial.

(ii) If P is of kind 1, then write P = Q+1; then Q(α) < P (α); moreover

β+γ < α (trivial). Hence (ΛP )(β, γ) = (ΛQ)(β+γ) is a well-order,

by the induction hypothesis.

(iii) If P is of kind ω, then write P = sup
n

Pn; the function n ; Pn can

be encoded by a two-variables function. In that case, it will suffice to

show, by

• induction on γ, that (ΛP )(β, γ) is a well-order;

• (ΛP )(β, 0) = sup
n

(ΛPn)(β, 0).

• (ΛP )(β, γ + 1) = sup
n≥n0

(ΛPn0,n)(β, (ΛP )(β, γ) + 1), where Pn =

Pn0+Pn0,n, and n0 is a sufficiently great integer, enjoying (ΛPn0)
(
β,

(ΛP )(β, γ)
)

= (ΛP )(β, γ).

• (ΛP )(β, γ) = sup
γ′<γ

(ΛP )(β, γ′) when γ is limit.
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In fact what we have just written is nothing but the set-theoretic

construction of the ordinal (ΛP )(β, γ); it can easily (but painfully)

be formalized with codes!

(iv) If P is of kind Ω, then

(ΛP )(β, γ) = (ΛP γ)(β, 0)

(this is slightly incorrect, but the difference is so slight, that this does

not make any change in a sketched proof...) with P γ = SEP(P )(·, γ).

Since we obviously have: ω1+α = α, it follows that SEP(P )(α, α) =

P (α). Hence P γ(α) < P (α), and the induction hypothesis yields:

(ΛP )(β, 0) well-order.

It remains to justify the use of transfinite induction: consider the for-

mula which says that the predilator P (of index p relative to f , g), has the

property that (ΛP )(β, γ) < α for all γ, β < α. This can be expressed by an

arithmetical formula using the parameter h = {(x, y) ; A(f, g, x, y)}, hence

this can be expressed (using Σ0
1 − CA∗) by k(p) = 0: Now, assume that

k(p) 6= 0 for some p, then:

(i) p is not a code of 0.

(ii) If p is a code for Q+ 1, let p′ = code of Q.

(iii) If p is a code for sup
n

Pn, let pn = code of Pn, n0 minimum s.t.

k(pn) 6= 0; let p′ = pn0.

(iv) If p is a code for P of kind Ω, and e is a code for an ordinal γ < α,

let pe be the resulting code for P γ. e can be identified with an integer

s.t. A(f, g, e, e); let P ′ = Pe0, where e0 is minimum (in the sense of

the usual order) s.t. A(f, g, e, e) and k(pe0) 6= 0.

(v) When k(p) = 0, let p′ = p.

We have defined a function (·)′ from codes of predilators recursive in

f , g, to themselves; this function is arithmetically defined (using k and h),

hence by Σ0
1 − CA∗ it can be shown to exist.
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If we introduce p0 being a given point such that P0(α) is a well-order,

whereas k(p0) 6= 0, l(0) = p0; l(n + 1) =
(
l(n)

)′
, then we have explicitly

constructed a descending sequence of predilators, which is indeed a descend-

ing sequence in P0(α). Contradiction. (There is another induction used in

step (iii): it is handled in the same way.) 2

11.6.2. Corollary.

The following formula is a theorem of PRA2 + Σ0
1 − CA∗

(Π1
1 − CA)→ ∀f

(
dil(f)→ dil(λf)

)
.

(Π1
1−CA is a formula of the form: ∀f ∃g ∀n

(
g(n) = 0↔ A(f, n)

)
, where

A(f, n) is Π1
1-universal w.r.t. Π1

1 formulas containing f ; dil(f) is the for-

mula which says that f is (the code of) a dilator: pil(f) ∧ ∀g
(
WO(g)→

WO(f [g])
)
.)

Proof. Immediate from 11.6.1. 2

11.6.3. Remark.

A more refined use of 11.6.1 is the following: show that the iteration of

Λ corresponds to iteration of Π1
1-comprehension; for instance, prove that

“Λ iterated ν times” (it must be defined precisely before), say Λν enjoys

something similar to 11.6.1, when the formula A is replaced by a formula

in IDν , with f and g as parameters.

11.6.4. Theorem (Girard, 1979, [100]).

Let Cut−E be the Π1
3 formula which expresses that Theorem 11.4.1 holds

for any system of inductive logic; then PRA2 + Σ0
1 − CA∗ ` Cut − E →

(Π1
1 − CA).

Proof. Using Σ0
1 − CA∗, Π1

1-comprehension can be reduced to inductive

definitions; more precisely, given a Π1
1 formula A(g, x) (g unique function

parameter of A), then one can find a positive operator Φ(g,X, y) such that

the existence of {x ; A(g, x)} is formally equivalent (w.r.t. Σ0
1 − CA∗) to

the existence of a least fixed point for Φ (see 11.2.7...). Now we assume

that Π1
1-comprehension fails for a certain parameter g0; this means that

Φ0 = Φ(g0, ·, ·) has no least fixed point.
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We consider the following theory T : the language is L2
→+{g0}, the ax-

iomatic is PRA2 + the axioms ḡ0(n̄) = g0(n); the hypothesis just made,

implies that ID1(T ,Φ0) has no ω-model of the form m [Φ̄0] (the concepts

of (denumerable) model, ordinal ... can be expressed in PRA2), because

from the interpretation of m(Φ̄), one would easily recover a least fixed point

for Φ0. By completeness, there is an inductive proof of the void sequent

` in ID1(T ,Φ0). Here we use a formalized version of the β-completeness

theorem; there is not the slightest problem as to the formalization of β-

completeness in PRA2.

Now we apply the cut-elimination theorem 11.4.1, expressed by the for-

mula Cut− E; from this we obtain a proof of ` in T + ω-logic.

Now observe that T has an ω-model: this fact is surely provable in

PRA2 + Σ0
1 − CA∗; but then ` cannot be provable in T + ω-logic, contra-

diction. 2

11.6.5. Remark.

The β-completeness theorem and the ω-completeness are provable in PRA2,

whereas the usual completeness theorem is not! The reason is simple: the

two generalized theorems state the existence of specific well-founded trees,

whereas in the Σ0
1 case, we say more: the tree is not only well-founded, but

finite. And we need a principle saying that a tree which is ≤ 2-branching

and well-founded is finite: König’s lemma is such a principle. (However,

König’s lemma is strictly stronger than completeness for Σ0
1-logic! See

5.4.25.)

11.6.6. Theorem (depending on the majorations of 11.5).

With the notations of 11.6.2 and 11.6.4:

PRA2 + Σ0
1 − CA∗ ` ∀f

(
dil(f)→ dil(λf)

)
→ Cut− E .

Proof. In fact the proof depends on a majoration of the cut-elimination

procedure by Λ, that has not yet been done; assuming that this has been

achieved, then the only non-elementary part in the statement Cut−E is that

the objects constructed map well-orders on well-founded structures, and

if we have obtained a majoration of the cut-elimination for pre-proofs by
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means of Λ, then all we need is to apply Λ to a majoration of a given proof:

this yields a majoration of the corresponding cut-free proof. The existence

of a majoration for any proof follows from the linearization principle, which

is a consequence of Σ0
1 − CA∗.

Once again, I have hesitated to style “conjecture” a result like 11.6.6,

which only depends on tedious, difficult, but straightforward work. 2

11.6.7. Remark.

Assuming the unproblematic 11.6.6, we obtain the following analogue of

5.4.1:

In PRA2 + Σ0
1 − CA∗, the following are equivalent

(i) Π1
1 − CA.

(ii) ∀f
(
dil(f)→ dil(λg)

)
.

(iii) Cut− E.

Observe that there is a direct proof of (i) → (iii), hence there is pre-

sumably a direct proof of (ii) → (i).

Compared with the corresponding results of 5.4.1, we are in a poorer

situation; in particular, we lack combinatorial equivalents; a generalization

of Ramsey’s theorem was shown to be equivalent to Π1
1 −CA by Simpson

[105].

Let us just mention the following:

11.6.8. Exercise.

Give a direct proof of (Π1
1 − CA)→ Cut− E in PRA2 + Σ0

1 − CA∗.

11.6.9. Exercise (Abrusci, Girard, Van der Wiele [126]).

Assume that F is a dilator; then we construct a transfinite sequence

(zα)α∈0n

(i) z0 = 0.

(ii) If zα < F (α), zα+1 = F (Eαα+1)(zα) + 1.
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(iii) If α is limit and zβ < F (β) for all β < α, then zα = sup
β<α

F (Eβα)(zβ).

(iv) In the other cases zα = F (α).

Show that (iv) eventually holds, i.e. ∃α zα = F (α). (The first α for

which (iv) holds is expressed by means of ν(F, 0), where ν is (another!)

variant of Λ [126]. Hence it is likely that this result is another equivalent

of Π1
1 − CA.) Surely Π1

1 − CA implies 11.6.9; on the other hand, the first

α for which (iv) holds seems to be bounded by (ΛF )(0, 0).

What about the variant: if (yα)α∈0n is such that yα < F (α) for all α,

then there is a cofinal X ⊂ 0n s.t. ∀α, α′ ∈ 0n:

α ≤ α′ → F (Eαα′)(yα) = yα′ ?
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Annex 11.A. A survey of earlier results

11.A.1. Cut-elimination in Σ0
1-logic

The simplest thing to do with inductive definitions is to write a system of

Σ0
1-logic as follows:

Γ,Φ(λxB(x), y) ` B(y),∆ Γ ` Φ(Φ̄, t),∆

l− r−

Γ, Φ̄(t) ` B(t),∆ Γ ` Φ̄(t),∆

(y not free in Γ ` ∆)

(r−) is the closure axiom, whereas (l−) corresponds to Φ-induction on B.

Hence this system is equivalent to ID1(T ,Φ), especially if we write the

induction axioms in the same way (i.e. replacing Φ by N ).

This system enjoys a cut-elimination theorem; cuts of the form

π



... π′

Γ ` Φ(Φ̄, t),∆ Γ′,Φ(λxB(x), y) ` B(y),∆′

r− l−

Γ ` Φ̄(t),∆ Γ′, Φ̄(t) ` B(t),∆′

CUT

Γ,Γ′ ` ∆∆′

can be replaced as follows: using the proof π′ of Γ′, Φ̄(t) ` B(t),∆′, it is

easy to replace the proof π by a proof π1 of Γ,Γ′ ` Φ(λxB(x), t),∆,∆′,

and then we can form the cut

... π1
... π′(t)

Γ,Γ′ ` Φ(λxB(x), t),∆,∆′ Γ′,Φ(λxB(x), t) ` B(t),∆′

CUT

Γ,Γ′ ` ∆,∆′

This is essentially what dit Martin-Löf in [106] (but in an intuitionistic

natural deduction framework).

The obvious difficulty with the proof of cut-elimination, namely that

the new cut-degree may be greater, is easily overcome by an adequate use
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of the reducibility method. (A simple way of expressing it could be to

translate Φ̄ by:

Φ̄(t)↔ ∀X (∀z (Φ(X, z)→ zεX)→ tεX) .

Then the rule (l−) is a consequence of (l∀s) in PA2... .)

The interest of such a result is very limited, because of the absence of

any reasonable subformula property. However, the subformula property

holds for Σ0
1 formulas (∃x

(
N̄ (x) ∧R(x)

)
, R quantifier-free) as expected.

11.A.2. Takenti’s result.

In his famous paper [98], Takenti presented a cut-elimination argument for

a variant of the axiomatization of (Π1
1−CA); the cut-elimination was only

proved for Σ0
1 formulas, as could be expected, but the method made us of

complicated ordinal assignments, by means of ordinal diagrams, which are

uneven systems of ordinal notations introduced also by Takenti. Jervell

has shown that ordinal diagrams are bilators; see [128]. It is fair to say

that, although this result was obviously a breakthrough in proof-theory,

its extreme technicity (ordinal assignments, ordinal diagrams) made it a

puzzle for most of proof-theorists. It is only some years later that Pohlers

and, following him, other people in München, were able to extract some-

thing from this... .

11.A.3. Cut-elimination in Π1
1-logic

We shall only describe the work of Pohlers [104], which is chronologically

the first to contain an understandable approach to the “ordinal analysis”

of Π1
1 − CA, using Π1

1-logic.

Pohlers uses notations for ordinals < εΩ+1 (here Ω is ωCK1 ), the first

α > Ω s.t. α = 2α. People familiar with dilators, denotation systems, will

not be surprised to hear that all such ordinals can be effectively described,

with the use of arbitrary parameters < ωCK1 = Ω.

For all such α’s he introduces a predicate IΦα, together with the ax-

ioms:

... Γ,Φ(IΦα′ , n̄) ` ∆ ... all α′ < α Γ ` Φ(IΦα′ , n̄),∆

lI rI

Γ, IΦα(n̄) ` ∆ Γ ` IΦα(n̄),∆
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In (rI), we require α′ < α or α = Ω; the case α = Ω is just the way

of expressing the closure axiom. That formalism is sufficient to translate

ID1(T ,Φ) (with proofs “recursive enough”); the main problem is cut-

elimination, the typical case being:

π
...

... πλ

Γ ` Φ(IΦα, n̄),∆ ... Γ′,Φ(IΦλ, n̄) ` ∆′ ... all λ < Ω

Γ ` IΦΩ(n̄),∆ Γ′, IΦΩ(n̄) ` ∆′

CUT

Γ,Γ′ ` ∆∆′

and here there is a fundamental asymmetry, which comes from the fact

that α may be α ≥ Ω, whereas the corresponding premises for (lI) are

restricted to λ < Ω. (Using Π1
2-logic, we have solved this difficulty, by

allowing Ω to vary, and then the Ω of the rule (lI) is changed into α; but

in Pohler’s method it is possible to increase Ω... .) Then it is absolutely

necessary to make a strong assumption: There is no negative occurrence of

IΦ in Γ,Γ′ ` ∆,∆′. Then, if we assume that π is already cut-free, since no

(lI)-rule of length ≥ Ω has been used in π, we see that ‖π‖ < Ω, and the

ordinal α can be replaced by a more reasonable α′ < Ω (α′ is something

like ‖π‖). It is therefore possible to replace the given cut by:

π′
... πα′

...

Γ ` Φ(IΦα′ , n̄),∆ Γ′,Φ(IΦα′ , n̄) ` ∆′

CUT

Γ,Γ′ ` ∆∆′

Since the original cut seems to concentrate unpredicativity in it, whereas

the latter seems to be perfectly predicative, Pohlers has called his method

“local predicativity”. The principal limitation of the method is that

we obtain cut-elimination (with a real subformula property) for only those

sequents Γ ` ∆ in which IΦ′ does not occur negatively.

The method has been successfully applied to the iterated cases (IDn, IDν)

by Pohlers himself, and to a theory corresponding to the first recursively

inaccessible ordinal by Säger and Pohlers [107].
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Since the cut-elimination results are rather limited in that framework,

the essential application of this is to give “the” ordinals of the correspond-

ing theories. In fact one can get a bit more: If f is a provably total Σ1

function (from ωCK2 to itself) of ID2, then f can be bounded by a function

ϑ̄(Ωn1) (Ω0 = Ω, Ωn+1 = ΩΩn1 ) (private communication of W. Buchely).

Compare with 22.B.2, recalling that the functions ϑ̄(Ωn1) (of Buchely’s

system) are (essentially) dilators. For this purpose, what they do is that

they give explicit bounds on α′, given α (with the notations used above...).

The function α′ = D(α) is called a collapsing function. (The idea of col-

lapsing is natural, since in the original proof π, only a subset of α of order

type α′ is actually needed!) Hence a great part of this work is devoted to

the study of more and more complicated systems of collapsing functions,

corresponding to bigger and bigger systems... . In general, these collapsing

functions are related to the system of ordinal notations due to Buchholz

[93]... .

11.A.4. Other works

The first ordinal analysis of inductive definition (besides Takenti’s work,

which did not use current ordinal notations) was due to Howard, and done

for ID1: this is the origin of the terminology “Howard ordinal” for η0 [87].

The ordinals of the IDn’s were found by Pohlers, as explained above.

Tait’s work [108], was later improved by Sieg [109], essentially in the

intuitionistic case, already treated by Pohlers.

Finally, the works of Buchholz [110], have introduced interesting vari-

ations on the main theme explained in 11.A.3.

See [3] for more details.
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Annex 11.B. Applications to generalized recursion

This section requires a knowledge of admissibility and of generalized

recursion.

The main property of the generalizations of recursiveness that arose in

the years 1960–1975 is that they are not at all recursive! In general, people

use infinitary operations on sets (or ordinals); it is still possible to call it

recursion theory, because the main formal properties of recursivemess are

still true... . Now observe that Π1
2-logic proposes an obvious candidate for

the concept of a recursive function from 0n to 0n: F : 0n → 0n is

recursive iff F can be extended into a recursive dilator (i.e. it is possible

to define F (f) ∈ I
(
F (x), F (y)

)
in such a way that this extension makes

F a recursive dilator).

It is absolutely doubtless that a function recursive in this sense is gen-

eralized recursive in any reasonable sense ... the reason being that we have

an effective process of computing F (x) from x (the direct limits), and so

to speak, such a F is recursive in the familiar sense of the term.

We shall try to prove the converse, namely that, roughly speaking, all

generalized recursive functions are of that form; it is necessary to make

some remarks which determine the obvious limits of this enterprise:

(i) Generalized recursiosn usually allows operations of the form: defini-

tion by bounded quantifiers (or bounded µ-operators); but “bounded”

means bounded by some of the already computed values, and these

values are infinite! There are a lot of generalized recursive func-

tions which will not be recursive at all! But recall “bounded”: it is

likely that these functions, although terribly non effective, can still

be bounded by recursive dilators. (Then generalized recursion can

be reduced to:

– recursive dilators.

– “bounded” generalized recursion.

Typically f(z) = U
(
µy < F (z)T )1(e, z, y)

)
with U , T1 of the “bounded”

kind, and F (·) recursive dilator, could give a reasonable “normal form

theorem”.)
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(ii) Generalized recursion is very often a theory of partial functions; for

these partial functions, dilators bring nothing new... . Dilators an-

swer the problem only in the context of total functions.

(iii) In fact there is a greater variety of situations than expected, since,

besides generalized recursive functions from 0n to 0n, it is possible

to define generalized recursive functions from admissible ordinals to

themselves; the picture already explained will still hold for a large

class of successor admissibles, but for more general admissibles, it

will be necessary to replace majoration by recursive dilators, by:

majoration by means of hierarchies indexed by recursive dilators... .

It would be now the place to give the main definitions concerning ad-

missible sets, Σ1 functions over an admissible set, together with the basic

results of this theory... . I would feel too uneasy in doing such a thing, and

I prefer not to add unessential things to this too long book... . Many books

on the subject are available, for instance the book of Barwise [111].

We shall proceed as follows: most of the time, we shall try to formulate

the results by means of inductive definitions; when we need a relation be-

tween admissibility and inductive definability, then we shall simply admit

the result... .

11.B.1. Theorem (Girard, 1979, [100]).

Let f be a total Σ1 function from ωCK1 to itself, in LωCK1
; then one can find

a prim. rec. dilator F such that:

f(x) ≤ F (x) for all x ∈ [ω, ωCK1 [ .

Proof. The painful part of the proof is the translation of these set-theoretic

definitions (Σ1, LωCK1
) in terms of inductive definitions. We need the fol-

lowing

11.B.2. Theorem.

Under the hypotheses of 11.B.1, one can find a positive operator Φ, to-

gether with an arithmetical formula A(x, y), with the following properties:

• ∀x ∈ Φ ∃y ∈ Φ̄ A(x, y).
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• x ∈ Φ̄ ∧ x 6∈ IΦα ∧ y ∈ IΦβ ∧ A(x, y) ∧ α < ωCK1 → f(α) ≤ β.

• The closure ordinal of Φ is ωCK1 .

Proof. It is well known that LωCK1
consists of the hereditary hyperarith-

metical sets (HH), that can be viewed as well-founded hyperarithmetical

trees. For such trees, it is not very difficult to give an inductive definition.

The rest of the proof is either clear to the reader, or impossible to explain

without going too much into what is admissibility... . 2

We apply now our treatment of inductive definitions (for instance the

variant without ω-rule), and, since ` ∀x ∈ Φ̄ ∃y ∈ Φ̄ A(x, y) is true,

we obtain, by completeness a Id + 1-proof of this sequent. Now, we apply

cut-elimination to this proof, and we obtain a cut-free F -proof of the same

sequent, where F is a recursive dilator; now we apply Lemmas 11.4.5 and

11.4.7, and we obtain a cut-free proof of:

` ∀x ∈ IΦ̄t ∃y ∈ IΦ̄u
A(x, y)

where t and u are the F + 1 terms: t(α) = α, u(α) = F (α). We would like

to conclude that

∀x ∈ IΦα ∃y ∈ IΦF (α) A(x, y)

is true; but if α is taken arbitrarily, then some rules of the proof may

become non valid for the intended interpretation (namely, when α is finite,

the rule (l̄) for N̄ , which says that N̄ ⊂ INα, is false); but this problem

is eliminated if we concentrate upon infinite values of α. Recall the second

condition of 11.B.2: we obtain f(α) ≤ F (α + 1) for all infinite α < ωCK1 .

This is the essence of the result; here F ◦ (Id+1) is only recursive; if we

want it to be prim. rec., consider the dendroid D = BCH
(
F ◦ (Id + 1)

)
;

this dendroid is recursive, hence s ∈ D∗ ↔ ∃n T1(e, s, n); define another

dendroid D′ by prolongating any s ∈ D into s ∗ t, where t is any sequence

(x0, 0, x1, ..., 0, xn−1, 0) with

• n = sup {m ; ∃i ≤ lh(s) T1(e, s̀| i,m)}.

• x0 < x1 < ... < xn−1 ∈ IN .
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• x0 > (x)1, (s)3, ..., (s)lh(s)−2.

One easily checks that:

1. D′ is a sh dendroid.

2. D′ is prim. rec.

3. F ′ = LIN(D′) is prim. rec.

Moreover, F (x) ≤ F ′(x) when x is limit, hence F (x) ≤ F ′(x + ω) ≤
F ′(x+x) for x ≥ ω. This proves that F can be replaced, for infinite values,

by the prim. rec. dilator F ′ ◦ (Id + Id). 2

11.B.3. Remarks.

(i) If we want the majoration to hold also at finite arguments, then ob-

serve that F (n) can be infinite, hence we cannot expect F to be

weakly finite. If we define the concept of a recursive (non weakly

finite) dilator in the straightforward manner, then it will be true that

any total Σ1 function of ωCK1 is majorized by such a dilator for all

values < ωCK1 .

(ii) The crucial point in the proof is the use of Lemmas 11.4.5 and 11.4.7;

the meaning of these lemmas has something to do with the 3-valued

semantics of Chapter 3: if we replace negative occurrences of Φ̄ by

IΦα, positive occurrences of Φ̄ by IΦF (α), this means that we are

computing the truth value of the sequent in the three-valued model

m of Id1, with

m
(
Φ̄(n̄)

)
= t if IΦα(n̄)

m
(
Φ̄(n̄)

)
= f if ¬IΦF (α)(n̄)

m
(
Φ̄(n̄)

)
= u otherwise .

And the theorem appears therefore as a striking example of appli-

cation of three-value semantics... .
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11.B.4. Definition.

An ordinal α is β-definable iff: there exists a prim. rec. β-theory T which

has a β-model, such that, if m is any β-model of T , then m(o) = α.

11.B.5. Remarks.

(i) By standard manipulations, the infinite prim. rec. sequence of Def.

11.B.4 can be replaced by one single axiom... .

(ii) If α is β-definable, then there exists a prim. rec. predilator F such

that:

α = inf{x ; F (x) is not an ordinal} .

(Proof. If T is as in 11.B.4, consider the prim. rec. pre β proof of `
(the void sequent) given by the β-completeness theorem; then πx is

well-founded iff ` holds in any model m of T s.t. m(o) ≤ x; hence

πx is well-founded iff x < α. Let F = LIN(π)... . 2)

In general the ordinals α such that

α = inf {x ; F (x) is not an ordinal} for some prim. rec. predilator F

(which form the set of weakly β-definable ordinals), are not β-

definable; however, it is easily seen that α is weakly β-definable iff

one can find a prim. rec. β-consistent T s.t.

α = inf {m(o) ; m β-model of T } .

It is easily shown that the two notions of β-definability coincide

when α is admissible or a limit of admissibles; in particular α weakly

β-definable → α+β-definable (α+ is the next admissible, i.e. the

smallest admissible > α).

(iii) The ordinal σ0 which is the smallest α such that: Lα is a Σ1 sub-

structure of V , and which is known as the first stable ordinal, is

related to β-definability as follows:
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σ0 = sup {α ; α is β-definable} .

An equivalent definition of σ0 is the following:

σ0 = inf {x ; ∀F prim. rec. predilator, if F (z) < x

for all z < x, then F is a dilator} .

Equivalently σ0 is the supremum of the weakly β-definable ordinals.

The β-definable ordinals form a proper cofinal subset of σ0, which

includes a very large initial segment I0 of σ0. In many applications,

we remain in this initial segment... . For instance, many current ad-

missibles such as the first recursively inaccessible, the first recursively

Mahlo, belong to I0... .

11.B.6. Theorem (Girard, 1979, [100]).

Assume that α and all its predecessors are β-definable, i.e. α ∈ I0, and let

f be a Σ1 function from α+ to itself (Σ1 over Lα+); then one can find a

prim. rec. dilator F such that:

∀x
(
α ≤ x < α+ → f(x) ≤ F (x)

)
.

Proof. Here too, we express α+ as the result of an inductive definition:

there exists a positive operator Φ in the language of set-theory such that:

(i) If m = (Lα, ὲ|Lα), then α+ is the closure ordinal of Φ w.r.t. m.

(ii) There are ordinals ξ1, ..., ξn < α, and a formula A(x, y) = A(ξ̄1, ..., ξ̄n,

x, y) whose only ordinal parameters are ξ1, ..., ξn, and such that

(m[Φ̄ |= ∀x ∀y
(
A(x, y) ∧ Φ̄(x) ∧ ¬IΦλ(x) ∧ IΦµ(y)

)
→

f(λ) ≤ µ .

(The inductive definition Φ is that of the Σ1 well-orders of Σ1 sub-

classes of Lα... .)

When α is given, then there is a standard way to construct Lα; this

means that there is a β-theory T 0 with the following properties:
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1. For each α, T 0 has exactly one β model mα s.t. mα(o) = α.

2. The restriction of mα to the language of set-theory is (Lα, ε).

3. T 0 consists of exactly one formula A0.

Let B1, ..., Bn, B be formulas (β-theories with one axiom) which de-

fine ξ1, ..., ξn, α in the sense of β-definability (it can be assumed without

loss of generality that all these formulas, and A0 are in the same lan-

guage...). We replace the closed formulas B1, ..., Bn, B,A0, by formulas

Bx
1 , ..., B

x
n, B

x, Ax0 , depending on a variable x of type o, as follows: all

quantifiers of type o are relativized to x. In particular, if

Bx
k holds in a β-model m, then x = ξk

Bx holds in a β-model m, then x = α

Ax0 holds in a β-model m, then m|̀ ε = (ὲ|Lx) .

The hypotheses of theorem and the remarks already made show that

the sequent

` ∀x1 ...∀xn ∀x ∀z ∃z′
(
Bx1

1 ∧ ... ∧Bxn
n ∧Bx ∧ Ax0 ∧ Φ̄(z) →

Φ̄(z′) ∧ A(x1, ..., xn, z, z
′)
)

is true in all β-models of the form m [Φ̄]; compared to our definitions,

the only new thing here is that m is already a β-model; but this does

not change anything! By β-completeness and cut-elimination, we find a

F -proof of this sequent which is cut-free.

For the same reasons as in 11.B.1:

Bx̄1
1 ∧ ... ∧Bx̄n

n ∧Bx̄ ∧ Ax̄0 ∧ IΦλ(z) →

∃z′
(
IΦF (λ)(z′) ∧ A(x̄1, ..., x̄n, z, z

′)
)

is true for all x1, ..., xn, x ≤ λ ∈ 0n. In particular, take x1 = α1, ..., xn = αn,

x = α, λ ≥ α; we obtain f(λ) ≤ F (λ + 1); the majoration holds for all

λ ∈ [α, α+[. 2
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11.B.7. Corollary.

Let Ξ1 be the following dilator: take an enumeration of all recursive dila-

tors, say (Fn)n∈IN , and let Ξ1 =
∑
n<ω

Fn. Then, for all α ∈ I0, we have:

α+ = Ξ1(α) .

Proof. Consider the Σ1 function, defined, for x < α+, by: f(z) = x; then

by 11.B.6 this constant function is majorized by some Fn, for all λ ≥ α;

hence x ≤ Fn(α) < Ξ1(α). On the other hand remark that:

11.B.8. Lemma.

If F is a prim. rec. dilator, then the function λ → F (λ) is a Σ1 function

from α+ to α+.

Proof. Immediate for everybody who knows what “Σ1” means... . 2

From that, it follows that the partial sums
∑
i<n

Fi map α+ into itself, and

from that Ξ1(α) ≤ α+. 2

11.B.9. Corollary.

Define a flower ω by:

ω(0) = ω ω(E0) = Eω

ω(x+ 1) = ω(x) + 1 + Ξ1

(
ω(x)

)
ω(f + E1) = ω(f) + E1 + Ξ1

(
ω(f)

)
ω(f + E01) = ω(f) + E01 + Ξ1

(
ω(y)

)
ω(supxi) = sup

(
ω(xi)

)
ω
( ⋃

i

fi
)

=
⋃
i

ω(fi) .

Then, for all x ∈ I0, we have ω(x) = ωCKx (ωCKx is the xth admissible

or limit of admissibles, with ωCK0 = ω).

Proof. Completely trivial... . 2

11.B.10. Remarks.

(i) The conclusion of Theorem 11.B.6 fails when α ≥ σ0 (because Ξ1 ∈
Lσ0 + 1).
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(ii) In fact Ressayre has proved the following result, which shows that the

theorem holds cofinally in σ0:

11.B.11. Theorem (Ressayre, 1981, [112]).

If α is a denumerably infinite ordinal, the following are equivalent:

(i) α is β-definable and all ordinals λ < α are Σ1-definable inside Lα+ ,

from α alone (i.e. there is a Σ1 formula A(ᾱ, x) such that λ is the

only solution of A(ᾱ, x) in Lα+ and α is the only parameter of A).

(ii) α+ = Ξ1(α).

(iii) If f is a Σ1-function from α+ to itself, then there is a prim. rec.

dilator F s.t. f(x) ≤ F (x) for all x ∈ [α, α+[.

Proof. See Ressayre [112]. 2

11.B.12. Exercise.

Let s0 = sup I0 (i.e. I0 = [0, s0[= s0).

(i) Show that s0 is admissible.

(ii) Show that if x is admissible or limit of admissibles, and x is weakly

β-definable, then x is β-definable; conclude that s0 is not weakly

β-definable.

(iii) Consider Ξ′1(x) =
∑
n

F ′n(x), where (F ′n) enumerates the set of all

prim. rec. predilators s.t. F ′n(s0) is well-ordered. Show that Ξ1(x) ≤
Ξ′1(x) for all x < s0. Prove that Ξ′1(s0) < s+

0 , and conclude that

s+
0 > Ξ1(s0). (Ressayre has shown that Ξ1(s0) = Ξ′1(s0); from this

result, one easily gets: s+
0 = Ξ1

(
Ξ1(s0)

)
... but s++

0 = Ξ1(s+
0 )... .)

11.B.13. Remark.

More direct proofs of the Theorems 11.B.1 and 11.B.6 have been given,

which do not use the pattern of completeness and cut-elimination:

(i) Masseron [113] (1980) gives the bounding dilator by a direct con-

struction, see 11.B.14.
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(ii) Ressayre (with Harrington) [112] (1981) gives the answer by means

of a Gödel sentence.

(iii) Normann [114] (1981) gives a direct proof using some kind of β-

completeness argument.

(iv) The remark of Buchholz (1982, see 11.4.9 (iii)) makes it possile to

avoid the syntactic cut-elimination.

All these results are simpler than the original proofs just given; how-

ever, I still think that these original proofs give a framework in which

these results are more easily understood from a general standpoint; more-

over, the syntactic form of our proof makes it (at least theoretically!!) more

informative... .

11.B.14. Exercise (Masseron, 1980, [113]).

Our purpose is to give a direct poor fo 11.B.1.

(i) If f is a Σ1 function on LωCK1
, show the existence of a prim. rec.

function g s.t.

∀e ∈ O
(
g(e) ∈ O ∧ ‖g(e)‖ ≥ f(‖e‖)

)
.

(ii) For each e ∈ IN , define a tree Te(x), depending on an ordinal param-

eter x and such that: an infinite branch in Te(x) encodes

– a s.d.s. in g(e) .

– a strictly increasing function from e0 to x.

Show that Te(x) is a well-founded tree for all e and x ∈ 0n. Moreover,

if e ∈ O, show that ‖g(e)‖ ≤ ‖Te(‖e‖)‖. Show that the trees Te(·) can

be used to define dilators De, and conclude that ‖g(e)‖ ≤
∑
n

Dn(e)

for all e ∈ O. (The end of Masseron’s work proves that the dilator∑
n

Dn can be replaced by a prim. rec. ladder.)
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We now state a very remarkable result, due to Van de Wiele [115]; this

result is connected with the theory of functions from sets to sets... .

11.B.15. Theorem (Van de Wiele, 1981, [115]).

Assume that f is a function from sets to sets which is uniformly Σ1 over all

admissibles; this means that if x is a set, and x+ is the smallest admissible

structure containing x, then f(x) is the only y such that: (x+, ε) |= A(x, y)

(A is a Σ1 formula, independent of x). Then f is rank-majorized every-

where by a recursive dilator F , i.e.

x ∈ Vα → f(x) ∈ VF (α) .

Proof. We use the fact that x+ is obtained by a uniform inductive definition

from x; then we roughly proceed as follows:

• We start with the language of set theory, and we write the axiom of

extensionality, and a constant C (for x).

• We add objects of type o and a binary relation between sets and ordi-

nals R(x, ξ), which says something like rk(x) = ξ; we write the obvious

axioms for R which will make a β-model of the theory to be essentially

an arbitrary set x (the interpretation of C).

• Then we write our inductive definition of x+ (if x is C) as usual.

The hypothesis proves that:

` ∃y
(
Φ̄(y) ∧ A(C, y)

)
is true in all β-modelsm [Φ̄], hence Id+1-provable; after a cut-elimination,

we obtain the fact that

` ∃y
(
IΦF (α)(y) ∧ A(C, y)

)
is true in all models of the above theory, with m(o) = α; in that case

rk
(
m(c)

)
< α, and if m(c) = x, we see that rk

(
f(x)

)
< F (α)... . 2
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8.B.16. Remark.

A typical corollary of 11.B.15 is that any uniformly Σ1 function is E-

recursive (in the sense of Normann, [116]); this fact was first proved by

Van de Wiele. Of course the specialists of the field (Slaman) were soon

able to give a direct proof of the same result... . But the interest of Van

de Wiele’s theorem is more general: recursive dilators induce functions

from 0n to 0n which are truly recursive, whereas these other notions (uni-

formly Σ1, E-recursive...) are not recursive in the familiar sense of the

word. Furthermore, the very fact that the specialists had no real trouble

in proving this equivalence by methods of their own is a further evidence

of the clarifying power of Π1
2-logic.
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Annex 11.C. Π1
n well-orders

This section is indeed the sequel and the generalization of the results

of Section 11.B; we are here interested in the relationship between bigger

admissibles (stable ordinals,...) and the “higher types dilators”, namely

the ptykes of Chapter 12.

11.C.1. Definition.

For each n > 0, we define π1
n to be the smallest ordinal which is not of the

form ‖R‖, where R is a well-order of a subset of IN , given by a Π1
n formula.

11.C.2. Remarks.

(i) A Π1
n well-ordering of IN would be also Σ1

n, hence ∆1
n (if x ≤ y ↔

A(x, y), then x ≤ y ↔ ¬A(y, x) ∨ x = y), hence the concept of a

Π1
n well-ordering of IN is a priori weaker than the concept of a Π1

n

well-ordering of a subset of IN .

(ii) A more general notion is that of a Π1
n prewell-ordering, i.e. a Π1

n pre-

order relationA(x, y) s.t. there is no sequence (xn) s.t. ∀n ¬A(xn, xn+1),

and which is a linear order. The ordinals associated with Π1
n prewell-

orderings are a priori greater than the ordinals associated with Π1
n

well-orders. (Ressayre gave (private communication) an explicit Π1
2

prewell-order of height π1
2 = σ0.)

(iii) If α is the height of a Π1
n well-order, and α′ ≤ α, then α′ is also the

height of a Π1
n well-order: this shows that

π1
n = sup {‖R‖ ; R a Π1

n well-order of a subset of IN} .

11.C.3. Proposition.

The ordinal π1
1 is equal to ωCK2 .

Proof. First observe that ωCK1 < π1
1 (if we take a linear order R which is

prim. rec. and which has an accessible part of order type ωCK1 , then this

accessible part is a Π1
1 well-order of height ωCK1 ). If F is any prim. rec.
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dilator, then F (ωCK1 ) < π1
1.

(Proof. if R is a Π1
1 well-order of height ωCK1 , then F (ωCK1 ) can be described

as the set of all formal denotations

(z0 ; a0, ..., an−1 ; R)F , with a0 < ... < an−1 (mod R)

ordered as usual: this is a Π1
1 well-ordering... . 2)

Hence ωCK2 = Ξ1(ωCK1 ) ≤ π1
1. The opposite inequality is obtained by ob-

serving that Π1
1 well-orders can be defined by a single inductive definition,

if we have a Π1
1-universal set (that we get in ID1), hence by a double in-

ductive definition; but the closure ordinal of a double inductive definition

(ID2) is ≤ ωCK2 . (We can also use the cut-elimination procedure for ID2,

which yields the bound Ξ1(ωCK1 ) for the closure ordinal of ID2... .)

11.C.4. Definition.

let n be the type defined by: o = o; p+ 1 = p→ o; we define, for each n:

Ξn, a ptyx of type n, by: Ξn =
∑
i

P n
i where (P n

i )i∈IN is an enumeration of

all ptyxes of type n, which are recursive and weakly finite (hence Ξ0 = ω).

11.C.5. Remark.

11.C.3 can be written as: Π1
1 = Ξ1

(
Ξ1(Ξ0)

)
, and we shall generalize it

to: Π1
n = Ξn(Ξn−1). However, we must first say something concerning the

dependence of the functors Ξn from the way (P n
i ) is enumerated.

11.C.6. Proposition.

Assume that (Qn
i ) is another enumeration of all prim. rec. ptyxes of type

n, let Ξ′n =
∑
i

Qn
i ; if F is any ptyx of type n+ 1, we have

F (Ξn) = F (Ξ′n) .

Proof. It is enough to show that F (Ξn) ≤ F (Ξ′n); for this, we show that

In(Ξn,Ξ
′
n) 6= ∅: (if T ∈ In(Ξn,Ξ

′
n), then F (T ) ∈ I

(
F (Ξn), F (Ξ′n)

)
, hence

F (Ξn) ≤ F (Ξ′n)...). For each p, we choose an integer m = f(p), to-

gether with a natural transformation Tp from Pp to Qm: assume that

f(0), ..., f(p−1), T0, ..., Tp−1 have been constructed, and consider the prim.
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rec. ptykes Pp+k (k is a constant ptyx...); they are infinitely many, os one

of them is of the form Qm, with m > f(0), ..., f(p− 1). let m = f(p), and

if Qm = Pp + k, let Tp = EPp + E0k. The function f belongs to I(n,m),

hence

T =
∑
i<f

Ti belongs to In(Ξn,Ξ
′
n) . 2

11.C.7. Remarks.

(i) The meaning of 11.C.6 is that the Ξn’s behave as “intrinsic” objects,

when used in building ordinals.

(ii) But this is no longer true for functions from ordinals to ordinals:

if U ∈ In+1(F,G), then there is no reason why U(Ξ1) should equal

U(Ξ′1). For instance take F = G defined by F (D) = D(ω) (D dilator)

U(D) = D(f) where f is a given element of I(ω, ω)... .

11.C.8. Theorem.

The ordinal Ξn+1(Ξn) is equal to: {F (Ξn) ; F prim. rec. ptyx of type n+1}.

Proof. If F is a prim. rec. ptyx of type n + 1, then F = P n+1
i for some

i, hence F (Ξn) < Ξn+1(Ξn). Conversely, assume that x < Ξn+1(Ξn); then

x <
(∑
i<p

P n+1
i

)
(Ξn) for some p, i.e. x < G(Ξn) for some prim. rec. G. Now,

consider the normal form of x w.r.t. G and Ξn: x = (x0 ; a0 ; t ; Ξn)G.

Recall that this implies that:

x = G(t)(x0) for some t ∈ In
(
a0,

∑
i<p

P n
i

)
.

a0 is finite dimentionsal, hence it is easily checked that t = t′ + En
0Ξ′n

, for

some t′ ∈ I
(
a0,

∑
i<p

P n
i

)
, for some p, with Ξ′n =

∑
p≤i

P n
i .

Let a =
∑
i<p

P n
i , and consider:

G′ = G ◦ (a+ Idn .

(a + Idn is the ptyx of type n → n such that: (a + Idn)(F ) = a + F ,

(a+ Idn)(T ) = Ea + T .) Then x < G′(Ξ′n).
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Moreover, x = G′(En
0Ξ′n

)(x1) for some x1 ∈ G′(0). This implies that G′

can be written as a sum G′ = G1 + G2, with G1(Ξ′n) = x (left to the

reader). Now, by 11.C.6, G1 = (Ξ′n) = G1(Ξn); then we have succeeded

in writing x under the form G1(Ξn). Now if we look at the way G1 was

obtained from G, it is plain that G1 is still a prim. rec. ptyx of type n+1.2

11.C.9. Theorem (Girard-Ressayre, 1982, [117]).

πn1 = Ξn(Ξn−1) for n > 1.

Proof. Let us first establish that πn1 ≥ Ξn(Ξn−1). We shall work in the

particular case n = 2, but the argument is perfectly general: let G be a

prim. rec. ptyx of type 2: we show that G(Ξ1) < π1
2. Ξ1 can be expressed in

a Π1
2 way; consider an enumeration of all weakly finite prim. rec. predila-

tors s.t. “Pp is a dilator” is a Π1
2 formula A(n). If i1, ..., ip are integers,

with i1 < ... < in, then let xi1,...,in = G(Pi1 + ... + Pip), and similarly,

if {i1, ..., ip} ⊂ {j1, ..., jq}, we define fi1,...,ip ; j1,...,jq ∈ I(xi1,...,ip , xj1,...,jq}
by fi1,...,ip ; j1,...,jq = G

(∑
t<f

EPt

)
, where f ∈ I(p, q) is defined by: i1+t =

j1+f(t)... . Let I be the set of all finite subsets of IN , ordered by inclusion;

then the system (xi, fij) is obviously a prim. rec. direct system of prim.

rec. linear orders.

Let J =
{
{i1, ..., ip} ∈ I ; A(i1) ∧ ... ∧ A(ip)

}
; then J is a Π1

2 subset of

I, and G(Ξ1) = lim
−→

J

(x1, fij). We show that J is a Π1
2 order. For this

observe that i < j → die < dje (with d{i1, ..., ip}e = 〈i1, ..., ip〉). Define

X = {〈z, die〉 ; i ∈ J ∧ z ∈ xi ∧ ∀j < i z 6∈ rg(fij)}. X is a Π1
2 set, and is

ordered by:

〈z, die〉 <X 〈z′, dje〉 ↔ fi,i∪j(z) < fj,i∪j(z
′) .

This is clearly a recursive order. We have therefore established that G(Ξ1)

is a Π1
2 well-order, hence G(Ξ1) < π1

2.

Conversely, let λ be Π1
2 well-order. This means that there is a Π1

2

formula A(x, y), which defines a well-order of a subset of IN , of height λ.

By Π1
2-completeness of dilators, this relation can be replaced by:

f(x, y) is the index of a prim. rec. dilator
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for some prim. rec. function f... .

We assume that L is a language containing a distinguished predicate

dil(·); the intended meaning of dil(n) is “n is the index of a prim. rec.

dilator”. We form a positive operator Φ:

Φ(X, x)↔ ∀y
(
dil
(
f(y, x)

)
∧ y 6= x→ X(y)

)
.

Let m be an ω-model of L; then m [Φ̄] =
{
n ; ∀g

(
g(0) = n →

∃p f
(
g(p + 1), g(p)

)
6∈ m(dil) ∨ g(p + 1) = g(p)

)}
. Now, assume that

m enjoys the additional property:

(1) ∀n (n ∈m(dil)→ n is the index of a prim. rec. dilator) .

Then A(n, n) → n ∈ m [Φ̄] is true. (If g(0) = n, then ∃p
(
¬A

(
g(p +

1), g(p)
)
∨ g(p+ 1) = g(p)

)
; but ¬A

(
g(p+ 1), g(p)

)
→ f

(
g(p+ 1), g(p)

)
is

not the index of a prim. rec. dilator, hence ¬A
(
g(p+ 1), g(p)

)
→ f

(
g(p+

1), g(p)
)
6∈m(dil).

For the same reason, if m enjoys (1), then m |= ∀n
(
dil
(
f(n, n)

)
→

Φ̄(n)
)
.

This means that dil
(
f(n,m)

)
(= R(n,m)) defines a well-founded rela-

tion in m. It is easily checked that the closure ordinal of Φ̄ in m (= ‖R‖)
is ≤ λ, which is our Π1

2 well-order.

Now we force the modesl we are considering to enjoy (1); the idea will

be to take a dilator F , and to write an axiom saying something like: if

dil(n), then there is a natural transformation from n to F .

We add a type |́ to the language L, and, for any a ∈ Tr(F ), a con-

stant ā of type |́; moreover, we add a 3-ary predicate letter p(x, y, a) (two

arguments of type l, one of type |́).
The axioms are the following:

(i) p(x, y, a) defines a function (abbreviated as gx(y) = a) ∀x ∀y ∃!a p(x, y, a).

(ii) When dil(x), gx(·) induces a natural transformation from the predila-

tor encoded by x, to F :

1. pil(x). (x encodes a predilator; assume that (X,≤, σxab) are the

associated data, as in 8.G.10. Of course, there is no need to use

this specific way of encoding predilators.)
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2. gx is a strictly increasing function from (X,≤) to (Tr(F ),≤F ).

3. If a ≤ b, then σxab = σFgx(a)gx(b). (This last property is a bit difficult

to write out precisely: first observe that, since we use ω-logic, x,

a, b, are indeed integers n̄, p̄, q̄, and by (i) there are unique points

z̄, z̄′ in Tr(F ) s.t. z̄ = gn̄(p̄), z̄′ = gm̄(q̄). Then σFz,z′ is a uniquely

determined pair (r,�1) encoded by an integer d(r,�1)e. We write

the axiom dσxabe = d(r,�1)e... .)

If this theory is called T F , then it is plain that, for any F ∈ DIL, any

ω-model m of T F , m enjoys (1).

By a generalized β-completeness argument (10.B), the formula ∀n
(
dil(n)

→ Φ̄(n)
)

is provable in all theories ID1(T F ,Φ), functorially in F .

We can perform the cut-elimination as we did for the usual theories

ID1, the only difference being that we must now take care of the extra

functorial dependency... . The only important thing comes from 10.B.4,

namely, how to “linearize” F -rules... .

We leave all details to the reader; from a cut-free proof of ` ∀n
(
dil(n)→

Φ̄(n)
)
, we can extract bounds as follows: First observe that the extra

functorial dependency makes the cut-free proof a H(F, α)-proof, for some

recursive ptyx H of type (o→ o)→ (o→ o).

From this we can infer that:

∀n
(
dil(n)→ IΦH(F,0)(n)

)
is true in any model m of T F . In particular, this formula is true in the

model m0 of T Ξ1 , s.t.:

– m |= dil(n̄)↔ n is the index of a prim. rec. dilator.

– gn is the natural transformation from the dilator P 1
n encoded by n to

Ξ1 =
∑
i

P 1
i , defined to be

∑
i<f

Ti, with f ∈ I(1, ω): f(0) = n, T0 = EP 1
n
... .

Hence we obtain:

m0 |= ∀n
(
dil(n)→ IΦH(Ξ1,0)(n)

)
... .
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But in m0, the relation f(x, y) ∈ dil corresponds to our order A(x, y); the

closure ordinal of Φ must be λ, so

λ ≤ H(Ξ1, 0) .

If H ′(F ) = H(F, 0), H ′(T ) = H(T,E0), we obtain λ ≤ H ′(Ξ1).

(I confess that I have not checked the possibility of the replacement of

H ′ by a prim. rec. ptyx. Anyway this is a very inessential problem... .) We

obtain π1
2 ≤ Ξ2(Ξ1). 2

11.C.10. Remarks.

(i) The theorem cannot be extended to prewell-orderings: if f(x, y) ∈
dil defines a prewell-ordering (typically x ≤ y for all x and y), and

m enjoys (1), then the relation f(x, y) ∈ dil in m is not necessarily

well-founded any more... .

(ii) We have concentrated our attention upon π1
2, because it is the most

important case, and also because the specific knowledge we have of

dilators, makes some part of the proof more immediate; but there

is nothing in this proof that cannot be immediately generalized to

π1
n... . The inconvenience is that we work with abstract ptykes, whose

structure is more puzzling than the structure of the now familiar

dilators... .

(iii) Of course, alternative proofs of 11.C.9 can be given... .

11.C.12. Corollary.

σ0 = Ξ2(Ξ1).

Proof. It is well known that σ0 = δ1
2, the first non ∆1

2 ordinal, hence

σ0 ≤ π1
2. We shall prove Ξ2(Ξ1) ≤ σ0: let H be a prim. rec. ptyx of

type 2; if x is any ordinal, we can define Ξx
1 to be the sum of all prim.

rec. predilators P s.t. P (x) is well-ordered. In particular Ξσ0
1 = Ξ1, hence

∃x H(Ξx
1) well-ordered. If this Σ1 formula is true, it must be true in Lσ0 ,

hence ∃x < σ0 H(Ξx
1) is a well-order < σ0. But I1(Ξ1,Ξ

x
1) 6= ∅, hence

H(Ξ1) ≤ H(Ξx
1) < σ0 .
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From this we obtain Ξ2(Ξ1) ≤ σ0... . 2

11.C.13. Remark.

It is not possible to give a majoration for all Σ1 functions from σ0 to σ0; for

instance the function x ; x+, a typical such function, cannot be majorized

by any function of th form

x→ H(Ξ1, x)

for some prim. rec. ptyx H of type (o→ o)→ (o→ o).

(Proof. One easily checks that H(Ξ1, σ0) < σ+
0 . (In fact, our methods

would show that σ+
0 = Ξ2′(Ξ1, σ0) with 2′ = (o → o) → (o → o). But

σ1
2, the first non Σ1

2 ordinal, is not equal to σ+
0 ; in fact σ1

2 = Ξ1(σ0), see

[117].) Hence ∃x (H(Ξ1
x, x) < x+); hnce such an x can be found < σ0, and

H(Ξ1, x) ≤ H(Ξ1
x, x) < x+. 2)

However, it can be shown that there is a prim. rec. H such that: f(x) ≤
H(Ξ1, x) for all x ∈ X, where X is a cofinal subset of σ0, independent of

the Σ′ function f .

The proof of 11.C.9 cannot be directly used to give bounds for func-

tions, because of the bad behaviour of the formalism we use in that case

w.r.t. negative occurrences ... (models enjoying (1) make it easier to be a

Π1
2 well-order, hence more difficult to be a Π1

2 non well-order... ).

Let us look at 11.C.9, in the special case n = 2; the result says (if

combined with 11.C.8) that every ordinal < π1
2 = σ0 can be expressed as

F (Ξ1) for some prim. rec. ptyx of type 2. Hence the problem will be to

find, given α < π1
2, the specific expression:

α = F (Ξ1) .

When doing this, we get as close as possible to a recurive description of

α; if we know that P0, ..., Pn are prim. rec. dilators, then we can imagine

that Ξ1 = P0+...+Pn+..., hence we can approximate α by F (P0+...+Pn) =

αn, which is a recursive ordinal; if at a later stage, we recognize that Pn+1

is a prim. rec. dilator too, then the approximation must be replaced by

αn+1 = F (P0 + ...+ Pn+1), and αn must be embedded into αn+1 by means
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of F (EP0 +...+EPn+E0Pn+1); the embeddings are recursive as well. Finally,

what is not recursive in this is the choice of an enumeration (Pn) of all prim.

rec. dilators... .

In practice, the expression α = F (Ξ1) can be replaced by an expression

of α by induction on dilators: typically, a hierarchy indexed by (prim. rec.)

dilators. Let us give a few examples:

11.C.14. Example.

(i) Θ0(x) = x

(ii) ΘF+1(x) = ΘF (ωCKx )

(iii) Θ
sup
i

Fi
enumerates

⋂
i

rg(ΘFi)

(iv) ΘF (x) = ΘSEP(F )(·,x)(0)

defines a hierarchy of functions from 0n to 0n. This hierarchy (if one ap-

proximates ωCKx by ω(x), what is legitimate since we are only interested

in arguments < the first recursively inaccessible), is idential to a variant

Λ′ of Λ, where the only change is the value Λ′1: (Λ′1)(x, y) = ω(y)... .

11.C.15. Conjcture.

Let iCK0 be the first recursively inaccessible, i.e. the first admissible limit

of admissibles; then

(i) iCK0 = ΘΞ1(0); in other terms, any x < iCK0 can be majorized by an

ordinal ΘF (0) for some prim. rec. F .

(ii) If f is a total Σ1 function from iCK0 to itself, then f(x) ≤ ΘF (x + 1)

for all x < iCK0 , for a certain prim. rec. F .

This conjecture has now been established; see [118].
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11.C.16. Remarks.

(i) Under the assumption of 11.C.15, iCK0 can be constructed “from

below”; more precisely, given a prim. rec. F , the computation of ΘF

only makes use of previously computed initial segments of iCK0 , ... .

(ii) We have seen that Θ is a variant of Λ; more precisely one can write

ΘF (x) = H(F,ω, x), for a certain prim. rec. ptyx H... . Moreover,

one can replace the argument ω by Ξ1, using the expressiosn of ω in

terms of Ξ1: ΘF (x) = H ′(F,Ξ1, x). Hence from iCK0 = H ′(Ξ1,Ξ1, 0),

we obtain, with H ′′(F ) = H ′(F, F, 0)...

iCK0 = H ′′(Ξ1) ,

hence we clearly see that the hierarchy expression of iCK0 (11.C.15

(i)) implies an expression of the kind implied by 11.C.9; conversely

any expression of the form H ′′(Ξ1) can be converted practically into

a hierarchy.

(iii) The bound ΘF (x + 1) (and not ΘF (x)) in 11.C.15 (ii) is due to the

fact that the functions ΘF are continuous, whereas f need not to

be continuous! There are plenty of points where ΘF (x) = x, but in

general f(x) > x for all x < iCK0 .

11.C.17. Example.

π0(x) = x .

πF+1 enumerates the closure (in the order topology) of the set of ad-

missible fixed points of πF .

π
sup
i

(Fi)
enumerates

⋂
i

rg(πFi)

πF (x) = πSEP(F )(·,x)(0) .

11.C.18. Conjecture.

Let µCK0 be the first recursively Mahlo, i.e. the first admissible α s.t. if f
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is any Σ1 function on Lα, then there is x < α, x admissible s.t. f(z) < x

for all z < x; then

(i) µCK0 = πΞ1(0); in other terms, any x < µCK0 can be majorized by an

ordinal πF (0) for some prim. rec. F .

(ii) If f is a total Σ1 function from µCK0 to itself, then f(x) ≤ πF (x+ 1),

for all x < µCK0 , for a certain prim. rec. F .

This conjecture has now been established; see [119].

11.C.19. Remark.

π can also be expressed as a functor; typically if πF+1 = H(πF ), for some

H, then πF will be a Λ-like object, obtained by iterating H. The main

question is therefore how to express πF+1 under the form H(πF ). A typi-

cal example is when F = 1; then πF (x) = ωCKx , whereas πF+1(x) = iCKx ,

the xth recursively inaccessible or limit of recursively inaccessibles... . Now

an immediate extension of the conjecture 11.C.15 yields:

iCKx = ΘΞ1(x) .

More generally, one can surmise ([118] establishes the result) that πF+1(x)

= Λ′Ξ1
(x), where Λ′ is the variant of Λ corresponding to (Λ′1)(x, y) =

πF (y). From this:

(i) One gets the expression of πF+1:

πF+1 = H(πF ,Ξ1) , and H prim. rec.

(ii) Moreover, since H is indeed already a hierarchy (as a variant of Λ,

and π is built from H by means of a hierarchy, it is likely that the one-

indexed hierarchy π can be replaced by a two-indexed one, extending

Θ... .

This means that Θ is constructed by recursion up to Ξ1; but π (as a

two-indexed hierarchy) is constructed by recursion up to (Ξ1)2; in general,

this process can be continued as long as we have “fundamental sequences

of length ≤ Ξ1”; the general way of obtaining such fundamental sequences
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is by taking type 2 ptykes, and performing some separation-of-variables

process in them. The hierarchy we are building appears therefore as a Λ

of the next type, presumably closely related to the fucntor which performs

the cut-elimination in (Π1
2 − CA). CHAPTER 12

PTYKES

Originally, ptykes were a generalization of dilators to finite types; how-

ever, many dilator-like objects which are not ptykes of finite type occur

rather natually, and the term “ptyx” now covers this immense area. The

variety of situations is so large that, at this early stage of development of

the theory, there is no evidence that the main lines of the general concept

of ptyx have been drawn... . However, it is possible to focus on specific

types for instance ptykes of type 2, of finite type,... . (see [117] for a refor-

mulation of the theory using indiscernibles.)

12.1. Ptykes of type 2

12.1.1. Definition.

(i) A ptyx of type 2 is a functor from DIL to ON preserving direct

limits and pull-backs.

(ii) If F and G are ptyxes of type 2, I2(F,G) is the set of all natural

transformations from F to G.

(iii) The category PT2 is defined by:

– object: ptyxes of type 2.

– morphisms: I2(F,G).

12.1.2. Example.

The functor:

F ; (ΛF )(0, 0)
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T ; (ΛT )(0, 0)

is a typical ptyx of type 2.

12.1.3. Remark.

I2(F,G) is a set because a natural transformation from F to G is uniquely

determined by its restriction to finite dimensional dilators, which form a

denumerable set... .

12.1.4. Theorem (normal form theorem).

Assume that F , D, x are of respective type 2, 1, 0 (i.e. ptyx of type 2,

type 1 (dilator), type 0 (ordinal)), and that x < F (D); then is is possible

to find a finite dimensional D0, T ∈ I1(D0, D) such that

(i) x ∈ rg
(
F (T )

)
.

Furthermore, assume that rg
(

Tr(T )
)

is minimal for inclusion among all

solutions of (i); then D0, T , and x0 such that x = F (T )(x0) are uniquely

determined.

Proof. Express D as a direct limit: (D,Ti) = lim
−→

(Di, Tij) with all

Di’s finite dimensional; then
(
F (D), F (Ti)

)
= lim
−→

(
F (Di), F (Tij)

)
, hence

∃i ∈ I s.t. x ∈ rg
(
F (Ti)

)
. (i) is therefore satisfied. Moreover, if x ∈

rg
(
F (T ′)

)
∩ rg

(
F (T ′′)

)
, then x ∈ F (T ′ ∧ T ′′), and this shows that, if

rg
(

Tr(T )
)

is minimal s.t. (i) holds, it is also minimum ... from that unicity

follows. 2

12.1.5. Exercise.

Assume that F is a functor from DIL to ON enjoying Theorem 12.1.4;

then show that F is a ptyx of type 2.

12.1.6. Notation.

Assume that x = F (T )(x0), and that rg
(

Tr(T )
)

is minimum with this

property; then we denote this situation by:

x = (x0 ; D0 ; T ; D)F .



362 12. Ptykes

(This notation is analogous to the familiar z = (z0 ; x0, ..., xn−1 ; x)F

of dilators. x0, ..., xn−1 encode an element of I(n, x); the source n of this

morphism is very conspicuous, and we have no need to indicate it more

specifically; in the type 2 case, it is better to record D0... .)

12.1.7. Definition.

The following data define a category SETi:

(i) objects: sets.

(ii) morphisms: injective functions.

12.1.8. Proposition.

(i) If (x, fi) enjoys 8.1.11 (i)–(iii) w.r.t. (xi, fij) in SETi, then

(x, fi) = lim
−→

(xi, fij)↔ x =
⋃
i∈I

rg(fi) .

(ii) If f1, f2, f3 enjoy 8.1.24 (i) in SETi, then

f1 ∧ f2 = f3 ↔ rg(f1) ∩ rg(f2) = rg(f3) .

Proof. Left to the reader. 2

12.1.9. Definition.

We define a functor Tr from PT2 to SETi:

Tr(F ) = {(x0, D0) ; x0 = (x0 ; D0 ; E1
D0

; D0)F}

Tr(T )
(
(x0, D0)

)
= (T (D0)(x0).D0) .

12.1.10. Lemma.

Tr(T ) is an injective function from Tr(F ) to Tr(G), when T ∈ I2(F,G).

Proof. The non trivial part of the lemma is the fact that Tr(T ) maps Tr(F )

into Tr(G): but observe that given U ∈ I1(D,D′), it is possible to find D′′

together with U1, U2 ∈ I1(D′, D′′) such that: U1 ∧ U2 = U1U = U2U .
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(Proof. Let D′′(x) = 2D′(x), D′′(f) = E2D
′(f), and define U1(x)(z) = 2z;

U2(x)(z) = 2z if z ∈ rg
(
T (x)

)
, = 2z + 1 otherwise... . 2)

Consider the diagram

F (U) F (U1)
F (D) F (D′) F (D′′)

F (U2)

T (D) T (D′) T (D′′)

G(U1)
G(D) G(D′) G(D′′)

G(U) G(U2)

and assume that z′ ∈ rg
(
T (D′)

)
∩ rg

(
G(U)

)
; then G(U1)(z′) = G(U2)(z′)

(because U1U = U2U), hence the point z′′ = G(U1)(z′) belongs to rg
(
T (U1)

)
∩rg

(
T (U2)

)
: if z′′ = T (D′′)(z′′1 ), we can write z′′1 = F (U1)(z′1) = F (U2)(z′1),

where z′1 is s.t. z′ = T (D′)(z′1). Now, since F preserves pull-backs, F (U1)∧
F (U2) = F (U1U) = F (U1)F (U): the pint z′′1 belongs to rg

(
F (U1)∧F (U2)

)
,

hence it is of the form F (U1)F (U)(z1): z′1 = F (U)(z1). This establishes the

lemma because, assume that z′1 ∈ F (D′) is such that z′1 6∈ rg
(
F (U ′)

)
for

all U ′ whose target is D′, U ′ 6= ED′ , i.e. (z′1, D
′) ∈ Tr(F ); then z′ ∈ G(D′).

If z′ ∈ rg
(
G(U)

)
, then we know that z′1 = F (U)(z1), hence U = ED′ . So

(z′, D′) ∈ Tr(G). 2

12.1.11. Theorem.

The functor trace has the following properties:

(i) Assume that (a, ti) enjoys 8.1.11 (i)–(iii) w.r.t. (ai, tij); then

(a, ti) = lim
−→

(ai, tij)↔
(

Tr(a),Tr(ti)
)

= lim
−→

(
Tr(ai),Tr(tij)

)
.

(ii) Assume that t1, t2, t3 enjoy 8.1.24 (i), then

t1 ∧ t2 = t3 ↔ Tr(t1) ∧ Tr(t2) = Tr(t3) .

(iii) If X ⊂ Tr(a), there exist unique b and t ∈ I2(b, a) s.t. X = rg
(

Tr(t)
)
.
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Proof. (iii): Assume X ⊂ Tr(a); if D is a dilator, we consider the subsets

XD ⊂ a(D) consisting of those z ∈ a(D) of the form

(z0 ; D0 ; T ; D)a , for some (z0, D0) ∈ X , T ∈ I1(D0, D) .

Then define b(D) = ‖XD‖, and if U ∈ I1(D,D′), b(U) to be the function

making the diagram:

T (D)
b(D) a(D)

b(U) a(U)

b(D′) a(D′)
t(D′)

commutative (with rg
(
t(D)

)
= XD...). One easily checks that b is a func-

tor from DIL to ON, and that t is a natural transformation from b to a.

In order to show that b is a ptyx, it suffices by 12.1.5, to show that b enjoys

a normal form theorem; this is immediate. The unicity of b and t is trivial.

(i): Assume that (a, ti) = lim
−→

(ai, tij), and consider the subset X =

⋃
i∈I

rg
(

Tr(ti)
)

of Tr(a); define b and u ∈ I2(b, a) by rg
(

Tr(u)
)

= X. Now,

if we apply condition (iii) to Yi = Tr(u)−1
(

rg
(

Tr(ti)
))

, we get ui ∈ I(a′i, b)

s.t. rg
(

Tr(ui)
)

= Yi. By unicity, we obtain a′i = ai and uui = ti. Since

(a, ti) = lim
−→

(ai, tij) one can find v ∈ I2(a, b) s.t. vti = ui.

(Proof. Show, using (iii), that ujtij = ui. 2

Hence, uvti = ti for all i. uv must be the identity: Tr(u)Tr(v)(z) = z

for all z ∈ Tr(a). Since u and v are injective, this forces Tr(u) and

Tr(v) to be bijections: but necessarily X = Tr(a) and we have there-

fore shown that
(

Tr(a),Tr(ti)
)

= lim
−→

(
Tr(ai),Tr(tij)

)
. Conversely, as-

sume that
(

Tr(a),Tr(ti)
)

= lim
−→

(
Tr(ai),Tr(tij)

)
; if D is any dilator, then(

a(D), ti(D)
)

= lim
−→

(
ai(D), tij(D)

)
.

(Proof. If z ∈ a(D), write z = (z0 ; D0 ; T ; D)a, and choose i such that
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(z0 ; D0) ∈ rg
(

Tr(ti)
)
; then z ∈ rg

(
ti(D)

)
. 2)

Now observe that:

12.1.12. Lemma.

If
(
a(D), ti(D)

)
= lim

−→

(
ai(D), tij(D)

)
for all D ∈ DIL, then (a, ti) =

lim
−→

(ai, tij).

Proof. If (b, ui) is any family enjoying 8.1.11 (i)–(iii) w.r.t. (ai, tij), then

given any D, D′ and T ∈ I1(D,D′), the family
(
b(D′), ui(T )

)
enjoys 8.1.11

(i)–(iii) w.r.t.
(
ai(D), tij(D)

)
. By 8.1.11 (iv), there is a unique morphism

u(T ) ∈ I
(
a(D), b(D′)

)
such that ui(T ) = u(T )ti(T ) for all i ∈ I. Using the

unicity of u(T ), we easily get: u(T )a(U) = b(T )a(U) when U ∈ I1(D′′, D).

From that
(
u(E1

D)
)
D∈DIL

defines an element of I2(a, b), which is the only

solution of ui = uti (i ∈ I). 2

The lemma concludes the proof of (i).

(ii): Assume that ti ∈ I(ai, b) (i = 1, 2, 3), and that t31 and t32 are such

that: t3 = t1t31 = t2t32; in particular Tr(t3) = Tr(t1)Tr(t31) = Tr(t2)Tr(t32);

hence rg
(

Tr(t3)
)
⊂ rg

(
Tr(t1)

)
∩ rg

(
Tr(t2)

)
= X. We apply (iii) and we

obtain a′3 and t′3 ∈ I2(a′3, b) such that rg
(

Tr(t′3)
)

= X. Now, if we consider

Y1 ⊂ ti(a1): Y1 = Tr(t1)−1(X), by (iii) we obtain t′31 ∈ I2(a′′3, a1) such that

rg
(

Tr(t′31)
)

= Y1; but rg
(

Tr(t1)Tr(t′31)
)

= X, hence a′′3 = a′3 and t1t
′
31 = t′3;

in the same way, we get t′32 ∈ I2(a′3, a2) s.t. t2t
′
32 = t′3.

Now assume that t1 ∧ t2 = t3; by 8.1.24 (ii), one can find u ∈ I2(a′3, a3)

s.t. t′31 = t31u, t′32 = t32u; hence t′3 = t3u; if a′3 6= a3, the injective function

Tr(u) cannot be surjective, if z 6∈ rg
(

Tr(u)
)
, then Tr(t3)(z) 6∈ rg

(
Tr(t′3)

)
=

X, but rg
(

Tr(t3)
)

= X, contradiction. Hence X = Tr(b). We have there-

fore established that Tr(t1) ∧ Tr(t2) = Tr(t3).

Conversely assume that Tr(t1) ∧ Tr(t2) = Tr(t3). If D is a dilator, it is

immediate (using the normal form theorem) that t1(D) ∧ t2(D) = t3(D);

we use now the

12.1.13. Lemma.
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If T1(D) ∧ T2(D) = T3(D) for all D ∈ DIL, then T1 ∧ T2 = T3.

Proof. Easy result, similar to 12.1.12. 2

This concludes the proof of (ii) and establishes the theorem. 2

12.1.14. Corollary.

Assume that (Ai, Tij) is a direct system in PT2, and that (A, Ti) enjoys

8.1.11 (i)–(iii) w.r.t. (Ai, Tij); then the following are equivalent:

(i) (A, Ti) = lim
−→

(Ai, Tij).

(ii)
(
A(D), Ti(D)

)
= lim
−→

(
Ai(D), Tij(D)

)
for all dilators D.

(iii)
(
A(D), Ti(D)

)
= lim
−→

(
Ai(D), Tij(D)

)
for all finite dimensional D ∈

DIL.

(iv)
(
A(D), Ti(Ui)

)
= lim
−→

(
Ai(Di), Tij(Uij)

)
for all direct systems (Di, Uij)

and all D,Ui) in DIL s.t. (D,Ui) = lim
−→

(Di, Uij).

Proof. The implications (iv) → (ii) → (iii) are trivial.

(iii) → (i): If z ∈ Tr(A), write z = (z0, D0); hence z0 ∈ A(D0); hence

for some i ∈ I, z0 ∈ rg
(
Ti(D)

)
, i.e. (z0, D0) ∈ rg

(
Tr(Ti)

)
.

(i) → (iv): If z ∈ A(D), write z = (z0 ; D0 ; U0 ; D)A; choose i such

that:

– (z0 ; D0) ∈ rg
(

Tr(Ti)
)
, i.e. z0 = Ti(D0)(z′0).

– rg
(

Tr(U0)
)
⊂ rg

(
Tr(Ui)

)
; in particular, U0 = UiU

′
0.

Hence z = (z0 ; D0 ; UiU
′
0 ; D)A = A(Ui)

(
(z0 ; D0 ; U ′0 ; Di)

)
A

and (z0 ; D0 ;

U ′0 ; Di)A = Ti(D0)
(
(z′0 ; D0 ; U ′0 ; Di)Ai , and z = Ti(Ui)

(
(z′0 ; D0 ; U ′0 ; Di)Ai .

2
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12.1.15. Remark.

It is of some interest of give explicit conditions ensuring the existence of a

direct limit for (Ai, Tij) in PT2.

(i) The existence of the direct limit of
(
Ai(D), Tij(D)

)
for all dilators

D is a sufficient condition; the limit functor lim
−→

∗ (
Ai(D), Tij(D)

)
=

A(D), lim
−→

(
Ai(U)

)
= A(U) is easily shown to enjoy the normal form

theorem, and then it is the direct limit by the preceding results... .

(ii) In particular, as soon as 8.1.11 (i)–(iii) is satisfied by some (A, Ti),

then the system has a direct limit.

12.1.16. Corollary.

Assume that Ti ∈ I2(Ai, B) (i = 1, 2, 3); then the following are equivalent:

(i) T1 ∧ T2 = T3.

(ii) T1(D) ∧ T2(D) = T3(D) for all dilators D.

(iii) T1(D) ∧ T2(D) = T3(D) for all finite dimensional dilators D.

(iv) T1(U1) ∧ T2(U2) = T3(U3) for all morphisms U1, U2, U3 in DIL such

that U1 ∧ U2 = U3.

Proof. (iv) → (ii) → (iii) is trivial.

(iii)→ (i): If (z0, D0) ∈ rg
(

Tr(T1)
)
∩rg(Tr(T2)

)
, then z0 ∈ rg

(
T1(D0)

)
∩

rg
(
T2(D0)

)
= rg

(
T3(D0)

)
, since D0 is finite dimensional. Hence (z0, D0) ∈

rg
(

Tr(T3)
)
. Conversely, from (z0, D0) ∈ rg

(
Tr(T3)

)
, we get z0 ∈ rg

(
T1(D0)

)
∩

rg
(

Tr(D0)
)
, hence (z0, D0) ∈ rg

(
Tr(T1)

)
∩ rg

(
Tr(T2)

)
.

(i)→ (iv): Assume that z ∈ B(D) (Ui ∈ I1(Di, D)); write z = (z0 ; D0 ;

U ; D)B; then it is immediate that z ∈ rg
(
Ti(Ui)

)
↔ (z0, D0) ∈ rg

(
Tr(Ti)

)
∧

rg
(

Tr(U)
)
⊂ rg

(
Tr(Ui)

)
. From this, we easily obtain, from T1 ∧ T2 = T3,

U1 ∧ U2 = U3, that T1(U1) ∧ T2(U2) = T3(U3). 2
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12.1.17. Remark.

Of course, in PT2, pull-backs are always defined.

12.1.18. Theorem.

Assume that T1 ∈ I2(A,B1), T2 ∈ I2(A,B2); then it is possible to find B,

together with U1 ∈ I2(B1, B), U2 ∈ I2(B2, B) rendering the diagram

B1

T1 U1

A B

T2 U2

B2

commutative. We use the notation:

(T,B) = (T1, B1) + (T2, B2) , with T = U1T1 = U2T2 .

(In fact we have slightly more:

(i) rg
(

Tr(U1)
)
∪ rg

(
Tr(U2)

)
= Tr(B).

(ii) rg
(

Tr(U1)
)
∩ rg

(
Tr(U2)

)
= rg

(
Tr(T )

)
, i.e. U1 ∧ U2 = T . )

Proof, If D is a dilator, we define B(D) as follows: we introduce the

disjoint union X of B1(D) and B2(D): X = {(i, z) ; i = 1 ∧ z < B1(D) ∨
i = 2 ∧ z < B2(D)}. We preorder X as follows: (i, z) ≤1

D (i′, z′) iff

(i = i′ ∧ z ≤ z′) ∨ ∃z0 ∈ A(D) (z ≤ Ti(D)(z0) ∧ Ti′(D)(z0) ≤ z′). The

transitivity of ≤1
D is immediate. The associated equivalence relation ∼D

is defined by: (i, z) ∼D (i′, z′) iff (i = i′ ∧ z = z′) ∨ ∃z0 ∈ A(D)
(
z =

Ti(D)(z0) ∧ z′ = Ti′(D)(z0)
)
. A first trivial remark is that ≤1

D / ∼D is a

well-founded order relation, but not a linear order in general... .

Now we consider the preorder ≤2
D, defined by: (i, z) ≤2

D (i′, z′) ↔
∃D′ ∃t′ ∈ I1(D,D′)

(
i, Bi(t

′)(z)
)
≤1
D′

(
i′, Bi′(t

′)(z′)
)
.

Observe that ≤2
D is transitive: iff (i′, Bi′(t

′′)(z′)
)
≤1
D′′

(
i′′, Bi′′(t

′′)(z′′)
)
,

choose D′′′, together with u′ ∈ I1(D′, D′′′), u′′ ∈ I1(D′′, D′′′) s.t. u′t′ =

u′′t′′ = t (8.G.13). Then
(
i, Bi(t)(z)

)
≤1
D′′′

(
i′, Bi′(t)(z

′)
)
≤1
D′′′

(
i′′, Bi′′(t)

(z′′)
)

hence (i, z) ≤2
D (i′′, z′′). ≤2

D has another interesting property, namely
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(i, z) ≤2
D (i′, z′) ↔

(
i, Bi(t)(z)

)
≤2
D′

(
i′, Bi′(t)(z

′)
)

for all D′ and t ∈
I1(D.D′); it is precisely in order to get this property that we replace ≤1

D by

≤2
D ... . Finally, observe that ≤2

D is a preorder with associated equivalence

∼D, and that ≤2
D / ∼D is well-founded (trivial).

We define linear preorders ≤3
D and ≤4

D as follows:

(i, z) ≤3
D (i′, z′)↔ (i.z) ≤1

D (i′, z′) ∨
(
(i′, z′) 6≤1

D (i, z) ∧ i < i′
)

(i, z) ≤4
D (i′, z′)↔ (i.z) ≤2

D (i′, z′) ∨
(
(i′, z′) 6≤2

D (i, z) ∧ i < i′
)
.

12.1.19. Lemma.

(i) ≤3
D / ∼D is a well-order.

(ii) ≤4
D / ∼D is a well-order.

Proof. (i): If we show that ≤3
D is transitive, then it will be a linear preorder

extending ≤1
D, and ≤3

D / ∼D will be a well-order. Assume therefore that

(i, z) ≤3
D (i′, z′) ≤3

D (i′′, z′′):

1. If (i, z) ≤1
D (i′, z′) ≤1

D (i′′, z′′), then (i, z) ≤1
D (i′′, z′′).

2. If (i, z) ≤1
D (i′, z′), (i′′, z′′) 6≤1

D (i′, z′) and i′ < i′′: (i′′, z′′) ≤1
D (i′, z′)

is impossible, so the result is immediate when i = i′; if i 6= i′, choose z0

s.t. z ≤ Ti(D)(z0), Ti′(D)(z0) ≤ z′; necessarily Ti′′(D)(z0) ≤ z′′, since

(i′′, z′′) 6≤1
D (i′, z′); but then (i, z) ≤1

D (i′′, z′′).

3. If (i′, z′) 6≤1
D (i, z), i < i′, and (i′, z′) ≤1

D (i′′, z′′): symmetric to 2.

4. (i′′, z′′)1 6≤1
D (i′, z′) 6≤1

D (i, z) and i < i′ < i′′ impossible.

(However, let us make the proof when i varies over a linear order: assume

that (i′′, z′′) ≤1
D (i, z): if z′′ ≤ Ti′′(D)(z0), Ti(D)(z0) ≤ z, then since z′ is

comparable with Ti′(D)(z0), we obtain

z′ ≤ Ti(D)(z0) → (i′, z′) ≤1
D (i, z) impossible

Ti(D)(z0) ≤ z′ → (i′′, z′′) ≤1
D (i′, z′) impossible . )
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(ii): Assume that (i, z) ≤4
D (i′, z′) ≤4

D (i′′, z′′); and choose (t1, D1),

(t2, D2), (t3, D3) such that
(
i, Bi(t1)(z)

)
≤3
D1

(
i′, Bi′(t1)(z′)

)
,
(
i′, Bi′(t2)(z′)

)
≤3
D2

(
i′′, Bi′′(t2)(z′′)

)
and (i, z) ≤4

D (i′′, z′′)↔
(
i, Bi(t3)(z)

)
≤3
D3

(
i′′, Bi′′(t3)

(z′′)
)
. Define D′ and t′1, t′2, t′3 s.t. t′1t1 = t′2t2 = t′3t3 = t = constant. Then(

i, Bi(t)(z)
)
≤3
D′

(
i′, Bi′(t)(z

′)
)
≤3
D′ (i′′, Bi′′(t)(z

′′)
)
, and by case (i) above,(

i, Bi(t)(z)
)
≤3
D′

(
i′′, Bi′′(t)(z

′′)
)
. Now the choice of D′ (“after D3”) is

such that one can infer that (i, z) ≤4
D (i′′, z′′). 2

We define B(D) =≤4
D / ∼D, if t ∈ I1(D,D′), we define B(t) as follows:

B(t)
(
(i, z)

)
=
(
i, Bi(t)(z)

)
.

This defines a strictly increasing function since

(i, z) ≤4
D (i′, z′)↔

(
i, Bi(t)(z)

)
≤4
D′

(
i′, Bi′(t)(z

′)
)
,

which is a consequence of the similar property of ≤2
D ... .

B is a ptyx: it is a functor from DIL to OW (∼ ON), which obviously

enjoys the normal form theorem... .

Finally the conditions (i) and (ii) on traces are trivially checked... . 2

12.1.20. Exercise.

Extend the result 12.1.18 t a family Ti ∈ I2(A,Bi), i < α, where α ∈ 0n.

(Hint. The non trivial part is the well-foundedness of the orders ≤1
D, ≤2

D,

≤3
D, ≤4

D. The most delicate case is well-foundedness of ≤2
D: if (in, zn) is

a s.d.s. in ≤2
D, take (tn, Dn) s.t.

(
in+1, Bin+1(tn)(zn+1)

)
≤1
Dn

(
in, Bin(tn)

(zn+1)
)
; then apply the analogue of 12.1.20 for dilators... .)

12.1.21. Example.

A typical example of 12.1.8 is when A is the ptyx 0: 0(D) = 0, O(t) = E0.

Then a pair (T,B) with T ∈ I2(0, B) can be identified with B, since T is

uniquely determined by rg
(

Tr(T )
)

= ∅. Then we use the notation B1 +B2,

in such a situation, to denote in fact (T1, B1) + (T2, B2)... .

One would easily show that B1 + B2 is exactly the composition of B1,

B2 with the functor sum: (B1 +B2)(D) = B1(D) +B2(D); (B1 +B2)(t) =

B1(t) +B2(t).
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By the way, let us introduce the notation: E2
BB′ , when B′ is of the

form B + B′′: E2
BB′(D) = EB(D)B′(D) · E2

BB′ ∈ I2(B,B′). As usual we

shall denote by E2
B = E2

BB the identity of B. Finally, if T1 ∈ I2(A1, B1),

T2 ∈ I2(A2, B2), T1 + T2 ∈ I2(A1 + A2, B1 + B2) can be defined by

(T1 + T2)(D) = T1(D) + T2(D)... .

12.1.22. Definition.

If D, D′ are dilators, then I1(D,D′) is ordered by: T ≤ T ′ ↔ ∀x T (x) ≤
T ′(x) (i.e. ∀x ∀z < D(x) T (x)(z) ≤ T ′(x)(z)).

12.1.23. Theorem.

Assume that T, U ∈ I1(D,D′); then T ≤ U iff ∃D′′ ∈ DIL ∃V ∈
I1(D′, D′′)

∃W ∈ I1(D′′, D′′): V U = WV T .

Proof. The condition is obviously sufficient, for if V U = WV T , then

(V U)(x)

(z) = (WV T )(x)(z), i.e. V (x)U(x)(z) = W (x)V (x)T (x)(z), and since

W (x)(z′) ≥ z′ for all z′, we get: V (x)U(x)(z) ≥ V (x)T (x)(z), hence

U(x)(z) ≥ T (x)(z). The converse is not easy; we follow [5], Chapter 4.

Let x be an ordinal; we consider the set D′(x) × IN , with the following

preorder ≤1
x: (a, n) ≤1

x (b,m)↔ ∃(a0, n0), ..., (ap−1, np−1) s.t. ∀i < p− 1:

1. either ni = ni+1 and ai < ai+1

2. or ni = ni+1 + 1 and for some z, ai+1 = U(x)(z), ai = T (x)(z).

3. or ni+1 = ni + 1 and for some z, ai = U(x)(z), ai+1 = T (x)(z).

One checks without difficulty that

– if n = m then only step 1 is needed (once!).

– if n ≥ m then only steps 1 and 3 are needed.

– if n ≤ m then only steps 1 and 3 are needed.

And that the associated equivalence ∼x corresponds to the identification

of (U(x)(z), n) with (T (x)(z), n+ 1).
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≤1
x / ∼x is well-founded.

(Proof. ≤1
x has the following essential property: if (a, n) ≤1

x (b,m), if

(b,m) 6≤1
x (a, n), if n ≥ m, then a < b. This is the only point were T ≤ U

is used!

Then given a s.d.s. (ap, np) in ≤1
x,

– either the values np are unbounded, and we can assume as well that

np+1 > np for all p; then by the remark just made, (ap) is a s.d.s. in

D′(x).

– or the values np are bounded, and we can assume as well that np =

constant; then (a, p) is still a s.d.s. in D′(x). 2

We introduce now a new preorder ≤2
x on the same set:

(a, n) ≤2
x (b,m)↔ ∃y ∃f ∈ I(x, y) (D′(f)(a), n) ≤1

y (D′(f)(b),m) .

This order is shown to be transitive, by using the methods of 12.1.18 (for

the order ≤2
x of this proof); this uses the analogue of 12.1.18 for ordinals,

which is trivial. Observe that ≤2
x is a preorder with associated equivalence

∼x, and that ≤2
x / ∼x is well-founded.

(Proof. As for ≤1
x / ∼x . 2)

We introduce ≤3
x and ≤4

x by:

(a, n) ≤3
x (b,m)↔ (a, n) ≤1

x (b,m) ∨
(
(b,m) 6≤1

x (a, n) ∧ n < m)

(a, n) ≤4
x (b,m)↔ (a, n) ≤2

x (b,m) ∨
(
(b,m) 6≤2

x (a, n) ∧ n < m) .

12.1.24. Lemma.

(i) ≤3
x / ∼x is a well-order.

(ii) ≤4
x / ∼x is a well-order.

Proof. (i): We check transitivity:

1. (a, n) ≤1
x (b,m) ≤1

x (c, p) trivial: (a, n) ≤1
x (c, p).
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2. (a, n) ≤1
x (b,m), (c, p) 6≤1

x (b,m), m < p; then (c, p) 6≤1
x (a, n), and

either n < p and we are done, or n ≥ pl in that case m < n, hence

∃(d, p) s.t. (a, n) ≤1
x (d, p) ≤1

x (b,m); necessarily c > d (otherwise

(c, p) ≤1
x (b,m)). Hence (a, n) ≤1

x (d, p).

3. (b,m) ≤1
x (c, p), (b,m) 6≤1

x (a, n), n < m: symmetric to 2.

4. (c, p) 6≤1
x (b,m) 6≤1

x (a, n) and n < m < p; we show that (c, p) 6≤1
x (a, n):

otherwise, there would be a (d,m) s.t. (c, p) ≤1
x (d,m) ≤1

x (a, n), and:

d ≤ b→ (c, p) ≤1
x (b,m) absurd

b ≤ d→ (b,m) ≤1
x (a, n) absurd .

≤3
x / ∼ −x is a linear order; in order to check its well-foundedness,

consider a s.d.s. (ap, np) and partition {(p, q) ; p < q} into X0 and X1:

(p.q) ∈ X0 ↔ (aq, nq) ≤1
x (ap, np) .

By Ramsey’s theorem for pairs, we get an infinite homogeneous subset

Y : if for all p, q ∈ Y , p < q, then (p, q) ∈ X0, we contradict the well-

foundedness of ≤1
x / ∼ −x; if for all p, q ∈ Y , p < q, then (p, q) ∈ X1, we

obtain a s.d.s. of integers... .

(ii): The transitivity of ≤4
x is derived from the transitivity of ≤3

x exactly

as in 12.1.19 (ii). The well-foundedness of ≤4
x is exactly proved as in (i).2

The construction is such that

(a, n) ≤4
x (b,m)↔ (D′(f)(a), n) ≤4

y (D′(f)(b),m)

see 12.1.18 for a justification in a close context...). Hence define D′′(x) =≤4
x

/ ∼x, and D′′(f)
(
(a, n)

)
= (D′(f)(a), n). It is immediate that D′′ is a

dilator. Finally define

V (x)(a) = (a, 0)

W (x)
(
(a, n)

)
= (a, n+ 1) .
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Then V (x)U(x)(z) = (U(x)(z), 0) = (T (x)(z), 1) whereasW (x)V (x)T (x)

(z) = W (x) (T (x)(z), 0) = (T (x), (z), 1). Hence V U = WV T . 2

12.1.25. Theorem.

If A is a ptyx of type 2, then A preserves the ordering of morphisms:

T ≤ U → A(T ) ≤ a(U).

Proof. Trivial consequence of 12.1.23. 2

12.1.26. Exercise.

(i) Define an ordering between morphisms in I2(A,B); show that if

T, U ∈ I2(A,B), t, u ∈ I1(A, b), T ≤ U , t ≤ u, then T (t) ≤ U(u).

(ii) Prove the analogue of 12.1.23 for the category PT2.

(The proof 12.1.23 can be extended without any problem.)

12.1.27. Comment.

The importance of 12.1.25 lies in technical applications to the character-

ization of finite dimensional ptykes of type 2. However, there is another

interest, located in the normal form theorem. It is possible to rewrite the

normal form theorem (of type 2) as follows:

z = (C ; x0, ..., xn−1 ; D)A instead of z = (z0 ; D0 ; T ; D)A .

This means that: C = (z0 ; D0), and that the ordinals x0, ..., xn−1 are

defined as follows: let i0, ..., in−1 be the enumeration of Tr(D0) in increasing

order modulo ≤D0 (8.4.22); then Tr(T )(i0) = (x0, p0), ...,Tr(T )(in−1) =

(xn−1, pn−1), for some integers p0, ..., pn−1. These integers are not really

part of the dats, since i0 = (y0, p0), ..., in−1 = (yn−1, 0n−1) for appropriate

y0, ..., yn−1.

We have therefore obtained a denotation which is close to the familiar

dilatoral denotations... . There are, however, important differences, essen-

tially:

(i) x0, ..., xn−1 are not necessarily a strictly increasing sequence of ordi-

nals.
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(ii) The condition for (C ; x0, ..., xn−1 ; D)A to be a denotation is compli-

cated.

However, a natural question is “are denotations increasing in their coef-

ficients?” In other terms if (C ; x0, ..., xn−1 ; D)A and (C ; x′0, ..., x
′
n−1 ; D)A

are denotations, and x0 ≤ x′0, ..., xn−1 ≤ x′n−1, then do we have: (C ; x0, ...,

xn−1 ; D)A ≤ (C ; x′0, ..., x
′
n−1 ; D)A ? The answer is positive, since, if x0, ...,

xn−1 encode T , x′0, ..., x
′
n−1 encode T ′, then T ≤ T ′ ↔ x0 ≤ x′0∧ ...∧xn−1 ≤

x′n−1.

12.1.28. Definition.

A ptyx A of type 2 is finite dimensional iff dim(A) = card
(

Tr(A)
)

is

finite; dim(A) is the dimension of A. PT2
fd denotes the category of finite

dimensional ptyxes of type 2, a full subcategory of PT2.

12.1.29. Theorem.

Every ptyx of type 2 is a direct limit of finite dimensional ptykes of type

2.

Proof. Let I = {i ; i ⊂ Tr(A), i finite}. If i ∈ I, define Ai and Ti ∈
I2(Ai, A) by rg

(
Tr(Ti)

)
= i. Ai is finite dimensional, of dimension card(i).

Consider, if i ⊂ j, the set Y = Tr(Tj)
−1(i) ⊂ Tr(Aj). Define A′i and

Tij ∈ I1(A′i, Aj) by rg
(

Tr(Tij)
)

= Y ; then by a unicity argument, A′i = Ai,

TjTij = Ti. (Ai, Tij) is easily shown to be a direct system, moreover,

Tr(A) =
⋃
i∈I

rg
(

Tr(Ti)
)
, hence A = lim

−→

∗
(Ai, Tij). 2

12.1.30. Definition.

A preptyx of type 2 is a functor A from PIL to OL enjoying the following

properties:

(i) A preserves direct limits.

(ii) A preserves pull-backs.

(iii) A preserves the ordering of morphisms: t ≤ u→ A(t) ≤ A(u).

The category of preptyxes of type 2 is denoted by pPT2.
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12.1.31. Theorem.

Preptykes of type 2 are exactly the direct limits of ptykes of type 2 (or

finite dimensional ptykes...).

Proof. The theorem rests upon a non trivial property, namely
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12.1.32. Theorem.

If A is a finite dimensional preptyx, then A is (isomorphic to) a ptyx.

Proof. Assume that D is a dilator, and that (zn)n∈IN is a s.d.s. in A(D);

we use the normal forms as in 12.1.27: zn = (Cn ; xn0 , ..., x
n
pn−1 ; D)A. Now,

Cn varies through a finite set, hence, one can assume that Cn is constant:

Cn = C, so pn = p. We define a partition of {(n,m) ; n < m} as follows:

(n,m) ∈ Xi if xmi < xni and xmj ≥ xnj ∀j < i < p. This is a partition, be-

cause xmi ≥ xni for all i < p implies by property (iii) of preptykes zm ≥ zn.

Now, by Ramsey’s theorem, there is an infinite homogeneous subset, and

we obtain xmi0 < xni0 for all m,n ∈ Y , m < n; but the points xmi0 are ordinals

(they belong to some D(n)!). 2

12.1.31 easily follows now at once: if we express A as a direct limit of

finite dimensional preptykes, they can be replaced by finite dimensional

ptykes. Conversely, 12.1.25 shows that ptykes are preptykes; moreover,

preptykes are trivially closed under direct limits... . 2

Our next goal is to find a characterization of finite dimensional ptykes.

By 12.1.32, it suffices to look for finite dimensional preptykes, i.e. we have

reduced the problem to a purely algebraic question.

We shall try to answer the question in the following way: given a func-

tor A from a finite subcategory C of DILfd to ON < ω (such a functor

can obviously be encoded by an integer, since it consists of finitely many

finitistic data), one can ask the questions:

(i) Is A the restriction of a finite dimensional ptyx of type 2?

(ii) Is the extension of A into a f.d. ptyx unique?

We shall answer condition (i) by giving explicit conditions on C and A;

these conditions will be decidable; moreover, if C is generated in a certain

finitary way from the finite set Tr(A), (ii) will be fulfilled.

This kind of answer is sufficient for the usual purposes; in particular,

this is easily extended to ptykes of finite type... . However, we are far from

the characterizations obtained for finite dimensional dilators. It is highly
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improbable that a very simple construction of these f.d. ptykes using per-

mutations ... or something close to it, can be found... . But it may be

worthwhile to try.

12.1.33. Proposition.

If A and D are finite dimensional, then A(D) is finite.

Proof. If n < A(D), then the number of possible choices for n = (z0 ; D0 ; T0 ;

D)A is bounded by N · M , where N is the number of choices for (z0 ; D0),

M is the number of morphisms with target D, i.e. dim(A) · 2dim(D). 2

12.1.34. Theorem.

Assume that X is a finite set of finite dimensional dilators; define an-

other finite set X ′ by (see Exercixe 8.G.14): D ∈ X ′ ↔ ∃D1, D2, D3 ∈
X ∃T1, T2, T3, Ti ∈ I1(Di, X) (i = 1, 2, 3) s.t. Tr(D) = rg

(
Tr(T1)

)
∪

rg
(

Tr(T2)
)
∪ rg

(
Tr(T3)

)
.

D1

T1

T2
D2 D

T1

D3

Finally define X ′′ by: D ∈ X ′′ ↔ ∃D′ ∈ X ′ I1(D,D′) 6= ∅. We intro-

duce the category CX′′ by:

objects: elements of X ′′.

morphisms: I1(D,D′).

Now, assume that A is a functor from CX′′ to ON, with the following

properties:

(i) If D ∈ X ′′ and a ∈ A(D), one can express a = A(T )(z0) for

some D0 ∈ X, T ∈ I1(D0, D), z0 ∈ A(D0); furthermore the condi-

tion “rg
(

Tr(T )
)

minimal” renders T uniquely determined. (In other

terms, a = (z0 ; D0 ; T ; D)A, with D0 ∈ X.
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(ii) A(D) is finite for all d ∈ X.

(iii) If D,D′ ∈ X ′′, if T, U ∈ I1(D,D′), then

T ≤ U → A(T ) ≤ A(U) .

Then there exists one and only one ptyx F of type 2 such that:

1. F |̀ CX′′ = A.

2. Tr(F ) ⊂ 0n× x.

Proof. Assume that D is a dilator; we define F (D) to consist of all formal

denotations

(z0 ; D0 ; T ; D)F , with (z0 ; D0) ∈ Tr(A) .

In order to compare (z0 ; D0 ; T ; D) with (z1 ; D1 ; T ′ ; D), we proceed

as follows: consider rg
(

Tr(T )
)
∪ rg

(
Tr(T ′)

)
= Y ; then define D′ and

U ∈ I1(D′, D) s.t. rg
(

Tr(U)
)

= Y , then T1 and T ′1 s.t. T = UT1, T ′ = UT ′1:

D0 T

T1

D′ D
U

T ′1

D1
T ′1 T ′

hence rg
(

Tr(T ′1)
)
∪ rg

(
Tr(T ′2)

)
= Tr(D′) so D′ ∈ X ′ ⊂ X ′′. By def-

inition: (z0 ; D0 ; T ; D)F ≤ (z1 ; D1 ; T ′ ; D)F iff (z0 ; D0 ; T1 ; D)A ≤
(z1 ; D1 ; T ′1 ;

D)A. Finally, we define, when t ∈ I1(D,D′), F (t) ∈ I
(
F (D), F (D′)

)
by:

F (t)(z0 ; D0 ; T ; D)F = (z0 ; D0 ; tT ; D′)F .

This is obviously the only way if defining F , if we want F to enjoy 1 and

2; from that, we get unicity. But is this a ptyx? Preservation of direct limits

and pull-backs is immediate from the normal forms, the functions F (t)

preserve the order... . But we do not even know that ≤ defined on F (D)
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is an order relation. We must check reflexivity, antisymmetry, transitivity

and linearity; these four properties are all handled in the same way, and

let us verify transitivity: assume that

(z0 ; D0 ; T ; D)F ≤ (z1 ; D1 ; T ′ ; D)F ≤ (z2 ; D2 ; T ′′ ; D)F

then choose D′, together with U , T1, T ′1, T ′′1 , s.t.

D0

T1 T

T ′1 T ′
D′ D1 D

T ′′1 T ′′

D2
U

is commutative, and Tr(D′) = rg
(

Tr(T1)
)
∪ rg

(
Tr(T2)

)
∪ rg

(
Tr(T3)

)
; then

D′ ∈ X ′ ⊂ X ′′, hence we have:

(z0 ; D0 ; T1 ; D′)A ≤ (z1 ; D1 ; T ′1 ; D′)A ≤ (z2 ; D2 ; T ′′1 ; D′)A ,

and since A(D′) is linearly ordered:

(z0 ; D0 ; T1 ; D′)A ≤ (z2 ; D2 ; T ′′1 ; D′)A ,

from which we conclude that

(z0 ; D0 ; T ; D′)F ≤ (z2 ; D2 ; T ′′ ; D)F .

Finally F is a finite dimensional preptyx, since Tr(F ) ⊂ N ×X, with

N = sup {A(D) ; D ∈ X}, and F enjoys (iii). By 12.1.32, F is (isomorphic

to) a ptyx. 2

12.1.35. Remarks.

(i) 12.1.34 extends to natural transformations: assume that A and A′

enjoy the conditions of 12.1.34 w.r.t. X, and that T is a natural

transformation from A to A′, then T can be uniquely extended into

a natural transformation T ′ from F to F ′, by:

T ′(D)
(
(z0 ; D0 ; t ; D)F

)
= (T (D0)(Z0) ; D0 ; t ; D)F ′ .
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(ii) The question of the characterization of finite dimensional ptykes of

type 2 by means of a finite amount of information, is perfectly solved

by 12.1.34; moreover, if one encodes these finitary data by integers,

then the predicate P (n) which says “n encodes a finite dimensional

ptyx of type 2”, is prim. rec.

12.1.36. Exercise.

(i) Show that 12.1.33 can be improved into: assume that A is a preptyx,

that Tr(A) ⊂ 0n × X for a certain finite X ⊂ DILfd, then A is a

ptyx.

(ii) Conclude that 12.1.34 holds when condition (ii) is removed. (Of

course the dilator F constructed is no longer finite dimensional.)

12.1.37. Discussion.

We now discuss the following concepts:

– recursive ptykes of type 2.

– weakly finite ptykes of type 2.

(i) As soon as the ptyx A sends finite dimensional dilators on recursive

ordinals, it can be expressed as a denumerable direct limit:

A = lim
−→

IN

∗
(An, Tnm)

with all An finite dimensional. We shall therefore say that A is

recursive when we can find such a direct system (An, Tnm), and

when this system can be encoded by a recursive function. This is

the widest acceptation of “recursive”; one easily sees that, in this

acceptation, there is no distinction between recursive and prim. rec.

ptykes!

A more restrictive notion of recursiveness is when A maps finite

dimensional dilators on integers; then A is completely determined

from its restriction A′:
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A′ : DILfd → ON < ω

and A′ itself can be uniquely encoded (given specific encodings of

the objects and morphisms of DILfd and ON < ω by integers) by a

function f from IN to IN . Of course we can now say that

A is recursive iff f is recursive.

A is prim. rec. iff f is prim. rec.

This concept is far more natural than the more general one first

introduced; when we shall need a concept of recursive ptyx of type

2, we shall therefore use the second version... .

(ii) This choice seems to indicate that we shall define weakly finite ptykes

of type 2 as being those A sending DILfd into ON < ω. In fact this

notion does not suit very well the practice; we prefer the following

definition:

A is weakly finite iff A sends weakly finite dilators on integers.

It is easy to produce ptykes sending finite dimensional dilators on

integers, but which are not weakly finite. (Example: Consider the

functor A(D) = a0 +a1 + ...+an+ ..., with an = the order type of the

{z ∈ D(n) ; (z ; n) ∈ Tr(D)}, together with A(T ) defined to make it

a functor. Then A is a ptyx sending finite dimensional dilators on

integers, but A(D) is infinite when D is infinite dimensional.)

In practice we shall therefore mainly be concerned with recursive

weakly finite ptykes.

(iii) However, I do not want to hide the fact that these definitions are

not necessarily the best ones; they are good in a lot of cases, but

there is still room for discussion. A typical example of the limitation

of our choice of concept is that the functor A(D) = (ΛD)(0, 0) is

recursive, but not weakly finite. This kind of inadequacy between

concepts and practice is very limited but real, and seems to indicate

the possibility of further improvements of the notions. For my part,

I would surmise that the systematic reformulation of the theory of
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ptykes by means of ideas similar to the regularity of Boquin (Exercise

9.B.8), will wipe out all these small inconsistencies... .

The “algebraic part” of the theory of ptykes of type 2 has just been de-

vloped; let us now have a look at the non algebraic part, i.e. the question

of the definition of a predecessor relation between ptyxes, which makes

them some kind of well-founded classes. We shall leave to the reader the

straightforward definitions of the sums
∑
i<x

Ai,
∑
i<f

Ti, and of connectedness.

12.1.38. Theorem.

(i) If A is a ptyx of type 2, then A can be uniquely written as
∑
i<x

Ai,

where the Ai’s are connected ptykes. The ordinal x is the length of

A: x = LH(A).

(ii) If B is another ptyx of type 2, and its decomposition is
∑
j<y

Bj, then

T ∈ I2(A,B) can be uniquely written as
∑
i<f

Ti. The function f is the

length of T , and is denoted by LH(T ).

Proof. This is not at all different from the well-known property of dilators;

this is therefore offered as an exercise to the reader! 2

12.1.39. Definition.

(i) The ptyx A is of kind

0 if LH(A) = 0.

ω if LH(A) is limit.

1 if LH(A) = x′ + 1, and Ax′ = 1

(the constant ptyx 1(D) = 1, 1(T ) = E1.

Ω if LH(A) = x′ + 1, and Ax′ 6= 1.

(ii) The morphisms T ∈ I2(A,B) is said to be deficient when T =

T ′ + E2
0B′ , B

′ 6= 0; when T is not deficient, then A and B are of the

same kind: this common kind is by definition the kind of T .
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12.1.40. Theorem.

If D is a dilator, let us denote by D + Id1 the functor from DIL to DIL

defined by:

(D + Id1)(F ) = D + F , (D + Id1)(T ) = E1
D + T .

Similarly, if T ∈ I1(D,D′), let us denote by T + Id1 the natural trans-

formation frin D + Id1 to D′ + Id1, defined by:

(T + Id1)(U) = T + U .

(i) If A is a ptyx of type 2, and D is a dilator, then the ptykes A and

A ◦ (D + Id1) are of the same kind.

(ii) If T ∈ I2(A,B) and U ∈ I1(D,D′), then the morphisms T and T ◦
(U + Id1) are of the same kind.

Proof. Something implicit in the theorem is that A ◦ (D + Id1) is a ptyx:

this follows from the fact that D+Id1 preserves direct limits and pull-backs.

(i) – If A is of kind 0, then A ◦ (D + Id1) = 0 is of kind 0.

– If A is of kind ω, write A =
∑
i<x

Ai, with Ai 6= 0 for all i, and x

limit; then A ◦ (D + Id1) =
∑
i<x

Ai ◦ (D + Id1) is of kind ω as well.

– IfA is of kind 1, thenA = A′+1, andA ◦ (D+Id1) = A′ ◦ (D+Id1)+1

is of kind 1.

– If A is of kind Ω, write A = A′ + A′′, with A′′ connected, A′′ 6= 1;

let B = A ◦ (D + Id1); observe that:

+ B cannot be of kind 0 (since B 6= 0 !).

+ B cannot be of kind 1: otherwise, one would have: A′′ ◦ (D +

Id1) = B′′ + 1, and this means that one can find (z0, D0) ∈ Tr(A′′),

T0 ∈ I1(D0, D), such that xD′ = (z0 ; D0 ; T0 + E1
0D′ ; D + D′)A′′

is the topmost element of A′′(D + D′), for all D′. But the point

x = (z0 ; D0 ; E1
0D + T0 ; D + D)A′′ is ≥ xD because of 12.1.25;

also D0 is 6= 0, since A′′ is connected and 6= 1, hence xD < x,

contradiction.
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+ B cannot be of kind ω: we establish first the

12.1.41. Lemma.

If A′′ is connected, then

(z0 ; D0 ; T + E1
0D′ ; D +D′)A′′ ≤ (z1 ; D1 ; E1

0D + U ; D +D′)A′′ .

Proof. Assume that the conclusion if false; then one easily sees (using

12.1.25) that: (z0 ; D0 ; T ′ ; D′)A′′ > (z1 ; D1 ; T ′′ ; D1)A′′ for all D′ and T ′,

T ′′. This fact can be used to decompose A′′ into a sum A1 + A2... . 2

Using the lemma, assuming that A′′0(D1
Id) = B′′ is of kind ω, we obtain:

write B′′ =
∑
i<x

B′′i , with x limit and B′′i 6= 0. for all i, and choose D′

such that B′′i (D′) 6= 0 for all i. (For instance D′ = a sum of all the finite

dimensional dilators.) Choose a cofinal sequence (zi)i<x in B′′(D′), with∑
j<i

B′′j (D′) < zi for all i < x. Then if T ∈ I1(D′, D′′) and z < B′′(D′′), one

can find i < x such that z < B′′(T )(zi). But consider D′′ = D′ + D + D′,

T = E1
D′D′′ , and z the point A′′(E1

0D+D′ + E1
D+D′)(z0). The lemma yields

z > B′′(T )(zi), contradiction.

+ by elimination B must be of kind Ω.

(ii) Amounts to showing that T is deficient if T ◦ (U + Id1) is deficient;

but:

– If T = T ′ + E2
0B′ , B

′ 6= 0, then

T ◦ (U + Id1) = T ′ ◦ (U + Id1) + E2
0B′ ◦ (D′+Id1)

and B′ ◦ (D′ + Id1) is 6= 0... .

– Assume conversely that T ◦ (U + Id1) = T ′+ E2
0B′ , B

′ 6= 0; then we

successively check that T cannot be of kind 0, 1, ω or Ω: T must

be deficient... . 2

12.1.42. Outline of the construction.

Since this chapter can only be read by people who have a good understand-

ing of the concept of Chapter 9, it is not necessary to carry the construction

in full details... .
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(i) Separation of variables is obtained as follows: if A is connected and

of kind Ω, one can consider the functor B0 from DIL2 to ON defined

by:

The functors UN2 and bfSEP 2 are easily shown to be reciprocal.

Observe that the construction is the obvious generalization of 9.3.18

and 9.3.22 to ptykes of type 2.

(iii) The predecessors are defined as follows:

– A is a predecessor of A+ A′ when A′ 6= 0.

– If A is a predecessor of A′ and A′ is a predecessor of A′′, then A is

a predecessor of A′′.

– If A is of kind Ω and D is a dilator, then SEP2(A)(·, D) is a

predecessor of A.

Since dilators are not linearly ordered, the set of predecessors of

a given dilator is not linearily ordered; but the order is still a well-

founded class, hence it is possible to prove a principle of induction

on ptykes of type 2.

(iv) A typical application of induction on ptykes of type 2 would be to

define an analogue of Λ in this new context. The choice of the

precise variant of this construction is a delicate problem; but the

general pattern of the definition of Λ can obviously be transferred to

ptykes of type 2... .

12.1.43. Exercise.

(i) Assume that A is a 1-dimensional ptyx of type 2, and that Tr(A) =

{(0, D)}, and let n = LH(D). Assume that D = D0 + ...+Dn−1 (Di

connected), let D′ = D0 + D0 + D1 + D1 + ... + Dn−1 + Dn−1, and

define, for i < n, Ti ∈ I1(D,D′) by:

Ti = E1
D0

+ bfE2
0D0

+ ...+ E1
Di−1

+ E1
0Di−1

+ E1
0Di

+ E1
Di

+ ...

+ E1
Dn−1

+ ...+ E1
0Dn−1
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and consider zi = (0 ; D ; Ti ; D
′), and define σ by: σ(i) < σ(j) ↔

zi > zj. Show that the knowledge of σ enables us to compare any two

points (0 ; D ; T ; D1)A and (0 ; D ; T ′ ; D1)A, when T and T ′ are of

the form
∑
i<f

Ti,
∑
i<g

T ′i , and s.t. for all i < n:

– either f(i) = g(i) and Ti = T ′i .

– or f(i) ∈ rg(g), f(j) 6= g(i) for all j < n.

(ii) Assume that A is a connected pttx of type 2, A 6= 1; if (z ; D) ∈
Tr(A), define a permutation σz,D of LH(D). Prove the following

property: Consider two points w =
(
z ; D ;

∑
i<f

Ti ; D
′
)
A

and w′ =(
z′ ; D′ ;

∑
i<f ′

T ′i ; D′i
)
A

, let m = σz,D(0), m′ = σz′,D′(0) and assume

that f(m) < f ′(m′): show that w < w′.

(iii) Assume that A is as in (ii); if D and D′ are dilators, consider

A(D,D′) ⊂ S(D′ + D): (z ; D0 ; T0 ; D′ + D)A ∈ A(D,D′) iff T0

can be written T0 = T ′ + T , T ∈ I1(D′0, D), T ′ ∈ I1(D′′0 , D
′) and

LH(D′0) = σz,D0(0)+!. Using the sets A(D,D′) define a biptyx A′ of

type 2.

(iv) Prove that A′ = SEP2(A); from this deduce a way of constructing

SEP2 from the algebraic structure of the denotations... .

12.1.44. Exercise.

(i) Let A be a connected biptyx of type 2; if D is a dilator, con-

sider A(D) ⊂ A(D,D): (z0 ; D′0 ; D′′0 ; T ′ ; T ′′ ; D ; D)A ∈ A(D) ↔
∃D′ ∃D′′ ∃T ′1 ∈ I1(D′0, D

′′) ∃T ′′1 ∈ I1(D′′0 , D
′) (T ′ = E1

0D′ + T ′1 ∧ T ′′+
E1

0D′′). Using the sets A(D), construct a ptyx A′ of type 2; show

that A′ is connected, and of kind Ω.

(ii) Prove that A′ = UN2(A).

(iii) Using 13.1.44 (ii) together with 13.1.43, prove that the functors UN2

and SEP2 are reciprocal.
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(iv) Prove that:

UN2(A)(ω1+F ) = A(ω1+F , ω1+F )

UN2(A)(ω1+T ) = A(ω1+T , ω1+T )

UN2(U)(ω1+F ) = U(ω1+F , ω1+F ) .
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12.2. Ptykes

Ptykes are objects which generalize ordinals, dilators,...; for instance

ptykes of type 2 were at the heart of the preceding section. Many types

of ptykes can be imagined, and, according to the degree of generalization

that we shall allow, various portions of the result of Section 12.1 can be

transferred in the new context.

The difficulty of our task is to find a compromise between the generality

of the concepts and the results following from the use of the concept, since it

is clear that, the more general our concept, the less results we can expect... .

We have finally chosen a particular definition for “ptyx” which is a rather

good compromise. No doubt, however, that more general concepts can

be produced. Our principal motivation for this concept was (besides its

simplicity), its direct relationship to ON, which makes it explicit that

ptykes have something to do with ordinals... . A more general concept of

ptyx could perhaps be given by means of a list of requirements for a given

category C to be a category of ptykes (for instance existence of a functor

trace, existence of sums...), in the same way as one defines, say, abelian

categories.

In this section we shall try to follow 12.1 as far as possible: we shall

indicate systematically the analogues of the definitions, theorems, remarks

... of Sec. 12.1.

12.2.1. Definition.

(i) Let C be a category; C has the sum property when: given x 6= 0, A,

(Bi)i<x, and morphisms A
Ti−→ Bi it is possible to find C, together

with morphisms Bi
Ui−→ C such that the diagrams:

Bi

Ti Ui

A C

Tj Uj

Bj

are commutative. C has the dimension property when the class
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|Cfd| = {a ∈ |C| ; {(t, b) ; t ∈ MorC(b, a)} finite} is a set.

(ii) A ptyx is any functor F from some category C with the sum and

the dimension properties to ON, and enjoying the normal form

property: if z < F (a) (a ∈ |C|), then it is possible to find unique

b ∈ |Cfd|, f from b to a, z0 < F (b) such that:

1. z = F (t)(z0).

2. If z = F (t′)(z1), z1 < F (b′), t′ from b′ to a, then there is unique

t′′ from b to b′′ s.t. z1 = F (t′′)(z0) (notation: z = (z0 ; b ; t ; a)F ).

(iii) If F and G are ptykes, then we define I(F,G) as follows: assume

that F and G are defined on C and D respectively; then

– if C 6= D, I(F,G) = ∅.

– if C = D, then I(F,G) consists of all natural transformations T

from F to G enjoying the normal form property such that

T (a)
(
(z0 ; b ; t ; a)F

)
= (T (b)(z0) ; b ; t ; a)G

for all z = (z0 ; b ; t ; a)F in F (a), and all a ∈ |C|.

(iv) The ptyx F of (ii) is said to be of type C → O. In general, we define

the concept of type by: a type is a category of the form C → O: this

means that C is a category with the sum property, and the objects of

C → O are the ptykes of type C → O, whereas the morphisms from

F to G in C → O are given by the set IC→O(F,G) = I(F,G).

We shall usually denote types by the letters σ,τ ,ρ,... .

12.2.2. Examples.

(i) The smallest category enjoying the property is the void category ∅.
The type ∅ → O, denoted by ( ), consists of one element, and one

morphism.

(ii) The type ( )→ O, denoted by O, can be identified with ON.
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(iii) In general, if σ and τ = C → O are types, then we can define a

new type σ → τ , by σ → τ = σ × C → O. Here we use the

familiar product of categories. We have two definitions of σ → O,

which coincide, up to a trivial isomorphism. Of course, it will be

necessary to verify somewhere that σ×C has the sum property, and

the dimension property.

(iv) If σ = C → O and τ = D → O are types, then we can define a new

type σ × τ , by σ × τ = (C + D) → O, where C + D is the familiar

disjoint sum of the categories C and D.

(v) The categories DIL, PT2 can therefore be identified with O → O

and (O → O)→ O.

12.2.3. Definition (12.1.9).

We define the functor trace from σ to SETi:

(i) Tr(F ) = {(z, a) ; z = (z ; a ; ida ; a)F}.

(ii) Tr(T )
(
(z, a)

)
= (T (a)(z) ; a).

12.2.4. Lemma (12.1.10).

Definition 12.2.3 is sound.

Proof. (i): Tr(F ) is a set, because Tr(F ) ⊂ {(z, a) ; z ∈ F (a) ∧ a ∈ |Cfd|}.
(ii): Tr(T ) maps Tr(F ) into Tr(G) because T (a)

(
(z ; a ; ida ; a)F

)
=

(T (a)(z) ; a ; ida ; a)G. If (z, a) 6= (z′, a′), then either a 6= a′ (then (T (a)(z), a)

6= (T (a′)(z′), a′)) or a = a′ and z 6= z′ (then T (a)(z) 6= T (a)(z′)): this

proves that Tr(T ) is an injective function. 2

12.2.5. Theorem (12.1.11).

The functor Trace has the following properties:

(i) Assume that (F, Ti) enjoys 8.1.11 (i)–(iii) w.r.t. (Fi, Tij); then

(F, Ti) = lim
−→

(Fi, Tij)↔
(

Tr(F ),Tr(Ti)
)
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= lim
−→

(
Tr(Fi),Tr(Tij)

)
.

(ii) Assume that t1, t2, t3 enjoy 8.1.24 (i); then

t1 ∧ t2 = t3 ↔ Tr(t1) ∧ Tr(t2) = Tr(t3) .

(iii) Given a subset X ⊂ Tr(F ), there are unique G and T ∈ I(G,F ) s.t.

X = rg
(

Tr(T )
)
.

Proof. (iii): If X ⊂ Tr(F ), and a ∈ |C|, we consider the subsets Xa ⊂ F (a),

consisting of those z ∈ F (a) of the form

(z0 ; a0 ; t0 ; a)F , for some (z0 ; a0) ∈ X .

If t: a → a′, we can define a function Xt from Xa to Xa′ , by Xt

(
(z0 ; a0 ;

t0 ; a)F
)

= (z0 ; a0 ; tt0 ; a)F . One easily checks that Xt is the restriction

of F (t), hence is strictly increasing. We define G by:

G(a) = ‖Xa‖ G(t) = ‖Xt‖ .

We define T ∈ I(G,F ) by the condition rg
(

Tr
(
T (a)

))
= Xa; the dia-

grams

T (a)
G(a) F (a)

G(t) F (t)

G(a′) F (a′)
T (a′)

are clearly commutative.

G has the normal form property: if z ∈ G(a), write T (a)(z) = (z0 ; a0 ; t0 ;

a)F , and observe that (z0 ; ao) ∈ X. This implies that z0 ∈ Xa0 , hence

z0 = T (a0)(z1); then we can write z = (z1 ; a0 ; t0 ; a)G. This is a normal

form since:

1. z = G(t0)(z1).

2. If z = G(t′0)(z′1), t′0: a′0 → a, then T (a)(z) = F (t′0)
(
T (a′0)(z′1)

)
, hence

it is possible to find a unique form t′′ from a0 to a′0 s.t. F (t′′)(z0) =

T (a′0)(z′1). But then G(t′′)(z1) = z′1... .
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It is immediate from that, that

T (a)
(
(z0 ; a0 ; t ; a)G

)
=
(
T (a0(z0) ; a0 ; t ; a)F

hence T is a morphism from G to F . Obviously X = rg
(

Tr(T )
)
. The

unicity of G and T is immediate.

(i): Assume that (F, Ti) = lim
−→

(Fi, Tij); if we consider the subset X of

Tr(F ): X =
⋃
i∈I

rg
(

Tr(Ti)
)
, then the argument of 12.1.11 (i) can be used

to show that X = Tr(F ), hence
(

Tr(F ),Tr(Ti)
)

= lim
−→

(
Tr(Fi),Tr(Tij)

)
.

Conversely, the hypothesis
(

Tr(F ),Tr(Ti)
)

= lim
−→

(
Tr(Fi),Tr(Tij)

)
implies

that
(
F (a), Ti(a)

)
= lim
−→

(
Fi(a), Tij(a)

)
for all a ∈ |C|.

(Proof. If z ∈ F (a), write z = (z0 ; a0 ; t ; a)F and choose i such that

(z0 ; a0) ∈ rg
(

Tr(Ti)
)
; then z ∈ rg

(
Ti(a)

)
. 2)

12.2.6. Lemma (12.1.12).

If
(
F (a), Ti(a)

)
= lim

−→

(
Fi(a), Tij(a)

)
for all a ∈ |C|, then (F, Ti) =

lim
−→

(Fi, Tij).

Proof. We argue exactly as in 12.1.12; we construct, given (G,Ui) en-

joying 8.1.11 (i)–(iii) w.r.t. (Fi, Tij), a unique natural transformation T

from F to G such that Ui = TTi for all i ∈ I. In fact T ∈ I(F,G),

since, given z = (z0 ; a0 ; t ; a)F , one can choose i and zi such that z =

(Ti(a0)(zi) ; a0 ; t ; a)F . Hence

T (a)(z) = Ui(a)
(
(zi ; a0 ; t ; a)Fi

)
= (Ui(a0)(zi) ; a0 ; t ; a)F =

= (TTi(a0)(zi) ; a0 ; t ; a)F = (T (a0)(z0) ; a0 ; t ; a)F . 2

The lemma concludes the proof of (i).

(ii): Assume that Ti ∈ I(Fi, G) (i = 1, 2, 3), and that T31 and T32

are such that T3 = T1T31 = T2T32; hence Tr(T3) = Tr(T1)Tr(T31) =

Tr(T2)Tr(T32), and rg
(

Tr(T3)
)
⊂ rg

(
Tr(T1)

)
∩ rg

(
Tr(T2)

)
= X. We show
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exactly as in 12.1.11 that the hypothesis T1 ∧ T2 = T3 implies X =

rg
(

Tr(T3)
)
, i.e. that Tr(T1) ∧ Tr(T2) = Tr(T3). Conversely the hypothe-

sis Tr(T1)∧Tr(T2) = Tr(T3) implies T1(a)∧T2(a) = T3(a) for all a ∈ C (use

the normal form property), and the

12.2.7. Lemma (12.1.13).

If T1(a) ∧ T2(a) = T3(a) for all a ∈ C, then T1 ∧ T2 = T3.

Proof. Left to the reader. 2

concludes the proof. 2

12.2.8. Corollary (12.1.14).

Assume that (Ai, Tij) is a direct system in C → O, and that (A, Ti) enjoys

8.1.11 (i)–(iii) w.r.t. (Ai, Tij); then the following are equivalent:

(i) (A, Ti) = lim
−→

(Ai, Tij).

(ii)
(
A(a), Ti(a)

)
= lim
−→

(
Ai(a), Tij(a)

)
for all a ∈ |C|.

(iii)
(
A(a), Ti(a)

)
= lim
−→

(
Ai(a), Tij(a)

)
for all a ∈ |Cfd|.

(iv)
(

Tr(A),Tr(Ti)
)

= lim
−→

(
Tr(Ai),Tr(Tij)

)
.

Proof. Immediate, left to the reader. 2

12.2.29. Remark (12.1.15).

(i) The existence of the direct limit lim
−→

(
Ai(a), Tij(a)

)
for all a ∈ |C|

ensures the existence of lim
−→

(Ai, Tij).

(ii) The existence of (B,Ui) enjoying 8.1.11 (i)–(iii) w.r.t. (Ai, Tij) ensures

the existence of lim
−→

(Ai, Tij).
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12.2.10. Corollary (12.1.16).

Assume that Ti ∈ I(Ai, B), (i = 1, 2, 3); then the following are equivalent:

(i) T1 ∧ T2 = T3.

(ii) T1(a) ∧ T2(a) = T3(a) for all a ∈ |C|.

(iii) T1(a) ∧ T2(a) = T3(a) for all a ∈ |Cfd|.

(iv) Tr(T1) ∧ Tr(T2) = Tr(T3).

Proof. Left to the reader. 2

12.2.11. Remark (12.1.17).

Pull-backs always exist in C → O.

12.1.12. Remark.

Observe that we have no analogues for the parts (iv) of 12.1.14 and 12.1.16:

simply because objects of C → O do not necessarily preserve direct limits

and pull-backs: we know too little about C... .

12.1.13. Theorem (12.1.18).

Assume that, for i < x, Ti ∈ I(A,Bi); then it is possible to find C, together

with Ui ∈ I(Bi, C) rendering the diagrams

Bi

Ti Ui

A C

Tj Uj

Bj

commutative; furthermore for i 6= j, Ui ∧ Uj = UiTi = UjTj.

Proof. We essentially follow the argument of 12.1.18:

(i): In a first step we introduce, given a ∈ |C|, the disjoint union

X = {(i, z) ; i < x ∧ z < Bi(a)}, preordered by: (i, z) ≤1
a (i′, a′) iff

(i = i′ ∧ z ≤ z′) ∨ ∃z0 ∈ A(a) (z ≤ Ti(a)(z0) ∧ Ti′(a)(z0) ≤ z′). The

associated equivalence relation (i, z) ∼a (i′, z′) iff (i = i′ ∧ z = z′)∨ ∃z0 ∈



396 12. Ptykes

A(D)
(
z = Ti(a)(z0) ∧ z′ = Ti′(a)(z0)

)
plays an essential role in the proof.

Our task will be to extend the well-founded order≤1
a / ∼a into a well-order.

(ii): (i, z) ≤2
a (i′, z′)↔ ∃a′ ∃t′: a→ a′

(
i, Bi(t

′)(z)
)
≤1
a′

(
i′, Bi′(t

′)(z′)
)
.

≤2
a is transitive since C has the sum property, ≤2

a / ∼a is a well-founded

order (the sum property is needed here: see 12.1.10) and we have, when t:

a→ a′, (i, z) ≤2
a (i′, z′)↔

(
i, Bi(t)(z)

)
≤2
a′

(
i′, Bi′(t)(z

′)
)
.

The linear preorders ≤3
a and ≤4

a are defined by:

(i, z) ≤3
a (i′, z′)↔ (i, z) ≤1

a (i′, z′) ∨
(
(i′, z′) 6≤1

a (i, z) ∧ i < i′
)

(i, z) ≤4
a (i′, z′)↔ (i, z) ≤2

a (i′, z′) ∨
(
(i′, z′) 6≤2

a (i, z) ∧ i < i′
)
.

12.2.14. Lemma (12.1.19, 12.1.20).

(i) ≤3
a / ∼a is a well-order.

(ii) ≤4
a / ∼q is a well-order.

Proof. See 12.1.19. 2

We define C(a) =≤4
a / ∼a, and when t: a→ a′, C(t)

(
(i, z)

)
=
(
i, Bi(t)(z)

)
.

C is (isomorphic to) a functor from C to ON, which is easily shown to

enjoy the normal form property. We can define Ui by:

Ui(a)(z) = (i, z)

and it is immediate that Ui ∈ I(Bi, C). The property Ui∧Uj = UiTi = UjTj

for i 6= j is immediate. 2

12.2.15. Theorem.

Under the hypotheses of 12.2.13, assume that x′, A, T ′j , B
′
j is another fam-

ily, and that the function f ∈ I(x, x′) and the morphisms Vi ∈ I(Vi, f
′
f(i))

render the diagrams:

Ti Bi

A Vi
T ′f(i) B′f(i)
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commutative. Then if U ′j and C ′ are the data obtained by 12.2.13 from

x′, A, T ′j , B
′
j, it is possible to construct a morphism V ∈ I(C,C ′) rendering

the diagrams:

Ui
Ti Bi C

A Vi V

T ′f(i) B′f(i) C ′
U ′f(i)

commutative; if x 6= 0, then V is unique.

Proof. Immediate property of the construction. 2

12.2.16. Notations.

(i) In 12.2.13, let T = UiTi; then (T,C) =
∑
i<x

(Ti, Bi) (when x 6= 0 !; if

x = 0 let C = A, T = EA).

In 12.2.15, we use the notation: V =
∑
i<f

Vi (when x 6= 0; if x = 0,

V is the morphism T ′ such that (T ′, C ′) =
∑
i<x

(T ′i , B
′
i)).

(ii) The category C → O contains an initial element, denoted by 0: apply

12.2.13 with x = 0; we obtain 0. Apply now 12.2.15 with: x′ = 1,

B0 = A, T0 = the identity of A; we get V ∈ I(0, A). In fact we easily

check that:

1. 0 is the only element of C → O with a void trace: Tr(0) = ∅.

2. There is one and only one morphism E0A from 0 to A, when

A ∈ |C|.

(iii) If Ai ∈ |C| (i < x), we can apply 12.2.13 to x, 0, Ai: we obtain B,

together with Ui ∈ I(Ai, B); the notation for B is
∑
i<x

Ai. If (A′j)j∈x′

is another family, if Ti ∈ I(Ai, Af(i)) for all i < x, and f ∈ I(x, x′),

then by 12.2.15 we can introduce

T =
∑
i<f

Ti ∈ I
(∑
i<x

Ai ,
∑
i<x

A′j
)
.
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(iv) The notations (i) and (iii) have a special case when x = 2, f = E2:

(T1, B1) + (T2, B2) , V1 + V2

A1 + A2 , T1 + T2 .

(v) One checks the following property: A + B = A + B′ → B = B′;

from this it follows that we can always define, when B is of the form

A+B′, a morphism EAB ∈ I(A,B):

EAB = EA + E0B′

where EA denotes as usual the identity of A; hence EA = EAA.

(vi) Consider the order relation:, “B = A + B′ for some B′”; then if we

are given a family (Ai)i<x, which is increasing w.r.t. this order, it is

possible to define a supremum:

sup
i<x

Ai = A0 +
∑
i<x

A′i

where A′i is defined by Ai+1 = Ai + A′i.

In the same way, if we consider the following order relation be-

tween morphisms: “U = T + U ′ for some U ′”; then given a family

(Ti)i<x, increasing in this sense, we shall be able to introduce the

union

⋃
i<x

Ti = T0 +
∑
i<Ex

T ′i

with Ti+1 = Ti + T ′i .

12.2.17. Definition (12.1.22).

The set I(A,A′) is order by:

T ≤ U ↔ ∀a ∈ |C| ∀x ∈ A(a)
(
T (a)(z) ≤ U(a)(z)

)
.
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12.2.18. Theorem (12.1.23).

T ≤ U , when T, U ∈ I(A,A′), is equivalent to the existence of A′′, V ∈
I(A′, A′′), W ∈ I(A′′, A′′) such that:

V U = WV T .

Proof. See 12.1.23. 2

12.2.19. Definition (12.1.28).

A is finite dimensional iff dim(A) = card
(

Tr(A)
)

is finite; dim(A) is the

dimension of A. (C → O)fd denotes the full subcategory of C → O con-

sisting of the finite dimensional ptykes of that type.

12.2.20. Theorem (12.1.29).

Every ptyx is a direct limit of finite dimensional ptykes.

Proof. See 12.1.29. 2

12.2.21. Definition (12.1.30).

A preptyx of type C →p O is a functor A from C to OL, enjoying the

following properties:

(i) A has the normal form property (straightforward adaptation of 12.2.1

(ii)).

(ii) For all (z0 ; a0) ∈ Tr(A) and a ∈ |C|, the set of denotations (z0 ; a0 ; t ;

a)A is well-ordered.

12.2.22. Theorem (12.1.31).

Preptykes are exactly the direct limits of ptykes in the category C →p O

of preptykes of type C → O.

Proof. The morphisms in C →p O are exactly the natural transformations

enjoying 12.2.1 (iii). Now the theorem is rather trivial, since condition (ii)

of 12.2.21 ensures that finite dimensional preptykes are (isomorphic to)

ptykes. 2
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12.2.23. Remark.

We know too little concerning C to be able to replace 12.2.21 (ii) by a more

natural condition... .

12.2.24. Discussion (12.1.37).

Is it possible to define in a general setting the notions of recursive and

weakly finite ptykes? Obviously not; these concepts are twoo much linked

to the knowledge of C, which can be a very uneven category object.

The algebraic part of the theory has been developed to some extent, and

we turn our attention towards the well-foundedness properties of C → O;

now we stumble on an essential difficulty: we lose the unicity of the decom-

position into sums. For instance, if C consists of two objects a, b, with no

morphism from a to b or b to a, then the constant functor 1 can be written

as A+B, or B +A with A(a) = 1, A(b) = 0, B(a) = 0, B(b) = 1. This is

due to a lack of connectedness of C; we shall recover unicity by restricting

our attention to connected types:

12.2.25. Definition.

A type C → O is connected when C has the following property: C is non

void and for all a, b ∈ |C| ∃c ∈ |C| MorC(a, c) 6= ∅ ∧MorC(b, c) 6= ∅.

12.2.26. Theorem.

Every type is isomorphic to the product of a set of connected types. This

product is unique (up to isomorphism).

Proof. Given a, b ∈ |C|, we define a ∼ b by ∃x ∈ |C| (MorC(a, c) 6= ∅ and

MorC(b, c) 6= ∅). The sum property ensures that ∼ is transitive. We can

consider the equivalence classes |Ci| of ∼, and define categories Ci accord-

ingly. Then C appears as the disjoint union of the Ci’s. The category

C → O therefore appears as the product of the categories Ci → O. Now,

by the dimension property I = {i ; Ci → O 6= O} is a set, hence C → O is

isomorphic to
∏
i∈I
Ci → O. 2

12.2.27. Theorem (12.1.38).
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Assume that σ is connected; then

(i) Every ptyx A of type σ can be uniquely written as a sum A =
∑
i<x

Ai,

where the Ai’s are connected. (B is connected iff B 6= 0 and B =

B′ +B′′ → B′ = 0 ∨B′′ = 0.) The ordinal x is the length of A, and

is denoted by LH(A).

(ii) If B is another ptyx of the same type, whose decomposition is
∑
j<y

Bj,

and if T ∈ I(A,B), then T can be written in a unique way as a sum:

T =
∑
i<f

Ti, Ti ∈ I(Ai, Bf(i)). The function f is the length of T , and

is denoted by LH(T ).

Proof. (i): We consider the class X of all pairs (z, a), with z < A(a);

we preorder this class by (z, a) ≤ (z′, a′) ↔ ∃b ∈ |C| ∃t ∃t′
(
a

t−→ b ∧

a′
t′−→ b ∧ A(t)(z) ≤ A(t′)(z′)

)
. The relation is transitive because of the

sum property; moreover, since σ is connected, it is always possible to find

b and morphisms t and t′ from a and a′ to b, hence we shall get A(t)(z) ≤
A(t′)(z′) or A(t′)(z′) ≤ A(t)(z), and so (z, a) ≤ (z′, a′) ∨ (z′, a′) ≤ (z, a):

our preorder is linear. Now we again use the sum property, together with

the connectedness of C, to yield a point a0 ∈ |C| such that for all b ∈ |Cfd|,
MorC(b, a0) 6= ∅. Clearly, given (z, a) ∈ X, it is possible to find z′ ∈ A(a0)

s.t. (z, a) ∼ (z′, a0), ∼ being the equivalence of ≤.

(Proof. Write z = (z0 ; a′ ; t ; a)A, with a′ ∈ |Cfd|, and let z′ = (z0 ; a′ ; t′ ;

a0)A, for some t′ ∈ MorC(a
′, a0)... . 2

This proves that the linear order ≤ / ∼ is equal to its restriction to A(a0)×
{a0}; but if z ≤ z′, then (z, a0) ≤ (z′, a0), hence the equivalence classes

Xi modulo ∼ are determined by their “traces” Yi = {z ; (z, a0) ∈ Xi} on

A(a0), which are intervals. From that we obtain that ≤ / ∼ is a well-order,

isomorphic to a quotient of A(a0). Let x be this ordinal (well-order), and

let Xi be the enumeration of the classes: (Xi)i<x. Define X ′i = Xi∩Tr(A),

and apply 12.2.5 (iii) t X ′i: we obtain Ai together with Ui ∈ I(Ai, A) s.t.

X ′i = rg
(

Tr(Ui)
)
. The fact that the Ai’s are connected, and that A =

∑
i<x

Ai

is left to the reader.
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(ii): Left to the reader. 2

12.2.8. Corollary (splitting lemma).

If T ∈ I(A,B), and B = B′ + B′′, then T can be uniquely written as

T ′ + T ′′, T ′ ∈ I(A′, B′), T ′′ = I(A′′, B′′) for some T ′, T ′′, A′, A′′.

Proof. The proof is an easy corollary of 12.2.27; observe that the result

still holds when σ is not connected, since it can be proved first for the

components of σ, then extended to σ. 2

12.2.29. Definition (12.1.39).

(i) The ptyx A is of kind

0 if LH(A) = 0.

ω if LH(A) is limit.

1 if LH(A) = x′ + 1, and Ax′ is the constant 1.

Ω if LH(A) = x′ + 1, and Ax′ 6= 1.

(ii) The morphism T is said to be deficient when LH(T ) = f + E0x′ for

some x′ 6= 0; when T is not deficient, then the source and the target

of T are of the same kind, which is by definition the kind of T .

12.2.30. Remark (12.1.42).

It would be now the time to carry out an argument of separation of vari-

ables in the case of kind Ω; unfortunately, our hypotheses on C are too

limited for that.

So essentially we have obtained a decomposition theorem, and a clas-

sification for connected types.

We shall now study more specific types.
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12.3. Arrows

12.3.1. Definition.

Assume that σ and τ (= C → O) are types; then we define the type

σ → τ to be

(σ × C)→ O .

This definition makes sense, since:

– σ enjoys the sum property (12.2.13).

– the sum property is preserved by ×.

12.3.2. Notations.

It is more convenient to consider σ → τ as a category of functors from σ

to τ , namely, via the isomorphism between

– functors from σ × C to ON.

– functors from σ to τ .

This identification is perfectly trivial, but may induce some ambiguity,

hence we make the following conventions:

1. When we speak of a ptyx of type σ → τ , we view it as a functor from

σ to τ .

2. We shall denote by A∗ the corresponding functor from σ × C to ON:

A∗(a⊗ a′) = A(a)(a′), A∗(t⊗ t′) = A(t)(t′).

3. We make similar conventions for morphisms.

The definitions of 12.2 enable us to define a trace for A, namely Tr(A∗);

however, the following definition (a trivial variant) is far more flexible:

Tr(A) =
{(

(z, b), a
)

; (z, a⊗ b) ∈ Tr(A∗)
}

Tr(T )
((

(z, b), a
))

=
(
(T ∗(a⊗ b)(z), b), a

)
;

observe that
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Tr(T )
(
(z′, a)

)
=
(

Tr
(
T (a)

)
(z′), a

)
,

since

Tr
(
T (a)

) (
z ; b)

)
= (T (a)(b)(z), b) = (T ∗(a⊗ b)(z), b) .

12.3.3. Theorem (Normal Form Theorem).

If A ∈ |σ → τ | and a ∈ |σ|, if z ∈ Tr
(
A(a)

)
, then z can be uniquely

expressed as

z = (z0 ; a0 ; t ; a)A

where a0 ∈ |σfd|, t ∈ I(a0, a) and z0 ∈ Tr
(
A(a0)

)
; the meaning of this

denotation (normal form) is:

(i) z = Tr
(
A(t)

)
(z0).

(ii) rg
(

Tr(t)
)

is minimal for inclusion among solutions of (i).

Proof. Assume that z = (z′, b0); then the normal form property w.r.t. A∗

yields a normal form z′ = (z′0 ; a0 ⊗ b0 ; t ⊗ idb0 ; a ⊗ b0)A∗ , and a0 is such

that {(b, t) ; t ∈ I(a, b)} is finite; this forces a0 to be finite dimensional.

Now we propose the normal form (z′, b0) =
(
(z′0, b0) ; a0 ; t ; a

)
A

: certainly

(z′, b0) = Tr
(
A(t)

) (
(z′0, b0)

)
, and the fact that rg

(
Tr(t)

)
is minimum for

inclusion among solutions of (i) comes from the normal form property of

A∗. 2

12.3.4. Proposition.

(i) Assume that A ∈ |σ → τ |, t ∈ I(a, b); then z = (z0 ; a0 ; t′ ; b)A ∈
rg
(

Tr
(
A(t)

))
↔ rg

(
Tr(t′)

)
⊂ rg

(
Tr(t)

)
.

(ii) Assume that T ∈ I(A,B), a ∈ |σ|; then z = (z0 ; a0 ; t′ ; a)B ∈
rg
(

Tr
(
T (a)

))
iff (z0, a0) ∈ rg

(
Tr(T )

)
.

Proof. (i): Obviously A(t)
(
(z0 ; a0 ; t′′ ; a)A

)
= (z0 ; a0 ; tt′′ ; b)A, hence

z ∈ rg
(

Tr
(
A(t)

))
iff t′ is of the form tt′′:

– if t′ = tt′′, then Tr(t′) = Tr(t)Tr(t′′) hence rg
(

Tr(t′)
)
⊂ rg

(
Tr(t)

)
.
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– if rg
(

Tr(t′)
)
⊂ rg

(
Tr(t)

)
, consider the subset X ⊂ Tr(a) defined by X =

Tr(t)−1
(

rg
(

Tr(t′)
))

, and apply 12.2.5 (iii): we obtain a′ and t′′ ∈ I(a′, a)

with rg
(

Tr(t′′)
)

= X; since rg
(

Tr(tt′′)
)

= rg
(

Tr(t′)
)
, we obtain tt′′ = t′.

(ii): Immediate, left to the reader... . 2

12.3.5. Theorem.

|σ → τ | consists of all functors from σ to τ preserving direct limits and

pull-backs.

Proof. (i): Let A be an element of |σ → τ |; we prove that A preserves

direct limits: if (ai, tij) is a direct system in σ,and (a, ti) = lim
−→

(ai, tij),

then by 12.2.5.
(

Tr(a),Tr(ti)
)

= lim
−→

(
Tr(ai),Tr(tij)

)
; if z ∈ Tr

(
A(a)

)
,

then we have the normal form

z = (z0 ; a0 ; t ; a)A

with a0 finite dimensional; hence the finite set rg
(

Tr(t)
)

is included in

Tr(a) =
⋃
i

rg
(

Tr(ti)
)
; by 12.3.4 (i) this implies that z ∈ rg

(
Tr
(
A(ti)

))
for

some i. Hence
(

Tr
(
A(a)

)
,Tr

(
A(ti)

))
= lim

−→

(
Tr
(
A(ai)

)
,Tr

(
A(tij)

))
. We

now establish that A preserves pull-backs: if t1 ∧ t2 = t3, then, by 12.2.5,

Tr(t1) ∧ Tr(t2) = Tr(t3); if z = (z0 ; a0 ; t ; a)A belongs to rg
(

Tr
(
A(t1)

))
∩ rg

(
Tr
(
A(t2)

))
, this means that rg

(
Tr
(
A(t)

))
⊂ rg

(
Tr
(
A(t1)

))
∩

rg
(

Tr
(
A(t2)

))
(= rg

(
Tr
(
A(t3)

))
) by 12.3.4 (i); hence z ∈ rg

(
Tr
(
A(t3)

))
.

This establishes that A(t1) ∧ A(t2) = A(t3).

(ii): Assume now that A is a functor from σ to τ preserving direct

limits and pull-backs; then one easily shows that A enjoys the normal

form theorem 12.3.3 (left to the reader). The question is how to obtain

the normal form property for A∗; but assume that z ∈ A∗(a ⊗ b), i.e.

z ∈ A(a)(b); the normal form property for A(a) yields:

z = (z0 ; b0 ; u ; b)A(a)

and the normal form theorem yields

(z0, b0) =
(
(z′0, b0) ; a0 ; t ; a)A
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from which we deduce

z = (z′0 ; a0 ⊗ b0 ; t⊗ u ; a⊗ b)A∗ .

This is a normal form, because if z = A∗(t′ ⊗ u′)(z′), i.e. z = A(t′)(u′)(z′),

with t′ ∈ I(a′, a), u′ ∈ I(b′, b), then, if z′′ = A(t′)(Eb′)(z
′), since z =

A(a)(u′)(z′′) = A(a)(u)(z0), we obtain a unique u1 such that z′′ = A(a)(u1)

(z0), u1 ∈ I(b0, b
′), i.e. z′′ = (z0 ; b0 ; u1 ; b′)A(a). The unicity condition in

the normal form implies u′u1 = u. Now recall that A(t′) is a morphism

from A(a′) to A(a) in the sense of 12.2.1; hence z0 = A(t′)(b0)(z′′0 ) for some

z′′0 ∈ A(a′)(b0). The normal form theorem yields z′′0 = A(t1)(b0)(z′0) for

some t1 ∈ I(a0, a
′), and t′1t1 = t.

Finally A(t1)(u1)(z′0) = A(a′)(u1)(z′′0 ) = y is such that A(t′)(u′)(y) =

A(t′t1)(u′u1)(z′0) = A(t)(u1)(z′0) = z, hence y = z′: from that we get

z′ = A∗(t1 ⊗ u1)(z′0). The fact that t1 and u1 are unique is immediate. 2

12.3.6. Theorem.

Assume that A,B ∈ |σ → τ ; then I(A,B) is the set of natural transfor-

mations from A to B.

Proof. (i): Assume that T ∈ I(A,B); giving back to the definition, this

means that T ∗ ∈ I(A∗, B∗), which in turn implies that the diagrams

T (a)
A(a) B(a)

A(t) B(t)

A(b) B(b)
T (b)

are commutative, hence T is a natural transformation from A to B.

(ii): Conversely, if T is a natural transformation from A to B, it is

immediate that T ∗ is a natural transformation from A∗ to B∗, hence it

suffices to look at the action of T ∗ on denotations, or equivalently the

action of T on denotatins: it suffices to establish that

Tr
(
T (a)

) (
(z0 ; a0 ; t ; a)A

)
=
(

Tr
(
T (a0)

)
(z0) ; a0 ; t ; a

)
B

and the non-trivial part of the proof consists in showing that (z0 ; a0) ∈
Tr(A) →

(
Tr
(
T (a0)

)
(z0) ; a0

)
∈ Tr(B). This is established on the model
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of Lemma 12.1.10: if t ∈ I(a1, a0), apply the property 12.2.13 to A = a1,

B0 = B1 = a0, T0 = T1 = t; we obtain a2 together with t0, t1 ∈ I(a0, a2)

such that t0 ∧ t1 = t0t = t1t.

A(t) A(t0)
A(a1) A(a0) A(a2)

A(t1)

T (a1) T (a0) T (a2)

B(t0)
B(a1) B(a0) A(a2)

B(t) B(t1)

Now, assume that (z0, a0) ∈ Tr(A), and that x = Tr
(
T (a0)

)
(z0) ∈ rg

(
Tr
(
B

(t)
))

, say Tr
(
T (a0)

)
(z0) = Tr

(
B(t)

)
(y); then Tr

(
B(t0)

)
(x) = Tr

(
B(t1)

)
(x)

= Tr
(
B(t0t)

)
(y) = Tr

(
B(t1t)

)
(y). From that we obtain: Tr

(
A(t0)

)
(z0) =

Tr
(
A(t1)

)
(z0), since the function Tr

(
T (a2)

)
is injective. This proves that

Tr
(
A(t0)

)
(z0) ∈ rg

(
Tr
(
A(t0)∧A(t1)

))
by 12.2.5 (ii); but A preserves pull-

backs, so A(t0) ∧ A(t1) = A(t0 ∧ t1) = A(t0t), Tr
(
A(t0)

)
(z0) = Tr

(
A(t0)

)
Tr
(
A(t)

)
(z′0), so we obtain z0 = Tr

(
A(t)

)
(z′0) for some z′0 ∈ Tr

(
A(a1)

)
.

Now, the hypothesis z0 ∈ rg
(

Tr
(
A(t)

))
entails, since (z0, a0) ∈ Tr(A)

that a1 = a0 and t = Ea0 . We have therefore shown that the pair(
Tr
(
T (a0)

)
(z0),

a0

)
belongs to Tr(B). 2

We have implicitly used the

12.3.7. Proposition.

Tr(A) is the set of all pairs (z0, a0) with:

1. a0 finite dimensional, z0 ∈ Tr
(
A(a0)

)
.

2. if z0 ∈ rg
(

Tr
(
A(t)

))
for some t ∈ I(a1, a0), then a1 = a0 and t = Ea0 .

Proof. Immediate from the normal form theorem. 2

12.3.8. Theorem.
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Assume that (A, Ti) enjoys 8.1.11 (i)–(iii) w.r.t. (Ai, Tij) in σ → τ ; then

the following are equivalent:

(i) (A, Ti) = lim
−→

(Ai, Tij) .

(ii)
(
A(a), Ti(a)

)
= lim
−→

(
Ai(a), Tij(a)

)
for all a ∈ |σ| .

(iii)
(
A(a), Ti(a)

)
= lim
−→

(
Ai(a), Tij(a)

)
for all a ∈ |σfd| .

(iv) For any direct system (ai, tij) with a direct limit (a, ti) in σ,
(
A(a), Ti(ti)

)
= lim

−→

(
Ai(ai), Tij(tij)

)
.

(v)
(

Tr(A),Tr(Ti)
)

= lim
−→

(
Tr(Ai),Tr(Tij)

)
.

Proof. This is very close to 12.2.8 and 12.1.14; left to the reader. The

equivalent (iv) is made possible by 12.3.5... . 2

12.3.9. Theorem.

Assume that Ti ∈ I(Ai, B) enjoy 8.1.25 (i) in the category → ; then the

following are equivalent:

(i) T1 ∧ T2 = T3 .

(ii) T1(a) ∧ T2(a) = T3(a) for all a ∈ |σ| .

(iii) T1(a) ∧ T2(a) = T3(a) for all a ∈ |σfd| .

(iv) T1(t1) ∧ T2(t2) = T3(t3) for all t1, t2, t3 in σ such that t1 ∧ t2 = t3 .

(v) Tr(T1) ∧ Tr(T2) = Tr(T3) .

Proof. This is very close to 12.2.10, 12.1.16; the equivalent (iv) is made

possible by 12.3.5. The details of the proof are left to the reader. 2

12.3.10. Theorem.

The objects of σ → τ are increasing on morphisms: t ≤ u→ A(t) ≤ A(u).
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(In fact T ≤ U , t ≤ u→ T (t) ≤ U(u).)

Proof. t ≤ u→ ∃v ∃w vu = wvt, hence A(v)A(u) = A(w)A(v)A(t), hence

A(t) ≤ A(u). 2

12.3.11. Theorem.

Let A be a functor from σ to pτ preserving direct limits and pull-backs;

assume furthermore that A is finite dimensional, and that A is increasing

on morphisms. Then A is (isomorphic to) a ptyx of type σ → τ . (We use

the notation pτ for the category of preptykes of type τ .)

Proof. It suffices to show that A maps (up to isomorphism) σ in τ , or

equivalently that: A∗(a⊗ b) is a well-order for all b ∈ |C| (if τ = C → O)

and a ∈ |σ|.
So let us assume for contradiction that zn = (zn0 ; an0 ⊗ bn0 ; tn⊗un ; a×

b)A∗ is a s.d.s. in A∗(a⊗ b); the hypothesis A∗ finite dimensional forces zn0 ,

an0 , bn0 to vary through finite sets, and we may as well suppose that zn0 = z0,

an0 = a0, bn0 = b0; now two cases occur:

• Assume that there is an infinite X ⊂ IN such that n ≤ m, n,m ∈ X →
tn ≤ tm; then if we consider z′n = (z0 ; a0 ⊗ b0 ; Ea0 ⊗ un ; a0 ⊗ b)A∗ ,

then n < m and n,m ∈ X → z′m < z′n: zm = A∗(tm ⊗ Eb)(z
′
m) <

A∗(tn ⊗ Eb)(z
′
n) = zn, hence A∗(tn ⊗ Eb)(z

′
m) ≤ A∗(tm ⊗ Eb)(z

′
m) <

A∗(tn ⊗Eb)(z
′
n), and so z′m < z′n. We have therefore constructed a s.d.s.

in A∗(a0 ⊗ b) = A(a0)(b). Now observe that A(a0) is finite dimensional

(12.3.12 below!), hence the preptyx A(a0) is a ptyx, so A(a0)(b) is well-

founded.

• Assume that there is an infinite X ⊂ IN such that n ≤ m, n,m ∈ X →
tn 6≤ tm. Assume that Tr(a0) = {(x1, c1), ..., (xp, cp)}; if t ∈ I(a0, a) we

define a sequence s(t) by: s(t) = (y1, ..., yp), where yi is s.t. t(ci)(xi) = yi.

Now, one easily checks that: if s(t) = (y1, ..., yp), s(t
′) = (y′1, ..., y

′
p), then

t ≤ t′ ↔ y1 ≤ y′1∧...∧yp ≤ y′p. We define a partition of C = {(n,m) ; n <

m∧n,m ∈ X} by C = C1∪...∪Cp, with (n,m) ∈ Ci iff yn1 ≤ ym1 , ..., y
n
i−1 ≤

ymi−1, yni > ymi , where s(tn) = (yn1 , ..., y
n
p ), s(tm) = (ym1 , ..., y

m
p ). Ramsey’s

theorem applied to this partition yields Y ⊂ X, Y infinite together with

i0 ≤ p s.t. (n,m) ∈ Ci0 for all n,m ∈ Y , n < m. Then the sequence
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(yni0)n∈Y is a s.d.s. in 0n, contradiction. 2

12.3.12. Proposition (12.1.33).

If A and a are finite dimensional, so is A(a).

Proof. This is an analogue of 12.1.33; we easily get dim
(
A(a)

)
≤ dim(A) ·

2dim(a). 2

12.3.13. Theorem (12.1.34).

Assume that X is a finite set of finite dimensional ptykes of type σ; define

another set X ′ by:

a ∈ X ′ ↔ ∃a1, a2, a3 ∈ X ∃t1, t2, t3, t1 ∈ I(ai, a) , (i = 1, 2, 3)

such that Tr(a) = rg
(

Tr(t1)
)
∪ rg

(
Tr(t2)

)
∪ rg

(
Tr(t3)

)
.

a1

t1

t2
a2 a

T3

a3

Finally, define X ′′ by: a ∈ X ′′ ↔ ∃a′ ∈ X ′ I(a, a′) 6= ∅, and define

the category CX′′ by:

objects: elements of X ′′.

morphisms: I(a, a′).

Now, assume that A is a functor from CX′′ to τ , with the following

features:

(i) If a ∈ X ′′ and z ∈ Tr
(
A(a)

)
, then one can express z as Tr

(
A(t)

)
(z0)

for some a0 ∈ X, t ∈ I(a0, a), z0 ∈ Tr
(
A(a0)

)
. Furthermore, the

condition “rg
(

Tr(t)
)

minimal for C” renders t uniquely determined.

(ii) A(a) is finite dimensional for all a ∈ X.

(iii) If a, a′ ∈ X ′′, if t, u ∈ I(a, a′), then
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t ≤ u→ A(t) ≤ A(u) .

Then there is one and only one ptyx F of types σ → τ such that:

1. F |̀ CX′′ = A.

2. Tr(F ) is a set of pair (z ; a0) with a0 ∈ X.

Proof. We define the functor F ∗ in a way very close to 12.1.34; the details

are left to the reader. 2

12.3.14. Remarks (12.1.35).

(i) 12.3.13 extends to natural transformations: see 12.1.35 (i).

(ii) The question of the characterization of finite dimensional ptykes of

type σ → τ by means of a finite amount of information is not solved

by 12.3.13: even if we know the similar characterization for the type τ ,

there is still the problem of the finiteness of CX′′ . Since this category

is a category of finite dimensional objects, this question reduces to the

finiteness of X ′′, which in turn can be reduced to the finiteness of X ′.

Now we see that X ′ will be finite, provided the following condition

is satisfied by σfd: if A,B ∈ |σfd|, then A · B ∈ |σfd|. There is

no evidence in general that A · B is even an element of C such that

σ = C → O. See Exercise 12.3.15 below. However, in practice 12.3.13

can be used to give finite characterizations, especially in the case of

the finite types, generated from O by means of → and X... .
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12.3.15. Exercise.

(i) Assume that σ = C → O. Assume that C has the following prop-

erty: given a, b ∈ |Cfd|, c ∈ |C|, together with a
t−→ c, b

u−→ c,

there exists d ∈ |Cfd| together with morphisms a
t′−→ d, b

u′−→ d,

d
v−→ c, rendering the diagram

a t

t′

d c
v

u′

b u

commutative; moreover, if (d1, t
′
1, u
′
1, v1) is another solution, there

is a unique w: d
w−→ d1 such that: t′1 = wt′, u′1 = wu′, v = v1w.

Prove that, if A and B ∈ |σ|, so does their product A · B.

(ii) With the notation of (i), the 3-uple (t′, u′, d) is called a minimal cover

of (a, b). We assume not that it has the property of (i) together with:

For all a, b ∈ |Cfd| there are only finitely many minimal covers of

(a, b).

Prove that, if A and B ∈ |σfd|, so does their product A · B.

(iii) Assume that σ has the property that: A,B ∈ |σfd| → A · B ∈ |σfd|;
prove that given A,B ∈ |σfd|, the set of C ∈ |σfd| such that for some

T ∈ I(A,C), U ∈ I(B,C), we have Tr(C) = rg
(

Tr(T )
)
∪ rg

(
Tr(U)

)
.

From this deduce that the category σ enjoys the properties of C
described in (i) and (ii).

(Hint. (i) and (ii) follow from rather immediate considerations as to the

normal form w.r.t. A · B. (iii) is obtained by considering the finite set

{a ∈ |C| ; ∃z (z, a) ∈ Tr(A · B)}, and by showing that the minimal covers

of (A,B) are determined by their restriction to the finite category gener-

ated from this set... .)

12.3.16. Discussion (12.1.37).

In general, we cannot define weakly finite ptykes of type σ → τ ; however,
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in practice, we have often a concept of weakly finite ptyx in σ and τ ; then

it is possible to define weakly finite ptykes of type σ → τ to be those A’s

which send weakly finite ptykes of type σ on weakly finite ptykes of type

τ . This will be the case with finite types.

Similarly, it will be possible in practice to define various notions of re-

cursive tykes of type σ → τ ; this is left to the reader. In particular, this

definition is not difficult to give in the case of ptykes of finite types... .

The non-algebraic theory is not very satisfactory, except if we assume

that τ = O; this is not so bad because from that we can handle the gen-

eral case σ → τ , when τ is of the form τ ′ → O, using the isomorphism

between σ → τ and σ × τ ′ → O.

12.2.17. Theorem (12.1.40).

If a ∈ |σ|, let us denote by a+ Idσ the element of |σ → σ| defined by:

(a+ Idσ)(b) = a+ b (a+ Idσ)(t) = Ea + t .

Similarly, if t ∈ I(a, a′), let us denote by t + Idσ the element of I(a +

Idσ, a′ + Idσ) defined by: (t+ Idσ)(a) = t+ Ea.

(i) If A is of kind σ → O, then A and A ◦ (a + Idσ) are of the same

kind.

(ii) If T ∈ I(A,B), then T and T ◦ (t+ Idσ) are of the same kind.

Proof. See 12.1.40. 2

12.3.18. Outline of the construction (12.1.42).

Separation of variables and related topics can be easily carried out on the

model of what we did for σ = DIL, in the general context of σ → O.

There is, however, an important point: we used the unicity of the sum

decomposition in DIL; we cannot therefore transfer the argument to the

case where σ is not connected. However, it will be possible to render

the decomposition unique, by a representation σ =
∏
i

σi; if the indices i

are themselves well-ordered, it will be possible to render unique the sum
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decomposition (see 12.4.11 for more details). Hence, we obtain a separa-

tion of variables, which depends on a well-ordering of the components of σ.

12.3.19. Definition.

Define Ξcl
σ to be the sum

∑
i<0n

Bi of ptykes of type σ (if σ = C → O is

a proper class: this is always true, except for C = ∅), listed in a certain

order, which we do not specify. When A ∈ |σ → O|, we define

‖A‖ = A(Ξcl
σ) .

12.3.20. Remarks.

(i) The meaning of the expression A(Ξcl
σ) is the following: let ax be the

sum of th first x points in our given enumeration of |σ|; then

‖A‖ = lim
−→

∗ (
A(ax), A(Eaxay)

)
.

This direct limit is in general a proper class. But this is a well-

ordered one.

(Proof. Assume that (zn) is a s.d.s. in ‖A‖, then it is easy to produce

another s.d.s. in some A(ax)... . 2

This ordinal class corresponds to the ordinal classes F (0n) that

we used for dilators.

(ii) ‖A‖ is of course independent of the order of summation in Ξcl
σ: if

Ξ′clσ is another sum, then we can easily build a natural transformation

T ∈ I(Ξcl
σ,Ξ

cl
σ), and so A(T ) ∈ I(‖A‖, ‖A‖′), hence ‖A‖ ≤ ‖A′‖. By

symmetry ‖A‖ = ‖A′‖.

(iii) If we define the predecessors of A as we say in 12.3.18, then it is

likely that the class of predecessors of A, ordered by the predecessor

relation, is a well-founded order of height ‖A‖.

(iv) If we define ‖T‖ = T (Ξcl
σ), we obtain ‖ · ‖ as a functor, but this

functor depends on the enumeration of |σ|... . Let us call such a
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functor a norm for σ → O. Then “the” norm has the following

property: (Ai, Tij) has a direct limit in σ → O iff (‖Ai‖, ‖Tij‖) has

a direct limit (of course among ordinal classes).
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12.4. Products

12.4.1. Definition.

Assume that (σi)i<x are types; then we define a new type σ =
∏
i<x

σi as

follows: if σi = Ci → O, let C be the disjoint union of the categories Ci;
then σ = C → O.

A particular case is the case x = 2; then we use the notation σ × τ .

12.4.2. Notations.

(i) A functor A from C → O can be identified with the family (Ai)i<x,

with Ai = A|̀ Ci. In the same way T ∈ I(A,B) can be identified with

the family (Ti)i<x, with Ti = T |̀ Ci.

(ii) This induces the notation A =
⊗
i<x

Ai, T =
⊗
i<x

Ti. An equivalent of

∏
i<x

σi is:

objects: families (Ai)i<x, with Ai ∈ |σi| .
morphisms: families (Ti)i<x, with Ti ∈ I(Ai, Bi)... .

(iii) In the case x = 2, we use A⊗B, T ⊗ U .

(iv) Typical functors are the ptykes πi of type (σ → σi):

πi
( ⊗
j<x

Aj
)

= Ai πi
( ⊗
j<x

Tj
)

= Ti .

In the case i = 2, our notations are slightly inconsistent:

π1(A⊗B) = A , etc... π2(A⊗B) = B , etc... .

12.4.3. Definition.

(i) Tr
( ⊗
i<x

Ai
)

= {(z, i) ; z ∈ Tr(Ai)} .

(ii) Tr
( ⊗
i<x

Ti
) (

(z, i)
)

= (Tr(Tj)(z), i) .
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12.4.4. Remark.

This is nothing but the application of the general definition 12.2.3. In

particular we can apply the general results concerning the trace.

12.4.5. Theorem.

The following are equivalent:

(i)
( ⊗
l<x

Al,
⊗
l<x

T li
)

= lim
−→

( ⊗
l<x

Ali,
⊗
l<x

T lij
)

.

(ii) (Al, T li ) = lim
−→

(Ali, T
l
ij) for all l < x.

Proof. Left to the reader. 2

12.4.6. Theorem.

The following are equivalent:

(i)
⊗
l<x

T l1 ∧
⊗
l<x

T l2 =
⊗
l<x

T l3 .

(ii) T l1 ∧ T l2 = T l3 for all l < x.

Proof. Left to the reader. 2

12.4.7. Theorem.

dim
( ⊗
i<x

Ai
)

=
∑
i<x

dim(Ai) (cardinal sum).

In particular,
⊗
i<x

Ai is finite dimensional iff all Ai’s are finite dimen-

sional, and all Ai’s, but a finite number, are 0.

Proof. Left to the reader. 2

12.4.8. Remark.

In particular, if we know the finite dimensional ptykes of alltypes σi, then

we have an effective way of generating the finite dimensional ptykes of type∏
i<x

σi.
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12.4.9. Proposition.

The preptykes of type
∏
i<x

σi are exactly the
⊗
i<x

Ai, with Ai preptyx of

type σi for all i < x.

Proof. Left to the reader. 2

12.4.10. Discussion.

We only discuss the notion of recursive and weakly finite ptykes of type

X:

(i) If the notions of recursive ptyx of type σ and of type τ make sense,

then we say that a ptyx A of type σ× τ is recursive iff π1A and π2A

are recursive.

(ii) The same thing for weak finiteness: if we have given a meaning to

“weakly finite” in σ and τ , then A is weakly finite iff π1A and π2A

are weakly finite.

12.4.11. Discussion.

The principal problem, if we want to carry out the non algebraic theory for

products, is that, due to the lack of connectedness of the products
∏
i<x

σi,

we lose the unicity of the sum decomposition. However, it is possible to

obtain unique decomposition in the following situation:

(i) Assume that σ =
∏
i<x

σi, and that the σi’s are connected; then, if

A ∈ |σ|, write πiA =
∑
j<xi

Aij (the unique decomposition of πiA in

σi). Let y =
∑
j<x

xi, and define (Bj)j<y by: B∑
j<i

xj + k
= the ptyx C

of type σ such that

• k′C = 0 when k′ 6= k.

• kC = Aik.

(Of course we assume k < xi.)

Then A =
∑
j<y

Bj, and the coefficients Bj, as well as the ordinal



Ptykes of finite types 419

y, have been defined in a unique way. In the same way, we should

get unique decompositions for natural transformations. These de-

compositions are made unique by the idea that we first list objects

(morphisms) of C0, then of C1, ... .

(ii) This idea can be used to yield unicity of the decomposition in general

types:

• we represent σ as a product of types σi (i ∈ I).

• then we well-order I: we are therefore in the situation of (i) (recall

that σ ∼
∏
i<x

σi).

If the components σi of σ are enumerated in a well-ordered way,

(σi)i<x, and we want to define a norm ‖ · ‖ on σ, then the natural

solution seems to be: ‖A‖ =
∑
i<x

‖πiA‖, provided norms are defined

on the σi’s.

This norm has the property that (Ai, Tij) has a direct limit in σ

iff (‖Ai‖, ‖Tij‖) has a direct limit in σ.

Finally, can we say something as to the predecessor relation in σ ?

Assuming that the components σi of σ are well-ordered, and that the

predecessor relations are defined in the types σi, then the predecessors of⊗
i<x

Ai are the
⊗
i<x

A′i, where: for some j < x,

A′i = Ai for all i < j

A′j is a predecessor of Aj

A′i = 0 for all i > j .

This definition is obviously connected to the norm ‖ · ‖ : the well-

founded class {B ; B pred A} is of height ‖A‖.
There is an obvious analogy between the sum (of ordinals, dilators,

ptykes...) and the product of types... .
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12.5. Ptykes of finite types

The finite types are defined by:

(i) O is a finite type.

(ii) If σ and τ are finite types, so is σ → τ .

(iii) If σ and τ are finite types, so is σ × τ .

(iv) The only finite types are those given by (i)–(iii).

Most of the important facts concerning finite types, more precisely,

ptykes of finite types, can be extracted from the results of 12.2–12.4; there

are, however, a few additional remarks that may be of some interest:

1. It is easily shown, for all finite types σ, that:

A,B ∈ |σfd| → A · B ∈ |σfd| .

Hence, using 12.3.14–12.3.15, it will be possible to apply Theorem

12.3.13, and to obtain an effective enumeration of all ptykes of type

σ → τ which are finite dimensional.

2. From 1, it is now easy to obtain various concepts of recursive ptykes of

type σ.

3. In a similar way, weakly finite ptykes are defined by:

• weakly finite ptykes of type O are integers.

• weakly finite ptykes of type σ → τ are ptykes A such that A(a) is

weakly finite, for all a ∈ |σ|, a weakly finite.

• weakly finite ptykes of type σ × τ are ptykes A such that π1A and

π2A are weakly finite.

4. We now turn our attention towards connectedness of

• finite types; each type σ can be represented as a finite product σ0 ×
...× σn of connected finite types.
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• O is connected (i.e. n = 0).

• if τ ∼ τ 0 × ...× τ n, then

σ → τ ∼ (σ → τ 0)× ...× (σ → τ n) .

• if σ ∼ σ0 × ...× σn, τ ∼ τ 0 × ...× τm, then

σ × τ ∼ σ0 × ...× σn × τ 0 × ...× τm .

Let us observe that this decomposition lists the components σ0, ...,σn

in a certain order, hence the observations made at the end of Section

12.4 make it possible to define predecessors and norms for all ptykes of

finite types.

5. If we define h(σ) = 0, h(σ → τ ) = sup
(
h(σ) + 1, h(τ )

)
, h(σ × τ ) =

sup
(
h(σ), h(τ )

)
, then it is easily proved that

{e ; e is the index of a recursive ptyx of type σ}

is Π1
h(σ)+1 complete. (When h(σ) = 0, the concept of “recursive” we

use must allow infinite objects... .) The proof would use a generalization

of the β-completeness theorem to finite types: see Exercise 10.B.4.
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12.A. Gödel’s T and ptykes

The purpose of this section is to give a model of Gödel’s T by means of

ptykes of finite type. There are, however, two essential difficulties in this

task:

(i) The types of T are built from the atomic type l instead of O; this

difference can be formally abolished by identifying l with O. But this

means that the objects of T are now viewed as hereditary operations

(functors) acting on ordinals!

(ii) Of course, one wants this interpretation of T to bear some relation

with the original interpretation; but then a new difficulty arises: con-

sider for instance an object of type l → l in T , representing the

function
f(2n) = n

f(2n+ 1) = 0
.

It is not possible to find any ptyx A of type O → O coinciding with

f on integers: it is well known that dilators are increasing functions (n ≤
m → I(n,m) 6= ∅; I(n,m) 6= ∅ → I

(
A(n), A(m)

)
6= ∅...). We overcome

this difficulty by considering a system T ′, which is a variant of T :

T ′ contains one more atomic symbol: the term +l of type l → (l → l);

the rules for +l are:

t+ 0̄⇒ t t+ S(u)⇒ S(t+ u) .

All the other rules of T are unchanged, except the rule for R:

Rσ(t, u, 0̄)⇒ t

Rσ
(
t, u, S(v)

)
⇒ Rσ(t, u, v) +σ u(Rσ(t, u, v), v)

with

+σ→τ = λx λy λz +τ
(
x(z), y(z)

)
+σ×τ = λx λy +σ (π1x, π1y)⊗ +τ (π2x, π2y) .
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In fact this system T ′ was implicitly used in the proof of Howard’s

majoration theorem (7.A.25). Given a term of T ′, the majorizing term

constructed in 7.A.25 can be written in an obvious way in the system T ′.

Observe by the way that T ′ can be viewed as a subsystem of T . T ′ is in

some sense an “unwinding” of T . The mathematical structure of T ′ seems

to be far more interesting than the mathematical structure of T... .

To each term of T ′, we shall associate a ptyx of the same type; more

precisely, assume that t(x1, ..., xn) is a term of type τ , and that all free

variables of t are among x1, ..., xn (of respective types σ1, ...,σn); then

we define, given ptykes A1, ..., An of respective types σ1, ...,σn, a ptyx

t∗(A1, ..., An) of type τ ; we also define, when T1 ∈ I(A1, B1), ..., Tn ∈
I(An, Bn), a morphism t∗(T1, ..., Tn) ∈ I

(
t∗(A1, ..., An), t∗(B1, ..., Bn)

)
, in

such a way that the following hold:

1. t∗(EA1 , ...,EAn) = Et∗(A1,...,An) .

2. t∗(T1, ..., Tn) t∗(U1, ..., Un) = t∗(T1U1, ..., TnUn) .

3. t∗(T1, ..., Tn) ∧ t∗(U1, ..., Un) = t∗(T1 ∧ U1, ..., Tn ∧ Un) .

4. If (A1, T
i
1) = lim

−→
(Ai1, T

ij
1 ), ..., (An, T

i
n) = lim

−→
(Ain, T

ij
n ) , then

(
t∗(A1,

..., An), t∗(T i1, ..., T
i
n)
)

= lim
−→

(
t∗(Ai1, ..., A

i
n), t∗(T ij1 , ..., T

ij
n )
)
. (In other

terms, t∗ is a ptyx of type σ1 → (... → (σn → τ ) ...).)

12.A.1. Case of a variable.

If t(x1, ..., xn) = xi, define t∗(A1, ..., A)n) = Ai, t
∗(T1, ..., Tn) = Ti. Condi-

tions 1–4 are trivially satisfied.

12.A.2. Case of 0̄, s, +l .

0̄∗ is 0 (the ordinal 0)

s∗ is the dilator Id + 1

+l
∗ is the functor (bilator) sum .
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(In fact, we should have written, for instance: 0̄∗(A1, ..., An) = 0, 0̄∗(T1, ..., Tn)

= E0, ... .) Conditions 1–4 are immediately fulfilled.

12.A.3. Case of AP .

We consider t(u)(x1, ..., xn),that we can rewrite t(x1, ..., xn) u(x1, ..., xn);

we define

t(u)∗(A1, ..., An) = t∗(A1, ..., An) u∗(A1, ..., An)

t(u)∗(T1, ..., Tn) = t∗(T1, ..., Tn) u∗(T1, ..., Tn) .

Then t(u)∗ enjoy 1–4.

Proof. 1 and 2 come from the similar properties of t∗ and u∗; 3 comes from

12.3.9, 4 from 12.3.8. 2

12.A.4. Case of λ.

If t∗ has been defined, and λxt(x1, ..., xn) is λx
(
x1, ..., xn, x)

)
, we define(

(λxt)∗(A1, ..., An)
)
(A) = t∗(A1, ..., An, A)(

(λxt)∗(T1, ..., Tn)
)
(T ) = t∗(T1, ..., Tn, T )(

(λxt)∗(T1, ..., Tn)A = t∗(T1, ..., Tn,EA) .

By 1 and 2 it is immediate that (λxt)∗(A1, ..., An) is a functor of the

appropriate type, and (λxt)∗(T1, ..., Tn) is a natural transformation. Using

3 and 4, it is immediate that (λxt)∗(A1, ..., An) is a ptyx of the appropriate

type. Furthermore λxt∗ enjoys 1–4.

Proof. 1 and 2 are immediate; 3 and 4 follow from 12.3.9 and 12.3.8. 2

12.A.5. Case of π1, π2.

Assume that t∗ has been defined; then

(π1t)∗(A1, ..., An) = π1
(
t∗(A1, ..., An)

)
(π1t)∗(T1, ..., Tn) = π1

(
t∗(T1, ..., Tn)

)
(π2t)∗(A1, ..., An) = π2

(
t∗(A1, ..., An)

)
(π2t)∗(T1, ..., Tn) = π2

(
t∗(T1, ..., Tn)

)
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where π1 and π2 are the ptykes of 12.4.2 (iv).

1–4 are satisfied.

Proof. Because π1 and π2 are ptykes... . 2

12.A.6. Case of ⊗.

Consider (t⊗u)(x1, ..., xn), that we can rewrite as t(x1, ..., xn)⊗u(x1, ..., xn);

define

(t⊗ u)∗(A1, ..., An) = t∗(A1, ..., An)⊗ u∗(A1, ..., An)

(t⊗ u)∗(T1, ..., Tn) = t∗(T1, ..., Tn)⊗ u∗(T1, ..., Tn) .

Conditions 1–4 are fulfilled.

Proof. Immediate. 2

12.A.7. Case of Rσ.

We define

(1) R∗(A,B, 0) = A .

(1)′ R∗(A,B,E0) = EA .

(2) R∗(A,B, x+ 1) = R∗(A,B, x) +B(R∗(A,B, x), x) .

(2)′ R∗(T, U, f + E1) = R∗(T, U, f) + U(R∗(T, U, f), f) .

(2)′′ R∗(T, U, f + E01) = R∗(T, U, f) + E0B′(R∗(A′,B′,x′),x′) when T ∈
I(A,A′), U ∈ I(B,B′), f ∈ I(x, x′).

(3) R∗(A,B, x) = sup
y<x

R∗(A,B, y) when x is a limit.

(3)′ R∗
(
A,B,

⋃
i

fi
)

=
⋃
i

R∗(A,B, fi).

The first thing is to show that these definitions make sense; we show,

by induction on x, the existence of a functor Fx from ON < x to τ such

that Fx(y) = R∗(A,B, y), Fx(f) = R∗(EA,EB, f) and which is a “flower”,

i.e. Fx(Eyy′) = EFx(y)Fx(y′). The details offer no difficulty and are left to the

reader... . Then it remains to prove that the functor B∗ preserved direct

limits and pull-backs. We establish the existence of a normal form w.r.t.

R (a three-variable normal form): assume that z ∈ Tr
(
R∗(A,B, x)

)
, then

we define the normal form of z by induction on x:
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(i) If x = 0; then z ∈ Tr(A); consider a0, b0, x0, t0 ∈ I(a0, A), u0 ∈
I(b0, B), f0 ∈ I(x0, x): rg

(
Tr(t0)

)
= {z}, rg

(
Tr(u0)

)
= ∅, rg

(
Tr(f0)

)
= ∅ (hence x0 = 0, b0 = 0); then z ∈ rg

(
Tr
(
R∗(t0, u0, f0)

))
. The

fact that this solution is minimum is left as an exercise to the reader.

(ii) If x = y + 1, z ∈ Tr
(
R∗(A,B, y) + B

(
R∗(A,B, y), y

))
; we establish

a lemma:

12.A.8. Lemma.

If A and B are of type σ, then Tr(A+B) = Tr(A) ∪ rg
(

Tr(E0A + EB)
)
.

Proof. Easy induction on σ... . 2

Now two cases may occur:

1. z ∈ Tr
(
R∗(A,B, y)

)
; then the induction hypothesis yields a normal

form for z, by means of t0, u0, and f0 ∈ I(x0, y); from this we easily

obtain a normal form by replacing f0 by f0 + E01.

2. If z ∈ rg
(

Tr(E0A′+EB′)
)

withA′ = R∗(A,B, y), B′ = B(R∗(A,B, y), y):

assume that z = Tr(E0A′ + EB′)(z
′) with z′ ∈ Tr(B), and write z =

Tr(B)(T, g)(v), with T ∈ I
(
C,R∗(A,B, y)

)
, g ∈ I(y′, y); T , g, v are

unique if we require rg
(

Tr(T )
)
, rg(g) minimal for inclusion... . If rg(T ) =

{u1, ..., un}, write, for i = 1, ..., n ui ∈ Tr
(
R∗(A,B, y)

)
under their nor-

mal forms, which exist, by the induction hypothesis: ui = Tr
(
R∗(ti, ui, fi)

)
(zi);

consider the sets:

X = rg
(

Tr(t1)
)
∪ ... ∪ rg

(
Tr(tn)

)
Y = rg

(
Tr(u1)

)
∪ ... ∪ rg

(
Tr(un)

)
∪ {(v,A), y′)}

Z = rg
(

Tr(f1)
)
∪ ... ∪ rg

(
Tr(fn)

)
∪ rg

(
Tr(g)

)
∪ {y} .

If t0, u0, f0 are such that rg
(

Tr(t0)
)

= X, rg
(

Tr(u0)
)

= Y , rg
(

Tr(f0)
)

= Z, with t0 ∈ I(a0, A), u0 ∈ I(b0, B), f0 ∈ I(x0, x); then z has a nor-

mal form by means of t0, u0, f0: z ∈ rg
(

Tr
(
R∗(t0, u0.f0)

))
. The fact

that this 3-uple is minimum for inclusion is left to the reader.
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(iii) If x is limit, then one easily sees that

Tr
(
R∗(A,B, x)

)
=

⋃
y<x

Tr
(
(A,B, y)

)
;

if z ∈ Tr
(
R∗(A,B, x)

)
, we have z ∈ Tr

(
R∗(A,B, y)

)
for some y < x,

and the induction hypothesis yields a normal form for z by means

of t0, u0, and f0 ∈ I(x0, y); it suffices to replace f0 by the function

f1 ∈ I(x0, x) s.t. f1(z) = z for all z < x0... . The unicity is completely

trivial.

We have succeeded in definining R∗. Of course, if R is viewed as

R(x1, ...,

xn), then we proceed as in 12.A.2... .

12.A.9. Theorem.

The interpretation ( )∗ is a model of T ′: more precisely, if t(x1, ..., xn) ⇒
t′(x1, ..., xn), we have t∗ = t′∗.

Proof. The theorem means that, from

t(x1, ..., xn)⇒ t′(x1, ..., xn) ,

we can infer that

t∗(A1, ..., An) = t′∗(A1, ..., An)

t∗(T1, ..., Tn) = t∗(T1, ..., Tn)

for all A1, ..., An, T1, ..., Tn of appropriate types. But:

12.A.10. Proposition.

t∗
(
A1, ..., An, u

∗(A1, ..., An)
)

= v∗(A1, ..., An)

t∗
(
T1, ..., Tn, u

∗(T1, ..., Tn)
)

= v∗(T1, ..., Tn)

with

v(x1, ..., xn) = t
(
x1, ..., xn, u(x1, ..., xn)

)
.
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Proof. Straightforward induction on t... . 2

Now we observe that ∗ is compatible with the conversion rules:

(i) λxt(u)⇒ t(u): we must show that (λxt)∗(A1, ..., An)
(
u∗(A1, ..., An)

)
= v∗(a1, ..., an), with v

(
x1, ..., xn) = t

(
x1, ..., xn, u(A1, ..., An)

)
. But

(λxt)∗(A1, ..., An)(B) = t∗(A1, ..., An, B), hence the property follows

from 12.A.10; the case of morphisms is similar.

(ii) π1(t⊗u)⇒ t: obviously π1(t⊗u)∗(A1, ..., An) = π1
(
t∗(A1, ..., An)⊗

u∗(A1, ..., An)
)

= t∗(A1, ..., An). The case of morphisms is similar.

(iii) π2(t⊗ u)⇒ u: symmetric to (ii).

(iv) R(t, u, 0̄)⇒ t: we must show that R(t, u, 0̄)∗(A1, ..., An) = t∗(A1, ...,

An); butR(t, u, 0̄)∗(A1, ..., An) = R∗
(
t∗(A1, ..., An), u∗(A1, ..., An), 0̄∗

)
= t∗(A1, ..., An) since 0̄∗ = 0. For similar reasonsR(t, u, 0̄)∗(T1, ..., Tn)

= t∗(T1, ..., Tn).

(v) R
(
t, u, S(v)

)∗
⇒ v, with v = R(t, u, v) + u(R(t, u, v), v). We must

show that R
(
t, u, S(v)

)∗
(A1, ..., An) = v∗(A1, ..., An). But R

(
t, u,

S(v)
)∗

(A1, ..., An) = R∗
(
t∗(A1, ..., An), u∗(A1, ..., An), v∗(A1, ..., An)+

1
)

= R∗
(
t∗(A1, ..., An), u∗(A1, ..., An), v∗(A1, ..., An)

)
+u∗(A1, ..., An)(

R∗
(
t∗(A1, ..., An), u∗(A1, ..., An), v∗(A1, ..., An)

)
, v∗(A1, ..., An)

)
=

w∗(A1, ..., An). The same method proves the result for morphisms

(we are implicitly using the fact that +∗σ is the functor: A +∗ B =

A+B, T +∗ U = T + U).

(vi) t+ 0̄⇒ t: trivial.

(vii) t+ S(u)⇒ S(t+ u): trivial.

It is not easy to establish, by induction on a reduction t ⇒ t′, that

t∗ = t′∗:

– This holds for the conversion rules.

– This is preserved by transitivity
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t⇒ t′ t′ ⇒ t′′

t⇒ t′′

– This is preserved by the rules

t⇒ t′

λxt⇒ λxt′
t⇒ t′ u⇒ u′

t(u)⇒ t′(u)

t⇒ t′ u⇒ u′

t⊗ u⇒ t′ ⊗ u′
t⇒ t′

π1t⇒ π1t′
t⇒ t′

π2t⇒ π2t′

hence the theorem follows... . 2

12.A.11. Comments.

(i) The objects of T ′ can be viewed as ptykes; concretely, this means

that, when t is a closed term of type l → l, then the function t̃

from IN to IN associated with t by t(n̄) ⇒ t̃(n) (see 7.A.23), that

one usually identifies with t, is “naturally” extended into a dilator

(ptyx of type O → O); in particular the expression t̃(x) makes sense

for any ordinal x. It is remarkable that the data contained in t are

enough to make such an extension in a perfectly natural way: all

that we do in fact is to write the definition of the associated ptykes

t∗:

1. By using the usual reduction rules: for instance from R(a, b, 0)⇒
a, we define R∗(A,B, 0) = A.

2. By transferring 1 to morphisms: typically R∗(T, U,E0) = T .

3. By extending “by direct limits”: typically, in the clauses (3) and

(3)′ of the definition of R∗.

The only definition which does not follow “mechanically” from the

intended interpretation of T ′ is (2)′′ in the clauses for R∗; but this

clause follows from the fact that R∗ is a “flower”.

Hence the construction of t∗ from t is a very natural and intrinsic

process. It is not an exaggeration to say that the conversion rules

are sufficiently powerful to define the terms of T ′ on arbitrary ordinal

arguments... .
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(ii) An old question is the following: to find an intrinsic “ordinal assign-

ment” to terms of T , i.e., associate ordinals to all terms of T in a

natural way. Here this becomes possible:

1. To each term t of T , we associate a term t1 of T ′, which is formally

the same term. (But the reduction rules are not the same... .)

2. Then we consider the ptyx t∗1. Let us now give some particular

cases, depending on the type σ of t. The reader will easily find

out the precise general definition:

• if σ = l, then t∗1 is a finite ordinal, i.e. an integer; this is the

normal form of t1 in T ′. Let ‖t‖ = t∗1.

• if σ = l→ l, then t∗1 is a dilator; we define ‖t‖ = t∗1(ω).

• if σ = (l → l) → l, then t∗1 is a ptyx of type DIL → ON; we

define ‖t∗1‖ = t∗1(Ξ1), where Ξ1 is the sum of all recursive and

weakly finite dilators.

• if σ =
(
(l → l) → l

)
→ l, we consider the ptykes A of type

2, which send weakly finite dilators on integers: we call them

weakly finite. We define Ξ2 to be the sum of all recursive weakly

finite ptykes of type 2, and we let ‖t‖ = t∗1(Ξ2).

Of course we must explain these typical examples:

• In the case of type l, there is nothing special to say, except that

the ordinal ‖t‖ is < ω.

• The case of tupe l → l is obtained as follows: we want that

‖t(u)‖ ≤ ‖t‖ for all u of type l; since we have observed that

‖u‖ < ω, remark that ‖t(u)‖ = t∗1(u∗1) ≤ t∗1(ω) = ‖t‖.
• In the case of type (l → l) → l, we still want ‖t(u)‖ ≤ ‖t‖ for

all u of type l → l; however, here we must take an additional

requirement: we want the ordinal assignment to be preserved by

further extensions; in a reasonable extension U of T ,t he ordinal

‖t‖must be the same. What reasonable condition can we ask for

U ? A reasonable hypothesis will be that all the dilators (ptykes

of type O → O) corresponding to objects of type l → l of U ,

will still be weakly finite and recursive. Hence we are naturally
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led to t∗1(D) ≤ ‖t‖ for all D, weakly finite and recursive dilator,

and from that, the value ‖t‖ = t∗1(Ξ1) naturally follows.

• In the case of type
(
(l → l)→ l

)
→ l, we argue just as above:

what is a reasonable general property of all ptykes appearing

as u∗1, for some u in some extension U of T : typically, to send

weakly finite dilators on integers, as elements u∗1, u ∈ I do. This

gives the explanation for the values of ‖t‖ in that case.

We have so far proposed no ordinal for the types involving the

product. The question is delicate, however, one can take for a rea-

sonable hypothesis that

‖t‖ ≥ ‖π1t‖, ‖π2t‖
hence

‖t‖ = ‖π1t‖+ ‖π2t‖

could be a reasonable solution... .

(iii) When σ is finite type, the natural question to ask is to determine

the sets:

Xσ = {|t| ; t closed term of type σ of T} .

• It is plain that Xl = ω.

• Xl→l is the Howard ordinal η0: Since PA (or HA) and T are

“equivalent” systems, this can be viewed as a new evidence that

η0 is “the” ordinal of arithmetic; for indications as to the proof of

this fact, see (iv) below. A direct proof of this equality has been

given by Päppinghaus [120] (1982).

• X
(l→l)→l is a subset of the first stable ordinal σ0, by 11.C.9, 11/C/12/

This set is not an initial segment of σ0: for instance, it con-

tains an initial segment equal to η0, and the next point is ωCK1

(ωCK1 =
∥∥∥λxl→lx(x(0̄)

)∥∥∥)... . The question of the determination of

the ordinal

sup {z ; z ∈ X
(l→l)→l}



432 12. Ptykes

is an open question. Maybe this ordinal is strictly less than the

first recursively inaccessible... .

• X(
(l→l)→l

)
→l

is a subset of π1
3; of course, such a set will mainly

consist of stable ordinals, and its structure is not yet very clear... .

The interest of these ordinals lies in the fact that, besides the now

rather familiar association of the recursive ordinal η0 to arithmetic,

we now exhibit “non recursive ordinals of PA”, typically the ordinals

xσ = sup {z ; z ∈ Xσ} (of course the order type of Xσ is always

recursive...). The natural conjecture is the following:

Find generalized (elementary) principles of induction, involving

the ordinals xσ, in such a way that formulas of a certain logical

complexity (say K) which are theorems of PA, are provable by this

kind of induction up t xσ, σ depending only on K.

(iv) An interesting neighbor is Feferman’s system [77] of hereditarily re-

plete function over the ordinals: Feferman’s paper was the first se-

rious attempt to analyze the idea of ordinal denotation by means of

families of functions. The precise details are of no interest here; for

us, we can consider Feferman’s system as being T ′ + constants x̄ for

all x ∈ 0n, together with equations:

1. S(x̄) = x+ 1

2. x̄+ ȳ = x+ y

3. λxt(x)(u) = t(u)

4. π1(t⊗ u) = t

π2(t⊗ u) = u

5. R(t, u, 0̄) = t

R(t, u, x+ 1) = R(t, u, x̄) + u(R(t, u, x), x)

R(t, u, x̄) = sup
y<x

R(t, u, ȳ)

when x is limit (with an ad hoc notion of sup), together with prin-

ciples expressing that = is an equality... .

This system can obviously be interpreted in the same way as T ′,
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if we set x̄∗ = x... . Of course, since every closed term of type O in

this system has a unique normal form x̄, the question raised in [77]

by Feferman, can be translated as follows in our terminology: which

ordinals x are such that = x̄, for some closed t of type O, involving

no parameters ȳ, with y > ω ? Feferman’s conjecture (established

by Weyhrauch [121]) was that these ordinals are exactly the ordinals

< η0. The conjecture proves that Xl→l = η0.

(Proof. If x ∈ Xl→l, write x = t∗(ω) for some t ∈ T ′, t closed; then

t(ω̄) is a term of Feferman’s system, and t(ω̄) = x̄ in this system,

and by Weyhrauch’s result x < η0. Conversely, if x < η0, then x can

be expressed by means of a term t in Feferman’s system, using only

ω̄ as parameter: t(ω̄) = x̄; but then t∗(ω) = x, and x = ‖λgt(g)‖.2)

(v) The relation of T ′ (and therefore of T ) to ptykes is a rather new and

unexpected phenomenon. I hope that this could produce a revival

of the interest for T . Observe that the ptyx interpretation answers

(at least partly) the question: what is the meaning of closed nor-

mal forms 6= l ? (A closed normal form of type l is an integer; but

closed normal forms of higher types are more delicate to interpret.)

Typically consider the normal forms λx(1̄ + x) and λx(x + 1̄) in T :

they both represent the successor function: n ; n + 1. But the

associated dilators are 1 + Id and Id + 1, which are different. Hence

the interpretation by means of ptykes helps us to understand why

these two normal forms are different: the associated dilators are not

the same. (But this says nothing as to the difference between S and

λx(x+ 1̄)!)

12.A.12. Exercise.

Show that, when t is a closed term of σ, t∗ is a weakly finite ptyx, and is

recursive.
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12.A.13. Question.

What is the relation between the ordinal |t| and the structure of the com-

putation of the normal form of t ? It seems reasonable that |t|, viewed as

a direct limit, can be shown to exist by elementary ways; of course these

elementary methods would only enable us to construct the linear order |t|,
and nothing more; presumably a (weak) well-foundedness assumption as

to |t| would then entail normalization for t... .


