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Abstract
This second installment expands our analytics of determinism [5] to

the non-deterministic case, in close relationship with additive proof-nets.

1 Introduction

1.1 Non-determinism
The characteristic of the analytic layer is to be self-contained, i.e., beyond in-
terpretation, thus both indisputable and meaningless. Not to be confused with
semantics, which is a structured, therefore biased — for better or for worse —
approach. Analytics splits into two sublayers, constative and performative.

A reasonable approximation to analyticity is given by pure λ-calculus, nor-
mal terms being constative — explicit —, the others being performative — im-
plicit. The knitting constat/performance relies on strong normalisation and the
Church-Rosser property. The π-calculus — or rather calculi, since the notion
is rather disposable — would like to be the non-deterministic λ-calculus, a sort
of untyped linear logic. Whatever standpoint — analytic or synthetic — we
adopt, π-calculi are either too cooked or too raw: this half-baked approach is
by no means an approximation to a non-deterministic analytics.

By the way, λ-calculus is not quite analytic, i.e., not self-contained: this is
due to the external character of the rewriting in charge of performance. More-
over, the approach involves a functional bias which can be seen as an external
polarisation: the distinction between arguments and values. Our first install-
ment [5] fixes this want of analyticity by means of stars and constellations:
constats are nothing but uncoloured constellations and performance — a.k.a.
colour-elimination — is obtained by matching rays of complementary colours,
e.g., t and u, in green and magenta: the physical plugging between t and u
is handled by means of the m.g.u. (most general unifier) θ s.t. tθ = uθ.
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Stars and constellations are offsprings of the proof-nets of linear logic. They
can also be viewed as cousins — since both ultimately come from Herbrand
and Gentzen — of the resolution at work in the ill-fated logic programming: a
clause Γ`A can be seen as a star, with a magenta tail Γ and a green (resp.
uncoloured) head A (resp. A).

However, resolution does not provide a good analytics. First because the
variables occurring in the head and tail may not be quite the same; second,
because of the mess produced by multiple matchings. By requiring all rays of a
star to use exactly the same variables, [5] fixes once for all the first drawback.
By requiring any two rays of the constellation to be disjoint i.e., not matchable
— thus coping with multiple matchings —, [5] produced a nice deterministic
analytics. This limitation is however too drastic, since additive operations of
logic are basically non-deterministic: A&B denotes a non deterministic choice
between A and B.

In order to cope with non-determinism, it is therefore necessary to allow
multiple matchings: in this way, we may encounter an alternative between tθ =
u′θ and tθ = u′′θ. This liberalisation is however too brutal: since the various
alternatives are not correlated, we obtain a sort of Alzheimer non-determinism
— the kind at work in logspace computation. In particular, the seminal
np satisfiablity problem — which involves a consistent evaluation true/false
of each propositional atom — cannot be handled in this way. The necessary
coordination between the various non-deterministic choices prompts us to equip
our constellations with a structure of coherent space: two stars S, T can be
plugged, i.e., may be part of the same dendrite1, only when S ¨ T .

This solution agrees with the analytic part of additive nets: given constel-
lations C,D corresponding to the premises `Γ, A and `Γ, B of a &-rule with
conclusion `Γ, A & B, we can form the constellation C

ˇ
+ D, in which any two

stars S ∈ C and T ∈ D are incoherent: S ˇ T . Incidentally, observe that C
and D may have some stars in common; they should be considered as distinct,
hence the use of A

ˇ
+ B instead of A

ˇ
∪ B.

When handling exponentials, rays p(t) are replaced (see 4.1 below) with
p(t)y := p(t · y), where y is a fresh variable, to the effect that a star S becomes
Sy: depending upon the values i, j, . . . assumed by y, we shall thus get copies
Si,Sj , . . . of the original S. Now, quid of the coherence in terms of copies? Let
us assume, for simplicity, that y assumes closed values yθ = i, yπ = j. Inside
the same copy, the coherence reduces to the original one: Si ¨ Ti iff S ¨ T .
But there is no incoherence between distinct copies: Si ¨ Tj when i 6= j.

Our coherence takes the form of a (finitely generated) set S † T of forbidden
substitutions2. Typically, in the additive example of two incoherent S and T ,
Sy † Tz is defined as the set of those θ s.t. yθ = zθ.

1Diagram in [5].
2Self-incoherence is the fact that a star S may only occur for certain instanciations Sθ.
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1.2 The stuff as types are made on
Coherent constellations are enough to cope with the analytics — the untyped
computational structure — of additive proof-nets. But inadequate from the
synthetic standpoint: the correctness criterion is not so easily handled. This
synthetic inadequation prompts us to revisit our approach.

The obvious idea is to handle the logical link with premises A,B and conclu-

sion A& B by a L/R switch: either &L := J
qA(x)
qA&B(x)

K or &R := J
qB(x)
qA&B(x)

K.

Each switching of the & links thus induces a slice, a sort of parallel universe.
But this poses a sort of problem of A free will B : when I select the position L,
how do I know that I was not already in the left slice, i.e., that I could have
freely selected R? Like in science fiction3, we may have the illusion to be external
to a universe (the slice) we are indeed part of. This technically translates as the
failure of additive normalisation: a cut between A&B and ∼A⊕∼B is replaced
with one between A and ∼A (resp. B and ∼B) depending upon the premise
∼A (resp. ∼B) of ∼A ⊕ ∼B. But this require this premise to be independent
of the choice A/B: if the premise ∼B (resp. ∼A) is chosen in slice A (resp. B),
the procedure fails.

The early approach to additives involved boxes, an ad hoc solution to the
question. The proof-nets introduced in [4] used boolean weights accounting for
the various choices L/R, i.e., for the slicing. Normalisation involved a global
rewriting corresponding to the evaluation of those weights, i.e., an external
viewpoint which makes it not quite analytic. Moreover, the question of logi-
cal correctness was not handled in a satisfactory way, i.e., respecting an Ob-
ject/Subject opposition: the Object (the upper part of the proof-net) should
be opposed to the Subject (the lower part of the proof-net) in a series of pre-
defined tests. In this respect the criterion given in [7], although ensuring exact
sequentialisation, was even less satisfactory: it cannot be reduced to a series
of tests. Slightly less general, my own criterion [4] relied on tests making use
of jumps depending upon the Object, hence not available prior to the Object
tested.

It took a long time to realise that sequentialisation — the possibility of
writing a proof-net by means of sequent calculus rules —, albeit useful, was not
that central: what actually matters is the possibility of eliminating cuts. Indeed,
it is possible to construct non sequential multiplicative connectives (see annex
A below)— thus admitting no sequent calculus — enjoying normalisation. The
criterion for a good proof-net is thus not sequentialisation, but cut-elimination.

Now remember that the upper part of a proof-net is a blue constellation and
the lower part is a constellation in yellow/uncolored. This lower part is basi-
cally obtained as the normal form of another constellation using the additional
colours magenta and green . This constellation is built by combining the bridges

3Simulacron 3, The Matrix, etc.
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J
pA(x)
qA(x)

K (for atoms) and J
qA(x)
pA(x) K for conclusions, and various lego bricks,

e.g., J
qA(x),qB(x)
qA⊗B(x)

K and J
qA(x)
qA`B(x)

K + J
qB(x)

K and J
qB(x)
qA`B(x)

K + J
qA(x)

K

for multiplicatives.
I propose to use the extra colours cyan and red as variants of magenta and

green to form a third position of the & switch: besides &L and &R,

&M := (J
qA(x)
qA&B(x)

K
ˇ
+ J

qB(x)
qA&B(x)

K) + J
qA&B(x)
qA&B(x)

K. &M obviously normalises

into J
qA(x)
qA&B(x)

K
ˇ
+ J

qB(x)
qA&B(x)

K = &L

ˇ
+ &R, the point being that the normal-

isation cyan/red can be postponed.
In presence of A mosaic B switchings like &M , the normal form becomes the

sum of several copies J pΓ(x) K1, . . . , J pΓ(x) Kk of the same star. Using Church-
Rosser, this normal form can be obtained in two steps, first eliminate the colours
yellow/blue and magenta/green , yielding a normal form C, then the colours

cyan/red . Let Ci (i = 1, . . . , k) be the subconstellation of C contributing to
J pΓ(x) Ki (in general C ) C1 ∪ . . .∪Ck). The additional independence condition,
indeed an offspring of my first criterion for quantifiers [3], writes:

C1 ∩ . . . ∩ Ck 6= ∅

Let us now see how the criterion ensures A free will B. Consider a proof-net
with a single conclusion (A&B)⊗C, and switch it, with the downmost A & B on M.
We get two Ci, say CL and CR corresponding to &L and &R; each of them is a sum

J
qA&B(x)

Ki + J
qA&B(x)
p(A&B)⊗C

Ki. Now, two stars with the same rays are considered

equal only if they have been built in the same way, from the same dendrite.
Therefore, the two J

qA&B(x)
Ki are distinct. The independence condition thus

requires the two J
qA&B(x)
p(A&B)⊗C

Ki to be equal; in other terms, what happens in the

proof-net above C should not depend upon the choice L/R between A and B.

2 Analytics proper

2.1 Background: substitutions
Since analytics basically means A self-contained B, it implies A finite B: the
etcætera at work in infinite structures is the obvious reference to something
not quite present. Hence the use of functional terms and Herbrand’s unification
to avoid the use of actual infinity. A functional language involving function
letters and variables is therefore fixed once for all.
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A substitution θ assigns to each variable x, y, z, . . . a term4 xθ, yθ, zθ. In
order to stay finite, we assume that the substitution is idle (wθ = w) on almost
all variables w; it can therefore be presented through its action on a finite set
of variables. A substitution can be extended to all terms by means of:

tθ := t[xθ/x, yθ/y, zθ/z, . . . ]

Hence the possibility of composing substitutions: x(πθ) := (xπ)θ. Composition
induces a preorder:

θ � υ ⇔ ∃θ′ υ = θθ′

Hence the identity tι := t is the smallest substitution.
An equation t = u between terms may be solved by a unifier θ:

tθ = uθ

A celebrated result of Herbrand states the existence of a most general (or small-
est) unifier (m.g.u.) — if any —, i.e., of a θ such that any unifier υ can uniquely
be written υ = θθ′.

Matching is unification with bound variables: in order to match t and u,
we first modify their respective variables to make them distinct, then we unify.
Matching induces a structure of conditional lattice on substitutions: assume
that θ, υ are idle for variables other than x, y, z and let f be ternary; then θ and
υ have a supremum iff f(xθ, yθ, zθ) and f(xυ, yυ, zυ) are not disjoint, i.e., do
match; the l.u.b. π = θ ∨ υ is obtained by writing the result of the matching as
f(xπ, yπ, zπ).

The terms t stands for the potentiality of all its substitutes. However, our
analytics makes use of exceptions: typically, f(x, y), unless x = y. The general
form an exception is that of an ideal ; by this I mean an upward-closed set
of substitutions with — up to equivalence — finitely many minimal elements
θ1, . . . , θk. For instance A unless x = y B is the ideal generated by the substitition
xθ = yθ := x. Two ideals are of special interest: the empty one ∅ and the full
(or trivial) one Ω generated by the identity substitution ι.

Quid of the behaviour of an ideal I under a substitution θ? Indeed, given
υ ∈ I, we may form (if possible) the l.u.b. υ ∨ θ which can be written as a
composition θ(θ−1υ); then the ideal θ−1I is defined as the set {θ−1υ; υ ∈ I}.
Its generators are the images of the generators of I under the map θ−1·; note
that, since this map is partial, some generators may be missing. Typically,
coming back to the ideal A unless x = y B, θ−1I = ∅ when xθ, yθ are disjoint.
But θ−1I is the trivial ideal Ω when xθ = yθ.

Ideals are used to describe dynamic situations of the sort A S and T are
coherent except for certain values B. These forbidden values are the substitutions
of some ideal S † T , so that A except for B keeps a finitary meaning. When
associating ideals to expressions depending upon variables x, y, z, only those
variables do matter: if xθ = xπ, yθ = yπ, zθ = zπ and θ ∈ I, then π ∈ I. In
particular, if we deal with a closed expression, the ideal is either ∅ or Ω.

4The notation xθ is friendler than θx.
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2.2 Stars and constellations
A star S is set of rays, t1, . . . , tn+1, i.e., terms with exactly the same variables.

The variables in the star are bound, i.e., local to the star: we should indeed
use the notation νX.J t1, . . . , tn+1 K, where X = x1, . . . , xk are the variables
occuring in the rays ti. Since this notation is a pain in the ass, we shall prefer
a sort of α-conversion, the replacement X = x1, . . . , xk with Y = y1, . . . , yk
in J t1, . . . , tn+1 K yielding J ti[Y/X], . . . , tj [Y/X] K. The renaming of variables
corresponds to the substitution xiθ := yi. More generally, substitutions act on
stars: if θ is any substitution, then Sθ := J t1θ, . . . , tn+1θ K.

A constellation C is a finite set of stars5 together with a sort of coherence:
the set of the Sθ (S ∈ C, θ substitution) is equipped with a binary symmetric
relation Sθ ˇ Tπ s.t. Sθ ˇ Sθ implies Sθ ˇ Tπ. This relation, restricted to the
set of self-coherent Sθ (Sθ ¨ Sθ) is therefore a coherent space.

This coherent space should be finitary, i.e., presented by means of ideals
S † T . Or rather S † T ′: we must first rename the variables of T to make
them distinct from those of S. Then Sθ and Tπ can be simultaneously written
as Sυ, T ′υ. The set S † T ′ := {υ;Sυ ˇ T ′υ} is required to be an ideal. In
other terms, coherence is assumed unless. . . it falls into a finitely generated set
of exceptions. Typically, if S, T respectively depend upon x, y, they may be
coherent unless x = y. Applying a substitution restricts the coherence: S † T is
replaced with θ−1(S † T ) which may be trivial, i.e., equal to Ω.

Define S† as the ideal {θ;Sθ ˇ Sθ}; if θ ∈ S†, then Sθ is self-incoherent, in
other terms, unfit. We can therefore see S† as a set of forbidden substitutions.
An extreme case is when S† = Ω, in case all substitutions are forbidden: in
particular S is self-incoherent. Such stars are not quite excluded, but they
can be neglected, counted as nil. This sheds a new light as to the expression
A forbidden B: a forbidden substitution kills the star, hence the notation S† for
the ideal of star-slayers.

The coherent space structure is subject to the following restriction:

If s ∈ S and t ∈ T and sθ = tπ, then either Sθ ˇ Tπ or S = T and s = t.

The deterministic case corresponds to a flat coherence S † T = ∅. The con-
dition above reduces to the non-matchability required in [5].

2.3 Colours and explicitation
Colours are specific unary function symbols, used only in prefix. Terms of
distinct colours do not match.

Colours come by pairs: green/magenta, blue/yellow, red/cyan; instead

of green (t), magenta(t) (resp. blue (t), yellow(t), or red (t), cyan(t)), we write

t , t (resp. t , t or t , t). The colours green,blue and red are additive, ma-
genta,yellow and cyan being substractive. In logical contexts, we try to use
additive colours for conclusions, negative ones for premises.

5Possibly with repetitions; due to the coherence, we cannot however speak of a multiset.
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The process of explicitation consists in eliminating colours in a constellation
C; w.l.o.g. we can assume that only one pair of colours, say green/magenta

has been used: in presence of a second pair blue/yellow, replace t , t with

f(t) , f(t), where f is a new function letter.
A dendrite (diagram in [5]) is a connected and acyclic graph whose vertices

are stars of C; if a star is used several times, its variables should be renamed so
as to make them distinct. Edges are formal equations t = u between rays of
complementary colours.

The actualisation D of a dendrite ∆ consists in matching the uncoloured
terms underlying each edge: t = u becomes the actual matching tθ = uθ′. D
can thus be seen as a set of substituted stars Sθ; we require D to be a clique in
the coherent space C. The requirement encompasses self-coherence: if Sθ ∈ D,
then θ 6∈ S†.

Strong normalisation is defined as expected:

1. There are only finitely many correct dendrites. In other terms, for an
appropriate N , all dendrites of size N + 1 fail. Since a dendrite of size
N+2 contains dendrites of sizeN+1, there is no point in forming dendrites
of bigger sizes.

2. A ray of the dendrite is free when not involved in an edge; we require that
there is no closed — without free ray — correct dendrite.

A dendrite with no coloured free ray is styled uncoloured ; the residual star
Dr of an uncoloured correct dendrite consists in the free rays of the actualised
dendrite.

The star Dr is equipped with the ideal consisting of those π s.t. Dπ fails to
be a clique when substituted by π. And Drπ ˇ Erπ′ when Dπ ∪ Eπ′ fails to be
a clique.

By the way, observe that the same star may occur several times in the normal
form, typically when obtained from different dendrites. These A occurrences B

are necessarily incoherent.

2.4 Church-Rosser
An uncoloured term is a term not beginning with a colour function; since
colours are up to my choice, I may forget certain pairs, to the effect that certain
coloured terms may be styled uncoloured. As to colour-elimination, in presence
of two pairs green/magenta and blue/yellow, I may either eliminate them

in a single step or forget that blue/yellow are colours and eliminate the sole

green/magenta; then remember that blue/yellow are colours and eliminate
them from the normal form. This induces three possible ways of eliminating
two pairs of colours.

These three ways are basically equivalent, except for a small discrepancy: the
non-normalisable three-coloured star J x , x, x K (x in green , magenta, blue )
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can be normalised in two steps (blue/yellow, then green/magenta). I pro-
posed in [5] a way to fix this minor issue, which although technically correct, is
a sort of minor unknitting constat/performance.

In the sequel of the paper, I will act as if Church-Rosser were completely
unproblematic. This is slightly incorrect, but the real point is not there anyway.

3 Additives

3.1 The analytics of additives
pA and pB are defined from pA&B by: pA(x) := pA&B(l·x), pB(x) := pA&B(r·x).
In the same way, pA and pB would be defined from pA⊕B by:
pA(x) := pA⊕B(l · x), pB(x) := pA⊕B(r · x).

&-rule: if the proof π of `Γ,∆,∆′, A & B comes from proofs ν of `Γ,∆, A,

and µ of `Γ,∆′, B, then π• := ν•
ˇ
+ µ•, i.e., the disjoint union of ν• and

µ• in which any two stars S ∈ ν• and T ∈ µ• are incoherent: S † T = Ω.

⊕L-rule (resp. ⊕R-rule): if the proof π of `Γ,∆, A⊕B comes from a proof
ν of `Γ,∆, A (resp. `Γ,∆, B), then π• := ν•.

Real logic is to be found in the combination vehicle + ordeals. Sequent
calculus can be seen as a collection of recipes producing vehicles, a sort of
shorthand, by no means the real thing. We must therefore give up the idea of
a sequentialisation in the sense of the reduction to a preset system of sequent
calculus rules. For instance, there are other additive constructions, typically a
4-ary analogue, the A multibox B [2] — which combines proofs of `Γ,∆, A,C,
`Γ,∆, A,D, `Γ,∆, B,C, `Γ,∆, B,D, yielding `Γ,∆, A & B,C & D. This
direct construction cannot be reduced to the binary case: the translation would
keep track of the order in which the two &-rules have been performed.

Sequentialisation being out, we concentrate upon an additive criterion en-
suring normalisation. The general idea is that an additive cut between — say —
a &-rule and a ⊕L-rule, i.e., the physical plugging between A&B and ∼A⊕∼B
amounts at plugging the left premise A of the &-rule with the premise ∼A of
the ⊕L-rule: as observed in [5], this operation which does not affect the vehicles,
is basically a change of syntheticity. The right premise of the &-rule, i.e., µ•,
since incoherent with ν•, will not contribute to the eventual normal form, as if
erased by this change of syntheticity.

The delicate point comes from the fact that nothing forbids intricate sit-
uations, typically that of an incoherent sum ⊕L + ⊕R, the two rules being
respectively incoherent with the premises A and B of the &-rule: the physical
plugging of A&B and ∼A⊕∼B amounts at two incoherent pluggings A/∼A,
B/∼B: an unwelcome possibility that the correctness criterion is supposed to
avoid.
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3.2 The synthetics of additives
We shall make use of mosaics, i.e., ordeals built with the extra colours red and
cyan. Depending upon a switching, i.e., a choice L/R/M (left/right/mosaic) for
the A&B, the following lego bricks are introduced:

&L: J
qA(x)
qA&B(x)

K.

&R: J
qB(x)
qA&B(x)

K.

&M : (J
qA(x)
qA&B(x)

K
ˇ
+ J

qB(x)
qA&B(x)

K) + J
qA&B(x)
qA&B(x)

K.

⊕: J
qA(x)
qA⊕B(x)

K
ˇ
+ J

qB(x)
qA⊕B(x)

K.

The notations + and
ˇ
+ are respectively for coherent and incoherent sums.

&M can be seen as the sum &L+
ˇ
+ &R (into which it normalises) together with

a possible pruning at the level of the edge qA&B(x) = qA&B(x) .
As to the correctness criterion, once a switching has been chosen, we first

require the normal form to be J pΓ(x) K1

ˇ
+ . . .

ˇ
+ J pΓ(x) Kk (k 6= 0). Now,

J pΓ(x) Ki comes from a dendrite with internal edges using the three pairs of
colours; if we decide to connect the green/magenta and blue/yellow edges,

we get a dendrite in red/cyan/uncoloured which can be seen as a constellation
Ci — the mosaic normal form. We require that C1∩ . . .∩ Ck 6= ∅ (independence).

Vehicles obtained from sequent calculus proofs are easily shown to enjoy
our correctness condition. Let us concentrate on independence: the basic case
is that of a terminal & link switched on M: the star containing the conclusion

pA&B(x), i.e., J
qA&B(x)
qA&B(x)

K is in C1 ∩ . . . ∩ Ck. The condition is preserved by

tensor product: if the proof π of `Γ,∆, A⊗B comes from proofs ν of `Γ, A and
µ of `∆, B, then π• := ν•+µ•. If the vehicle ν• (resp. µ•) enjoys independence,
there is an independent star S ∈ C1 ∩ . . . ∩ Ck (resp. T ∈ D1 ∩ . . . ∩ Dl). If
the conclusion pA(x) (resp. pB(x)) is not in S (resp. T ), then it remains
independent in π•. If S = J t1, . . . , tm, pA(x) K and T = J pB(x), u1, . . . , un K,
then J t1, . . . , tm, pA⊗B(x), u1, . . . , un K is independent.

3.3 Normalisation
The main knitting of logic, the adequation usine/usage, rests upon cut-elimination,
which is an analytic operation — a performance. However, in order to show its
convergence, we must introduce a counterpart corresponding to the replacement
of a cut with simpler ones. In this synthetic cut-elimination, which affects the
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ordeals but not the vehicle, what matters is the preservation of correctness.
Since our condition now involves mosaics, we must first consider the case of a
cut [C] := [(A⊗B)⊗ (∼A`∼B)]: its replacement with two cuts [A⊗∼A] and
[B ⊗∼B], should preserve independence. Let us set the ` switch of ∼A`∼B
on L, so that the normal form involves dendrites Ci which become, after re-
placing our cut with two cuts, dendrites C′i and let S ∈ C1 ∩ . . . ∩ Ck be an
A independent star B. If pC(x) 6∈ S, then S ∈ C′1 ∩ . . . ∩ C′k; if pC(x) ∈ S, then
the star S ′ containing the rays pA(x) and p∼A(x) is the same in all C′i, hence
S ′ ∈ C′1 ∩ . . . ∩ C′k.

Now let us consider an additive cut [C] := [(A & B) ⊗ (∼A ⊕ ∼B)]; the
synthetic cut-elimination replaces it with the two cuts [A⊗∼A] and [B ⊗∼B],
the difference with the multiplicative case being that, provided on selects a
switching, only one of those two cuts is actually used.

A (non mosaic) ordeal for Γ, [C] is a sum S + T + T ′1 or S + T + T ′2, with

T := (J
q∼A(x)

q∼A⊕∼B(x)
K
ˇ
+ J

q∼A(x)
q∼A⊕∼B(x)

K) + J
qA&B,q∼A⊕∼B

qC(x)
K + J

qC(x)
pC(x) K, and

T ′1 := J
qA(x)
qA&B(x)

K, T ′2 := J
qB(x)
qA&B(x)

K. T + T ′1 and T + T ′2 admit U1 :=

J
qA(x),q∼A(x)

pC(x) K
ˇ
+ J

qA(x),q∼B(x)
pC(x) K and U2 := J

qB(x),q∼A(x)
pC(x) K

ˇ
+ J

qB(x),q∼B(x)
pC(x) K

as normal forms.
Since V +S+T +T ′i strongly normalises into J pΓ(x), pC(x) K, V +S strongly

normalises into some W s.t. W + Ui normalises into J pΓ(x), pC(x) K. The part
of W contributing to the normal form is made of at most four stars contain-
ing the various rays of pΓ(x) as well as qA(x) , qB(x) , q∼A(x) , q∼B(x) : stars

]1, ]2, ]3, ]4 respectively contain the rays qA(x) , qB(x) , q∼A(x) , q∼B(x) . Our
claim is that only three stars are present, i.e., that one among ]3, ]4 is absent. To
prove the claim, we introduce a mosaic, namely the position &M of the switch.

Then T ′1, T ′2 become T ′3 := (J
qA(x)
qA&B(x)

K
ˇ
+ J

qB(x)
qA&B(x)

K) + J
qA&B(x)
qA&B(x)

K and

the normal form of S + T + T ′3 becomes the mosaic

U3 := (J
qA(x)
qA&B(x)

K
ˇ
+ J

qB(x)
qA&B(x)

K)+(J
qA&B(x),q∼A(x)

pC(x) K
ˇ
+ J

qA&B(x),q∼B(x)
pC(x) K).

The mosaic normal form of V + S + T + T ′3 contains subconstellations C1 and
C2 corresponding to T ′1 and T ′2. Since C1 ∩ C2 6= ∅, the common star must be
the one containing pC(x); this means that, in both cases the same star (among

J
qA&B(x),q∼A(x)

pC(x) K and J
qA&B(x),q∼B(x)

pC(x) K) has been used; this is possible only

if one among ]3, ]4 is absent. What is excluded by the independence condition
is a possible correlation, e.g., ]1 ˇ ]3, ]2 ˇ ]4.

One should now consider a general mosaic switching and prove that inde-
pendence is preserved; this is straightforward.
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4 Exponentials once more

4.1 Fixing a bug
First I must acknowledege a mistake in [5]: the printed version systematically
used pA(t) · x instead of pA(t · x). Since the two are isomorphic, this mistake
has little consequences; however, since pA(t) · x is not an instance of pA<B(x),
it is not compatible with η-expansion. The analytics of exponentials should be:

Dereliction: if the proof π of `Γ,∆, A comes from a proof ν of `Γ,∆, A, then
π• := ν• in which the terms pA(t) have been replaced with pA(t ·d), where
d is a constant.

Weakening: if the proof π of `Γ,∆, A comes from a proof ν of `Γ,∆, then
π• := ν•.

Contraction: if the proof π of `Γ,∆, A comes from a proof ν of `Γ,∆, A′, A”,
then π• := ν• in which the terms pA′(t · u) (resp. pA”(t · u)) have been
replaced with pA(t · (l · u)) (resp. pA(t · (r · u))).

n-rule: if the proof π of `Γ,∆, A n B comes from a proof ν of `Γ,∆, A,B,
then π• := ν•, with pA, pB defined by pA(x) := pAnB(l · x), pB(x) :=
pAnB(r · x).

<-rule: if the proof π of `Γ′,∆,∆′, A < B comes from proofs ν of `∆, A
and µ of `Γ′,∆′, B, we define pA(x) := pAnB(l · x), pB(x) := pA<B(r ·
x). We modify ν• into ν•1 by replacing all pA(t) with pA(t · y), with y a
fresh variable. Due to this variable, ν•1 is no longer a constellation; we
homegeneise ν•1 into ν•2 by replacing all terms pC(t · u) with C ∈ ∆ with
pC(t · (u · y)). We define π• := ν•2 + µ•.

Its synthetics should be:

<δ: J
qA(x · x),qB(x)

qA<B(x)
K.

<l: J
qA(x · l),qB(x)

qA<B(x)
K.

nR: J
qB(x)
qAnB(x)

K + J
qA(x · y)

K + J
qA(x′ · y′)

K, except if x = x′.

nL′ : J
qA(x · y)
qAnB(x · y)

K.

Since nL′ is cancelling, we may as well consider the incoherent sum nR

ˇ
+ nL′ ,

hence the sole < is switched.
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4.2 Duplication of switches
The perfect case (multiplicatives and additives) makes use of an external switch-
ing: we select, for any ` and & links one of the positions L/R or L/R/M of the
switch. When passing to exponentials, we meet a problem with hidden conclu-
sions: switches are duplicated, typically pA(. . . (x · tm) . . . · t1) with unspecified
t1, . . . , tm. If we want to respect the opposition Object/Subject, these switches
should be set without knowing the actual value of the ti (which depend upon
the vehicle). Moreover, these switches should be independent: pA`B(x · t) and
pA`B(x ·u) should simultaneously assume the four choices L/L, L/R, R/L, R/R; a
generic switching L/R of pA`B(x · y) would only yield the choices L/L and R/R.

I thus propose to replace the switches L/R (or L/R/M, δ/l) with non deter-
ministic sums. In which case the normal form should be the sum of several
copies of J pΓ(x) K, one for each switching of the full net. But this poses various
problems, the most immediate of them being the number of these copies: there
should be enough of them, one for each switching.

4.3 Probabilistic constellations
The idea is to replace constellations with a probabilistic analogue: stars now
receive positive weights and a constellation takes the form of a sum ΣλS ·S with
the λS 6= 0. When combined to form a dendrite, the various weights do multiply,
yielding a weight

∏
(λS)mS for the dendrite and its residual star, where mS is

the multiplicity of S in the dendrite.
We now replace our switches by non deterministic sums; the coefficients —

rational to ensure exact computatibility — are chosen in such a way that the
normal form should be of the form

∑
λi · J pΓ(x) Ki with

∑
λi = 1.

` switch: `L := J
qA(x)
qA`B(x)

K + J
qB(x)

K and `R := J
qB(x)
qA`B(x)

K + J
qA(x)

K

are made of two stars. Now, if `L is replaced with a ·`L, the expected normal
form J pΓ(x) K becomes a2 · J pΓ(x) K. This is why the ` switch is replaced with

the weighted sum 3
5 ·`L

ˇ
+ 4

5 ·`R.

& switch: replaced with the constellation 1
4 ·J

qA(x)
qA&B(x)

K
ˇ
+ 1

4 ·J
qB(x)
qA&B(x)

K
ˇ
+

(( 1
4 ·J

qA(x)
qA&B(x)

K
ˇ
+ 1

4 ·J
qB(x)
qA&B(x)

K) + 1
2 ·J

qA&B(x)
qA&B(x)

K).

! switch: replaced with the non deterministic choice 1
2 · !δ

ˇ
+ 1

2 · !l.
As to correctness, we require that the normal form should be sum of weighted

copies
∑
i∈I λiJ pΓ(x) Ki with total weight

∑
i∈I λi = 1. Moreover, we require

independence for any non empty J ⊂ I s.t. the J pΓ(x) Kj are consistently
switched: if J pΓ(x) Kj and J pΓ(x) Kk both involve a choice L/R, L/R/M, δ/l for
the same occurrence of a switch, the choices are the same.
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5 Open questions

5.1 Analytics
It seems that we reached a stable solution for a non deterministic analytics.
However, since the resut is new, minor improvement can be expected.

Church-Rosser remains slightly awkward. Is there a neighbouring formula-
tion of colour-elimination which makes it completely satisfactory?

Hypercoherences: the coherence relation is basically unary and binary. One
may need a more general notion allowing pairwise coherent stars to be
globally incoherent; in case one should modify the definition and allow
multiple incoherences. One should of course pay attention to keep every-
thing finite.

5.2 Synthetics
We were basically concerned with the right opposition Object/Subject enabling
to to accommodate additives. This shoud serve as a basis for the construction
and study of (box-free) proof-nets for full propositional calculus (⊗,`,&,⊕,<,n).

When writing this paper, I had the hope of defining general, non sequential,
perfect (i.e., multiplicative/additive) connectives. I didn’t succeed, presumably
because additive correctness is not yet familiar. I enclose in annex the solution
in the multiplicative case, which can serve as a model for the general perfect
case and is anyway needed to define A first order individuals B [6].

A Multiplicatives

A.1 The calculus of partitions
Multiplicatives can be approached through a calculus of partitions, whose lin-
eaments are due to Danos & Regnier [1]. Let n > 0; a n-ary (multiplicative)
connective is a set C of partitions of {1, . . . , n} subject to certain constraints.

If E,F are two partitions of {1, . . . , n}, consider the following bipartite
graph: its vertices are the elements of the disjoint sum E + F and its edges
i = 1, . . . , n link e ∈ E and f ∈ F exactly when i ∈ e ∩ f . E,F are orthog-
onal, E ⊥⊥⊥ F , when the bipartite graph is a topological tree, i.e., is connected
and acyclic. If p, q are the respective cardinalities of E,F , the Euler-Poincaré
invariant is p+ q − n = 1.

A n-ary connective is a set C of partitions of {1, . . . , n} equal to its bi-
orthogonal; it must be non-trivial, i.e., neither empty nor full. In which case its
orthogonal (or negation) ∼C is in turn a n-ary connective. A n-ary connective
receives a weight, namely the common cardinality of all its partitions; if C has
weight w, then ∼C has weight n + 1 − w. The typical example is the binary
connective ` consisting of the sole partition {{1}, {2}} whose orthogonal, ⊗
consists of the sole partition {{1, 2}}.
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All connectives cannot be constructed from those two, typically ¶ (4-ary)
which consists of {{1, 2}, {3, 4}} and {{2, 3}, {4, 1}}; its negation ∼¶ consists
of {{1, 3}, {2}, {4}} and {{2, 4}, {1}, {3}}. The connectives ¶,∼¶, for which
proof-nets can be constructed, cannot be expressed in sequent calculus: they
are not sequential, i.e., desperately non-classical in some sense. However, since
they enjoy cut-elimination, they are as good as the others,. . . provided one finds
a proper use for them.

n-ary connectives can be compared: C ⊂ D means that there is a bijection
ϕ of {1, . . . , n} s.t. {{1, ϕ(1)}, . . . , {n, ϕ(n)}} ⊥⊥⊥ C ` ∼D. In logical terms,
C ⊂ D corresponds to the implication D[xϕ(1), . . . , xϕ(n)] ( C[x1, . . . , xn]; the
implication is on the A wrong B sense because our approach is not in terms of
proofs, but in terms of switchings. If C ⊂ D, their weights w,w′ are such that
n+ w + n+ 1− w′ − 2n = 1, hence w = w′.

Indeed, if E ∈ C, then ϕ(E) ∈ D: another numerical invariant, the number
of partitions, a.k.a. size, of C is of interest: if C ⊂ D, then D has a greater size.
A typical example of an inclusion is that (with ϕ(i) := i) between (1 ⊗ 2) ` 3
and 1⊗ (2` 3); the sizes are respectively 1 ({{1, 2}, {3}}) and 2 ({{1, 2}, {3}}
and {{1, 3}, {2}}).

If C ⊂ D and D ⊂ C, then C and D have the same size. Then the bijection
ϕ which A proves B the inclusion C ⊂ D is indeed an isomorphism.

A.2 Consistency
We have not yet justified the expression A connective B. A connective must
combine propositions, which poses the problem of atoms. We could of course
use propositional variables, but they belong with the theory of quantification,
hence are not quite propositional, even if we often ignore this detail in practice.
Moreover, the usual multiplicative or additive constants are not quite first order,
hence we apparently have no solid ground on which to apply our connectives.

Unless we consider the connectives themselves as logical constants: the
proofs of C are exactly the elements of ∼C. Typically, an inclusion C ⊂ D
corresponds to a certain proof ϕ of C `∼D, i.e., of D( C.

This introduction of new constants poses a logical problem: since∼C is never
empty, the constant C admits a proof, hence the apparent failure of consistency.
This logical issue is a minor one compared to — say — normalisation; but
it should anyway be addressed. The idea is that not all partitions should be
considered as proofs.

We therefore introduce the following requirement: a proof of C of consists
in a partition {a1, . . . ,ak} ⊥⊥⊥ C with the ai of cardinality 2. Therefore, if C is of
odd arity, it cannot be provable.

We get indeed a litte more than consistency, namely the fact that C and ∼C
cannot be both provable. This is due to the fact that two proofs {a1, . . . ,ak}
and {b1, . . . ,bl} cannot be orthogonal: we would get k = l = n

2 in which case
the Euler-Poincaré invariant is k + k − n = 0, hence 6= 1.
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A.3 Composition
Connectives are intended to be applied to propositions, which basically amounts
at composing them. The general idea is to define C[D1, . . . ,Dn], with a pre-
dictable mess at the level of the indexing. The simplest solution consists in a
change of indexing set: it is no longer {1, . . . , n}, but a non empty set I enjoying
the following property:

i, j ∈ I ⇒ i ∩ j = ∅

We say that C is of arity I; we define |I| :=
⋃
I.

In order to perform composition, we must introduce rooted partitions. A
partition {a1, . . . ,ak} of I can be rooted by selecting one its elements — say ak
for notational convenience — and replace it with {a1, . . . ,ak ∪ {|I|}}. It thus
becomes a partition of I ∪{|I|} in which the element {|I|} does not stand alone.
There are k different ways to root {a1, . . . ,ak}. Incidentally, we understand
what is wrong with the 0-ary case: it cannot be rooted.

Partitions (rooted or not) can be seen as sort of constellations. Stars are
made of rays i ∈ I, |I| which are coloured in two different ways, typically the
i ∈ I in yellow and |I| uncoloured. In that case, the rooted partition could be

written J
a1 K + . . .+ J

ak
|I| K.

Now, if the connectives Di (i ∈ I) are of arities Ji with |Ji| = i, then
C[. . .Di . . .] will be a connective of arity J :=

⋃
i∈I Ji; observe that |J | = |I|.

Take rooted partitions E,Fi in C and the Di. Paint E in magenta and un-
coloured, the Fi in yellow and green and eliminate the colours green/magenta
from E +

∑
Fi. The result is a constellation in yellow and uncoloured which

can be seen as a rooted partition of J . C[. . .Di . . .] is defined, not quite as the
set of the rooted partitions obtained in this way, but as its biorthogonal.

Orthogonality between partitions E,F of the same arity, one of them rooted,
is defined by using complementary colours, say green for i ∈ I in E, magenta
for for i ∈ I in E and non complementary colours for the root |I| — if any —,
say uncoloured vs. blue . Orthogonality requires E + F to normalise into the
star made of the respective roots; this is indeed equivalent to the orthogonality
of the underlying unrooted partitions.

A.4 A fundamental result
The main result concerning composition is that connectives are closed under
composition. In other terms6, the equation

C[. . .Di . . .] = C⊥[. . . ,D⊥i . . .]⊥⊥ (1)

Indeed, connectives are hardly accessed through their complete set of par-
titions, but only through a sort of dense subset, some C0 such that C = C⊥⊥0 .
A typical example is given by the switchings of a proof-net which do not quite

6For questions of legibility, I use the alternative notation C⊥ for negation.
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yield all tests corresponding to connective C, but only a dense subset C0. We can
indeed see equation (1) as the abstract form of sequentialisation, namely that
passing the tests is enough for logical correctness. Forgetting sequentialisation,
too tied to sequential connectives, equation (1) still means logical correctness,
indeed the adequation of l’usine (C0) w.r.t. l’usage (C).

In order to prove (1), we shall use proof-nets. More precisely, the atoms
j ∈ J will be duplicated in either j′ or j′′ depending they occur in the Di or in
the D⊥1 ; ditto for the roots, |J ′i | and |J ′′i |, |J ′| = |I ′|, |J ′′| = |I ′′|.

η-expansion We want to prove the orthogonality relation

C[. . .Di . . .] ⊥ C⊥[. . .D⊥i . . .] (2)

from the orthogonalities C ⊥ C⊥ and Di ⊥ D⊥i . For this, we draw a proof-net in
five colours, the η-expanded identity link between C[. . .Di . . .] and C⊥[. . .D⊥i . . .]:

blue : the J j′ , j′′ K (j ∈ J).

yellow/green : the
. . . j′ . . .

i′
(j ∈ i) and . . . j′′ . . .

i′′
(j ∈ i) for i ∈ I.

magenta/uncoloured:
. . . i′ . . .
|I ′| (i ∈ I) and . . . i′′ . . .

|I ′′| (i ∈ I).

The proof-net can be switched by selecting rooted partitions in Di or C for each
link written. Now, if we forget the lower part in magenta/uncoloured, we have
in fact several proof-nets with two conclusions i′ and i′′ . These proof-nets are

correct, i.e., normalise into J i′ , i′′ K whatever switchings we choose for
. . . j′ . . .

i′

and
. . . j′′ . . .

i′′
. Now, the J i′ , i′′ K stashed above the

. . . i′ . . .
|I ′| and

. . . i′′ . . .
|I ′′|

yields a correct proof-net, hence the result.

Cut-elimination We want to prove the orthogonality relation

C[D1, . . . ,Dn]⊥ ⊥ C⊥[D⊥1 , . . . ,D⊥n ]⊥ (3)

from the orthogonalities C⊥ ⊥ C⊥⊥ and D⊥i ⊥ D⊥⊥i . Now take partitions
E′ ⊥ C[D1, . . . ,Dn] and F ′′ ⊥ C⊥[D⊥1 , . . . ,D⊥n ]; we want to prove that E ⊥ F .

For this, we draw again a proof-net in five colours, the cut between the proofs
E and F of C[. . .Di . . .] and C⊥[. . .D⊥i . . .]:

blue : E′ and F ′′ .

yellow/green : the
. . . j′ . . .

i′
(j ∈ i) and . . . j′′ . . .

i′′
(j ∈ i) for i ∈ I.

magenta/green :
. . . i′ . . .

|I ′|
(i ∈ I) and . . . i′′ . . .

|I ′′|
(i ∈ I).
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magenta/uncoloured:
|I ′|,|I ′|

[|I ′| ⊗ |I ′|] .

This proof-net is correct by assumption. Forget the lower part in magenta/
green/uncoloured and switch the upper part. The normal form yields two
partitions in green of I ′ and I ′′ which respectively belong to C⊥⊥ and C⊥ and
are thus orthogonal. This means that the lower part can be replaced with cuts
i′,i′′

[i′ ⊗ i′′] and remain correct.

We are still not done, since we must replace these cuts with cuts on the

atoms. If there were only one of them, say
i′,i′′

[i′ ⊗ i′′] , then we would observe that

E′ and F ′′ are respectively orthogonal to D⊥⊥i and D⊥i and proceed as above,
thus replacing our cut with cuts on its atoms while preserving correctness. In

general, we can switch all links distinct from
. . . j′ . . .

i′
and

. . . j′′ . . .

i′′
so as to

reduce to the situation with a single cut.

However, this process of concentrating on a single cut
i′,i′′

[i′ ⊗ i′′] which involves

a switching of links and a normalisation changes the original E′ ∪ F ′′ into
something else. It cannot be a priori excluded that the normalised partition
connects some j′ with some k′′, in which case our argument would fail. But,
since the switchings of Di involve the choice of a root, we can attach it to the
element of the partition containing j; ditto with D⊥i and k: correctness then
forbids j′ and k′′ to be in the same element of the partition.

Jean-Yves Girard
Directeur de Recherches émérite

jeanygirard@gmail.com

non si non la
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