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Abstract
Revisiting a neglected area, logical equality, we eventually reduce pred-

icates to propositions.

1 Introduction
One should never say that the King is naked. But, like it or not, predicate
calculus is a half-baked contraption, lame from the logical standpoint, not even
able to hande equality as a logical primitive.

1.1 Axiomatic realism
Predicate calculus is nevertheless satisfactory as an axiomatic system; but ax-
iomatics is the poor man’s logic. This approach, dominant before Gentzen,
handled logical operations through schemas. For instance A ⇒ (B ⇒ A) —
indeed the second order axiom ∀X∀Y (X ⇒ (Y ⇒ X)) in disguise.

In logical terms, axiomatics remains an efficient way to obtain negative re-
sults: think of incompleteness, formulated in terms of rather arbitrary axiomatic
systems. It is surely a useful reduction, but beware of reductionism! Axiomatics
— the greek axiomatikos means A officer B — is indeed the dictatorial approach
to reasoning; while logic should be natural, surely not enforced by martial law.
The identification of logic with axiomatics is therefore a misunderstanding.

Predicate calculus, created at a time when logic was still reduced to ax-
iomatics, bears some stigmata of this misconception. For instance, the logical
handling of the universal quantifier ∀x involves the use of generic variables,
a.k.a. eigenvariables A choose an arbitrary x B; axiomatics forgot the generic
origin of variables and used them as if proceeding from the sky. With some
collateral damages, typically the familiar principle ∀xA ⇒ A[t/x] and its dual
form A[t/x] ⇒ ∃xA yield the faulty consequence ∀xA ⇒ ∃xA. This proof re-
lies on the term t whose use is granted by the axiomatic introduction of non
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generic variables: let t := y. The mistake can be fixed by making y generic,
e.g., ∀y(∀xA⇒ ∃xA), but the A naked B ∀xA⇒ ∃xA remains faulty.

Another misconception rests upon semantics, yet another reduction whose
role — the production of counterexamples — is basically negative: again, beware
of reductionism! Logic is indeed the expression of a distrust of this A reality B

which is often another name for A prejudice B: the logician is not satisfied with
eating his cake until he knows why!

If axiomatics and semantics do — separately — play interesting roles in logic,
their combination, axiomatic realism, is a sort of criminal association. Typically,
the faulty principle ∀xA ⇒ ∃xA, a mistake of the Army of Aaxiomatics is
justified by the Church of Reality: the notion of model has been doctored so
as to exclude empty domains. The use of illogical individuals — non generic
variables — is compensated by the exclusion of some part of the reality. The
alleged reason is that the empty model is not that exciting; as if Justice were
dismissing a witness on the grounds that he has presumably nothing to say!

The mistake ∀xA⇒ ∃xA remained unnoticed for pragmatic reasons: around
1900, logic was assigned the menial task of formalising mathematics — which
involved an axiomatic approach and nothing more. And this dubious principle,
although logically faulty, holds anyway for external, axiomatic reasons.

But this casts a doubt as to the logical value of predicate calculus: logic
should be A zero defect1 B; at least if it wants to be styled A logic B!

1.2 Individuals
We are now far from the turn of the xxth century and no longer obsessed with
foundations. Constructivism and, more recently, computer science prompted
the study of logic for itself. A lot of progress has been made as to propositions,
logical connectives. But quantification, especially first order, has been left aside.

Indeed, first order quantification seems a bit superfluous. The A forgetful
functor B which erases individuals — as well as the quantifiers ∀x and ∃x —,
thus replacing any predicate P (t1, . . . , tn) with a proposition P , preserves almost
everything. To the point that there is nothing more in cut-elimination for full
second order predicate logic than for system F which can be seen as its forgetful
image: in algorithmic terms, first order individuals and quantifiers bring strictly
nothing.

Strangely enough, the forgetful functor stumbles on equality: we cannot
replace t = u with a proposition =. The problem is fixed in a rather ad hoc way,
realisability. Typically, t = u becomes a proposition bool with two elements t,f ;
an external comment explaining whether or not a propositional proof A realises B
a formula is now needed. This semantic contraption works at the price of a total
confusion. This is why the standard formulation of predicate calculus excludes
equality from the list of logical primitives: it handles it as a predicate among
others.

1The analytic metaphysicist Quine based his ontology upon the existential quantifier of
predicate calculus. The idea of reducing a rather delicate — not to say fishy — subject like
ontology to logic is quite suspect; but quid of reducing it to a lame system?
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This mistreatment of equality by predicate calculus is a strategic failure, for
the simple reason that the ultimate predicate is precisely equality. If you are not
convinced, open any textbook and observe the pregnancy of equations, commu-
tative diagrams, etc. By the way, the work expounded here didn’t originate in a
radical distrust of predicate calculus, but in the desire to find a satisfactory sta-
tus for what should be the main operation of logic and is handled axiomatically,
i.e., as an arbitrary predicate. To the point that nothing serious on the subject
has been said since. . . Leibniz. Starting from his half-baked approach, we shall
eventually find the surprising solution to our quest for equality: in t = u, t and
u should be treated as propositions, in which case equality becomes the linear
equivalence t ≡ u.

The major logical prejudice concerns truth values: we are convinced that —
in some ideal semantic paradise — everything is true or false. What is usually
expressed by the excluded middle a∨¬ a, a formulation which involves the most
complex classical negation. I prefer the lighter a ≡ b∨ b ≡ c∨ c ≡ a, which uses
linear equivalence ≡: among three propositions, two are equivalent. The idea
of attaching a truth value to a property is however questionable: think of white
which, being a quality, cannot receive any truth value. Logical realism solved
the problem by means of a monstrous contraption, namely the introduction of
individuals whose only role is to replace properties like white, without truth
values, by predicates of the form white(x) A x is white B which may now be
true of false. First order predicates and individuals are thus a way to comply
with our prejudice concerning truth values: in the name of reality, we created
monsters whose logical status is hard to ascertain. And these monsters now
want to be fed. . .

This reminds us of the geocentric prejudice and the way Ptolemy handled
the A backward motion B of Saturn: planets were supposed to be equipped
with epicycles, sort of fantasmatic little wheels. In this light, the individuals of
predicate calculus are the epicycles of modern logic — with Frege playing the
part of Ptolemy.

2 Equality
The problems connected with equality are a collateral damage of the intro-
duction of first order individuals — the metaphysical terms and and variables.
There is no need for those, since they can be identified with certain propositions.
Provided we handle them in a linear way: equality becomes linear equivalence
a ≡ b. Linear logic is eventually justified as the only approach which does not
mistreat equality.

2.1 Leibniz
Natural numbers and equality are the most basic notions of mathematics; how-
ever, after one century of proof-theoretic investigations, we must agree that
integers are definitely a second order — i.e., a very complex — notion. But quid
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of equality? It has been so neglected that, after 300 years, Leibniz’s definition

a = b :⇔ ∀X(X(a)⇒ X(b))

is still in use: typically, in first order disguise, through the axomatic schema

(a = b ∧A[a/x])⇒ A[b/x]

Leibniz’s definition, which refers to all possible predicates X(·), makes equal-
ity a most complex, super-synthetic contraption. While it should remain simple,
almost analytic; in particular quantifier-free.

The worse is still to come: the definition is almost empty. Typically, are the
two A n B in A meaning B equal? Since one is to the right of the other, they can
be distinguished by a property P (·). The question thus reduces to the relevance
of P (·): Leibniz’s equality supposes a preformatting which decretes what we
can/cannot consider as a legitimate property of an individual. And A legitimate
properties B eventually turn out to be those compatible with. . . equality!

On this issue, semantics plays its usual role of bribed witness: the two A n B

are equal when they refer to the same ideal individual, i.e., when we decide to
identify them!

Indeed, the basic mistake seems to originate in the very notion of individual:
after all, why should there be individuals? The only justification lies between
convenience — the expression of algebraic structures — and pure conservatism:
any discussion of the relevance of A individuals B is a sort of blasphem against
Frege. But no serious logical argument, as we shall now prove by reducing them
to specific propositions.

As expected, the answer lies in proof-nets. Let us try to write proof-nets
for Leibniz’s equality ∀X(X(a) ( X(b)). We first remove the quantifier ∀X
and we are left with the linear implication X(a) ( X(b). Now, when we use
links between A occurrences B of X(a), ∼X(a), the X hardly plays any role: we
could as well directly link a and ∼a. In which case a becomes a proposition,
and equality reduces to linear equivalence:

a ≡ b :⇔ (a( b) & (b( a)

Indeed, Leibniz’s montrous quantification collapses to the two cases: X(a) := a
and X(a) := ∼ a. Provided we can handle individuals as ordinary propositions!

If terms are indeed propositions, the aporia concerning the two n disap-
pears: we are not relating properties of two individuals, we are just relating two
properties, period; the question of the relevance of P (·) thus disappears.

2.2 Enough individuals
We simplified Leibniz’s definition by forgetting X in ∀X(X(a) ≡ X(b)). This
X is a typical epicycle, due to the classical prejudice concerning truth values:

Every proposition is eventually true or false.
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Classical logic forbids the identification of individuals with propositions because
of the tautology a ≡ b∨ b ≡ c∨ c ≡ a: there would be at most two propositions.
Ditto with intuitionistic logic which complies with the prejudice, doubly negated
as ¬¬(a ≡ b ∨ b ≡ c ∨ c ≡ a).

The situation is quite different for linear logic, where infinitely many distinct
individuals can coexist: ai 6≡ aj for i 6= j ∈ N. This is the ideal place where
semantics may play a role: consider as phase space the additive group Z with
⊥ := Z \ {0}. If X ⊂ Z, then ∼X = {−x;x 6∈ X} = −(Z \X), hence all subsets
of Z are facts. Among them, 0 := ∅, 1 = {0} ; exponentiation is defined by
!X := X ∩ {0}. (Intuitionistic) negation ¬X := !X ( 0 is thus X ∩ {0}( ∅:
¬X = 0 if 0 ∈ X, ¬X = >>> = Z otherwise. If X,Y are distinct, then 0 cannot
belong to both X ( Y and Y ( X, hence, ¬(X ( Y & Y ( X) takes the
value>>>. All facts of the space are therefore logically distinct, in the strong sense
that their inequivalence takes the value >>>.

The replacement of a with X(a), of ∼a with ∼X(a) is a way of instilling
some linearity in a classical or intuitionisitic setting: the contraction rule does
no longer apply to a. X(·) is used like a modality, a sort of condom interrupting
the flow of logical consequence. This interruption is made necessary by the real-
istic prejudice excluding the linear maintenance of propositions. As a collateral
damage, realism created epicycles: individuals and their predicates.

2.3 Terms as multiplicatives
We so far reached a rather interesting hypothesis, equality as (linear) equiva-
lence. This hypothesis is backed by the fact that equality should not be ax-
iomatic, i.e., arbitrary, but natural, logical. The so-called individuals thus be-
come propositions; the good news is that, provided we keep a linear maintenance
of those individuals, there may be enough of them.

Now, the identification A individual = proposition B is faulty: even if predi-
cate calculus is lame, the distinction between first order and second order has a
technical contents in terms of, say, subformulas. Therefore, individuals should
not correspond to all propositions, but only to those of a A simple B form. In
view of our general definition [5] of n-ary multiplicatives (n > 0), we propose to
identify individuals with multiplicative propositions.

Now, there is something delicate to understand, linked to the main prejudice
engraved in us by predicate calculus, that of the A domain B of interpretation.
Individuals are multiplicative, yet we cannot name a single one. This is due
to the impossibility of 0-ary multiplicatives. To sum up, there is nothing like
a definite individual: individuals make only sense as parametric expressions
(terms) depending upon variables. This is consistent with the aforementioned
failure of ∀xA⇒ ∃xA — definitely a mistake.

Terms (= parametric individuals) are therefore obtained from variables
α, β . . . by means of multiplicative connectives. The typical term is therefore
C[. . . αi . . .], where C is of arity I and αi(i ∈ I) are variables, not necessarily
distinct; their negations are not allowed. For instance, if ¶ is the 4-ary con-
nective consisting of {{1, 2}, {3, 4}} and {{2, 3}, {4, 1}}, ρ := ¶[α, β, β, γ] is a
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term. Terms can easily be composed using the definition given in [5]; we must
of course take care of repetitions of variables, e.g., the two β in ρ.

Equality is linear equivalence ρ ≡ σ. If ρ = C[. . . αi . . .] and σ = D[. . . βj . . .],
equality reduces to the existence of two bijections ϕ,ψ s.t. αi = βϕ(i)(i ∈ I)
and βj = αψ(j)(j ∈ J) s.t. C ⊂ϕ D, D ⊂ψ C. As observed in [5], this makes
C and D isomorphic. Because of possible repetitions of variables, the choice of
ϕ and ψ is not always unique, in particular ψ need not be the inverse of ϕ. In
presence of repetitions, a proof of equality has therefore a non trivial contents,
namely the two unrelated bijections ϕ and ψ.

2.4 Injectivity
A last problem should be adressed before we can be sure we really solved the
problem: that of function letters. We excluded the 0-ary case, the so called con-
stants which should be handled as derelict variables, i.e., universally quantified:
the faulty ∀αA⇒ ∃αA is thus fixed into ∀β(∀αA⇒ ∃αA). But function letters
of positive arity do make sense.

Binary function letters have a well-known property of injectivity, which allow
their use as pairing functions. Technically speaking, this means that, whenever
f(u, v) = f(u′, v′) is provable, then u = u′ and v = v′ are provable as well. We
therefore need a term τ [α, β] such that, whenever τ [σ, ρ] ≡ τ [σ, ρ] is provable,
then σ ≡ σ′ and ρ ≡ ρ′ are provable as well.

Such a pairing function is provided by τ [α, β] := (α ` β)⊗ (α ` α ` β), an
example losely inspired from that of set theory (x, y) := {{x}, {x, y}}. Assume
that τ [σ, ρ] ≡ τ [σ, ρ]; this means that the two connectives underlying τ [σ, ρ]
and τ [σ, ρ] are isomorphic. An easy lemma shows that any connective can be
split as the ` of several connectives that cannot be split further; moreover, this
splitting is unique up to permutation. A similar splitting holds, dually, for ⊗,
hence (σ ` ρ) ⊗ (σ ` σ ` ρ) can be uniquely split as a tensor T ⊗ U. Both of
T, U can in turn be split into a ` of prime components τi (i = 1, . . . , k); this
decomposition is unique if we consider the τi up to equivalence and introduce
their multiplicitiesmi and ni in T, U; T, U can be distinguished by the requirement
mi ≤ ni (i = 1, . . . , k). We can recover σ as the ` of the τi each of them with
multiplicity ni−mi and ρ as the ` of the same τi, each of them with multiplicity
2mi − ni.

2.5 Natural numbers
We addressed all questions related to equality in pure logic. However, important
systems use additional proper axioms for equality. This is the case for Peano’s
arithmetic, based on a second order principle — recurrence, reformulated as a
first order schema — and various first order axioms, typically:

Sx 6= 0

Sx = Sy ⇒ x = y
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These axioms should be taken seriously, but not literally; for instance, they
involve a constant 0 which cannot make sense logically speaking. They have
been written in a spirit of axiomatic expediency: something like that is needed,
but perhaps in an alternative formulation. However, even if miswritten, these
axioms do imply the existence of denumerably many distinct individuals m 6= n.
We already observed that this existence holds in a specific phase model, i.e.,
axiomatically; but quid of its logical validity?

Since linear logic can be A strengthened2
B by means of weakening and con-

traction, then m 6= n cannot be logically valid, since it would still hold classically.
But this only applies to sequential operations, those which can be formulated
in sequent calculus. But not to general, non sequential logical operations like
the 4-ary ¶ of [5].

The question at stake is therefore to find the right notion of individual en-
abling us to prove all first order Peano axioms — or something losely equivalent.
As we just explained, the solution would be anti-classical, i.e., classically incon-
sistent. On the other hand, since recurrence is basically an instance of second
order quantification, arithmetic would become a logical — axiom-free — system.

3 Derealism and epidictics

3.1 Derealism
Dedekind’s definition of N A the smallest set containing 0 and closed under S B

n ∈ N :⇔ ∀X (∀x (X(x)⇒ X(Sx))⇒ (X(0)⇒ X(n)))

involves a second order quantification which is responsible for the monstrous
expressive power of logic; and its major limitations as well. Forgetting first
order, we get nat : ∀X((X ⇒ X) ⇒ (X ⇒ X)), the familiar definition of
natural numbers in system F.

The sequent nat`(B ⇒ B)⇒ (B ⇒ B) is a way of expressing iteration: if
the left hand side is fed with a natural number n, the right hand side becomes

the functional Φ(f) :=

n times︷ ︸︸ ︷
f ◦ f ◦ . . . ◦ f . Natural numbers and iterators can be

logically constructed with the help of the second order links:

A[B/X]

∃XA

A

∀XA

Consider iterators: if B4 := (B ⇒ B) ⇒ (B ⇒ B), let π be the proof-net
with conclusions ∼B4, B4. Second order existence enables us to pass from ∼B4

to ∃X ∼X4 = ∼nat, thus yielding a proof-net πB of conclusions ∼nat, B4 ex-
pressing iteration. Now, π is correct since it complies with the ordeals associated
with ∼B4 and B4, but what about πB?

2Or castrated, it’s a matter of viewpoint.
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There is no difference, except that the divide Object/Subject is no longer
respected: this is what we style derealism. This divide was at work in the
opposition vehicle/ordeal: on one side, the analytic A reality B, on the other
side, the synthetic subjectivity. In the case of πB — more generally of second
order existence —, no way of guessing the A witness B B, hence we cannot find
any ordeal corresponding to ∃XA. This witness is indeed a gabarit; we can,
however, check correctness, provided this ordeal becomes part of the data, i.e.,
part of the A Object B. In other terms, when we deal with second order, three
partners are involved: a vehicle V, an ordeal O and a subsidiary gabarit — a
mould — M corresponding to existential A witnesses B: we require the strong
normalisation of V+ O +M into J pΓ(x) K. The opposition is now between O
and V +M, i.e., between the Subject and a compound Object/Subject, an
épure3.

Technically speaking, little has so far changed: there is no essential difference
between V and V +M. But the spirit is new, in particular the relation to l’usage
becomes far more complex. Let us explain: in an opposition V/O, everything
depends upon the mathematical properties of O, no hypothesis on V has to be
made; in an opposition (V +M)/O, part of l’usage will depend upon properties
of the mouldM which cannot really be checked.

Take, for instance, the iterator πB : second order existence asks us for this
witness B which occurs four times in ∼B4, respectively negatively, positively,
positively, negatively. It thus requires four gabarits, two for B, two for ∼B; the
two positive ones should be A the same B, ditto for the negative ones. Moreover
the positive and negative gabarits should be A complementary B, the negation
of each other. Complementarity of gabarits G,G′ basically means that we can
perform (i.e., eliminate) a cut between them.

In other terms, the choice of the mouldM postulates a reduction usage/usine
that does not belong in any decent analyticity. Here lies the very source of
foundational doubts: the Object, seen as an épure, embodies in itself something
beyond justification.

The need for this auxiliary part should be obvious from the limitations of
the category-theoretic approach to logic. In terms of categories, the absurdity
0 is an initial object, with the consequence that we cannot distinguish between
morphisms into this object. Less pedantically, the absurdity is the empty set,
and they are too few functions with values into ∅ to make any useful distinction
between them: either A = ∅ and there is only one function from A to ∅ or
A 6= ∅ and there is none. As a consequence, negation ¬A := A ⇒ 0 becomes
a bleak operation: from the functional, category-theoretic standpoint, ¬A is
either empty or with a single element.

Now, remember that many mathematical results or conjectures are nega-
tions: A there is no solution to. . . B. According to the category-theoretic preju-
dice, the intricate proofs of these results are but constructions of the function
from ∅ to itself. . . which is quite preposterous! It would be more honest to ad-

3This word, without satisfactory translation, refers to the representation of an object (our
vehicle) through several viewpoints (those of the mould).
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mit that we reach here one of the major blindspots of logic. This blindspot is
sometimes styled as A a proof without algorithmic contents B.

The notion of épure could explain the situation as follows: the vehicle in a
proof V +M of a negation may be trivial (V = 0). A major part of the real
proof is the mould M which makes no sense in category-theoretic terms, but
which may be very intricate.

As to typing, there are two opposite approaches, those of Curry and Church:
for Curry, the objects are born untyped, the typing occurs later. To this sort
of existentialism, Church opposes an essentialism for which objects are born
with their types. The opposition vehicle/ordeal is a sort of implementation of
typing à la Curry; such an attempt was necessary for the sake of — say —
rationality. Second order shows that Church is not that wrong; not quite that
objects are actually born with their types, but that they embody some typing
in them through the mouldM. But the épures V +M must be opposed to O
to get their type, i.e., they are still untyped. Finally, the derealism at work in
épures reconciles the two viewpoints.

3.2 Discussion: second order
Second order is considered as suspect, witness predicativity : the notion was
introduced by Poincaré, the greatest mathematician of his day, but surely not
an expert on logic which he cordially hated. If one can hardly blame him for
not taking seriously the foundational crisis, he should have been consistent and
shut up on the subject rather than proposing a flippant solution.

First order logic involves certain second order features, typically through
the so-called predicate constants P (·), Q(·), etc. Those are indeed universally
quantified second order variables: for instance, the theorem ∀y(P (y) ⇒ P (y))
should indeed be written ∀X∀y(X(y)⇒ X(y)). Due to the implicit presence of
the quantifier ∀X, it is not possible to negate A first order B formulas: this would
require the existential quantifier ∃X which cannot be kept implicit. Negation is
thus performed externally: ∃X is translated as A there is a counter-model B. We
see that first order involves a partial externalisation of second order features.

Second order can also be reformulated in terms of schematic rules, typically
recurrence. The principle ∀X((X(0) ∧ ∀x(X(x) ⇒ X(Sx))) ⇒ X(n)) is thus
replaced with instances A[0/x] ∧ ∀x(A ⇒ A[Sx/x]) ⇒ A[n/x]. This is nothing
but second order in disguise: like or not, arithmetic is a second order system.

Certain logical connectives, although styled first order, are indeed second
order. The obvious example is intuitionistic disjunction ∨ whose elimination
rule is that of ∀X((A ⇒ X) ⇒ ((B ⇒ X) ⇒ X)). The connective is indeed
lame: its elimination rule mingles two proofs of A⇒ C and B ⇒ C into a proof
of A ∨ B ⇒ C which is indeed a proof of A ∨ B ( C. If there were something
like a unary disjunction ∨A, it would replace A ⇒ C with ∨A ( C, in other
terms ∨A = !A: like it or not, intuitionistic disjunction contains the exponential
of linear logic which is also problematic, i.e., not first order, see [4]. The only
way to fix intuitionistic disjunction — i.e., to keep it first order — is to replace
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it with the additive ⊕ which is not that far from ∨. Intuitionistic negation is
also a second order notion, see section 4.

To sum up, the scarecrow of second order is often disguised as first order. . .
in the same way the 13th row of planes are often renumbered 14.

First order logic, i.e., propositional calculus, relies upon a healthy opposition
between Object — the vehicle of the proof-net — and Subject — the ordeals,
a.k.a. switchings. Second order, especially existential quantification, involves
a change of paradigm: what is judged by the ordeal is no longer a vehicle,
but a combination involving a subjective part — the mould —, i.e., a choice
of switchings. The global judgement about the correctness of a proof depends
upon a expert — the mould — provided by the proof itself. There is a conflict
of interest: as a correctness criterion, the mould should be strict but, since on
the part of the defendant, he may be laxist4. All foundational questions arise
from this ambiguous status of the mould whose trustfulness cannot be tested.

Epidictics is the very choice of those moulds that can be used in second
order quantification: it can be styled as the civilised version of axiomatics. The
basic point is that the introduction rule `∀ does not determine the elimination
∀` (the stock of possible T for which X can be substituted)5. Moreover, even
if some are safer than others, no epidictic choice is absolutely safe. The good
news is that logic may simultaneously afford several second order quantifications.
For instance, second order predicate calculus which corresponds to two sorts of
second order quantifiers, A individuals B and A predicates B.

What does this mean in terms of the familiar subformula property? The
first order rule ∀` involved substitutions A[t/y]. A[t/y] is styled a subformula
of ∀yA; the notion of subformula has however been doctored to accommodate
these substitutions. The excuse is that we can keep some control upon those
A subformulas B. A control that collapses in the full second order case: A[T/X]
may be more complex than ∀X A. What is at stake in the subformula property
is indeed the A epidictic B choice of the possible substitutions X ; T : make
it tame and we shall retain a sort of subformula property, make it too lax and
we lose any control. Indeed, when interpreting first-order quantification as a
quantification over propositions, only those of a certain kind — multiplicative
propositions — are considered. To the effect that the subformula property
persists; of course, the notion of subformula adapted to this case is slightly ad
hoc, but not more than the one used in the old style treatment of first order.

4 Negation
Usual negation ¬A := A⇒ 0 is indeed a second order operation: this is due to
the use of the constant 0 — the neutral element of the disjunction ⊕ — which
cannot be handled at first order. Its usual rule is the axiomatic schema 0⇒ A;
in other terms 0 = ∀XX.

4Think of Volkswagen whose cars embodied laxist meters.
5The same is true in the (old style) first order case: the choice of the substitutions A[t/y]

is not determined by the introduction; but this has no dramatic consequence.
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4.1 Épures
Since quantification (especially second order) involves a lot of red tape, we shall
devise a direct approach to 0 and>>>, our first encounter indeed with the derealist
world of épures.

Colours are unary functions mag/grn, ylw/blu and cya/red. Let us now
change — or liberalise — our conventions:

• The rays t and c(t) where t makes no use of the colour functions and c is
a colour function are styled objective.

• The other rays are styled subjective: for instance, x·cya(y) or red(red(r)).

A star is objective (resp. subjective) when all its rays are objective (resp. sub-
jective) ; a star with both objective and subjective rays is styled animist. The
result Sθ of a substitution in a non animist star remains non animist: this is
plain if S is subjective; if S is objective, depending whether or not some xθ —
with x occurring in S — is subjective, then S will be subjective or objective.

An épure is a constellation without animist stars. If we want to stress the fact
that a constellation may not be an épure, we speak of an anima (plural: animæ).
The normal form of an épure remains an épure : the actualised dendrite connects
various stars, either objective or subjective through common rays tθ = uθ ; if
one of those actualised rays happens to be subjective, then connectedness forces
all other rays to be subjective as well.

It is convenient to split an épure C as the sum V +M of a vehicle V (its
objective part) and a mould M (its subjective part) ; however, since some non
trivial coherence may occur between V and M, C cannot be recovered from
them.

We can see an épure as the analytic form of a typed term of — say — system
F. The vehicle corresponds to the underlying pure λ-term whereas the mould
takes care of the internal typing at work in the extractions (type applications)
{t}T . The possibility for an objective and a subjective star to combine into
another (subjective) star accounts for the interaction between terms and types:
typically, a typed term λxA · t will delocate, erase, duplicate all informations
(including internal typings) from the location A to the various locations corre-
sponding to the A occurrences B of x in t. In this way, épures manage to reconcile
the forgetful functor which erases all informations pertaining to types with the
fact that pure terms do interact with types. General animæ — although quite
manageable — are considered as logically incorrect because they admit no for-
getting. Animæ thus fix the nightmare of A empty types B like 0 by providing
a class of illegal, illogical inhabitants.

4.2 The additive truth
The additive neutrals — the most basic example of derealism — correspond to
second order propositions >>> := ∀XX and 0 := ∃XX. However, since X occurs
only positively, there is no need to match X and its negation ∼X, hence no
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problem of epidictics (section 6). What follows is a direct description of >>> and
0 without reference to second order quantification.

If>>>(x) := p>>>(x), R(x) := p>>>(c·x), S(x) := p>>>(mag(l·x)), T (x) := p>>>(mag(r· x)),

the additive neutral >>> is defined by the ordeals J
R(x),S(x)

K + J
T (x)
>>>(x)

K and

J
R(x),S(x)
>>>(x)

K, the latter being cancelling, see [4].

The anima J
R(x)

K + J
S(x) ,T (x)

K, which complies with >>>, splits as a

sum V +M: it is an épure. Anticipating upon section 4.3, since its vehicle is
not a sum of binary stars, this anima is not a proof. We can however replace
our épure with J

R(l · x) ,R(r · x)
K + J

S(l · x)
K + J

S(r · x) ,T (x)
K, which is

quite a proof of of >>>.
More generally, the sequent calculus rule :

`Γ, A

`Γ,>>>

which corresponds to the definition >>> := ∃XX makes sense in terms of épures:
if V +M is an épure with conclusions Γ, A, select an ordeal (in yellow and
uncoloured) O for A. The sumM+O normalises into some N . If we replace
all pA(t) with R(t) , all pA(t) with S(t) and the uncoloured pA(x) with T (x) ,
then V andN respectively become V ′ andN ′; V ′ +N ′ is an épure corresponding
to a proof of `Γ,>>>.

4.3 Consistency
We already addressed the issue of consistency in our previous installment [5]: in
order to be accepted as a proof, a vehicle must be a sum of binary stars J ti, ui K.
In the derealist case, an anima is accepted as a proof when it is an épure V +M
and its A objective B part, the vehicle V, is a sum of binary stars.

Animæ which are not épures are sort of animist artifacts, flawed construc-
tions mingling Object and Subject6.

Consistency is therefore the existence of propositions without proofs. The
typical example of such a proposition is the additive neutral 0 defined (with
0(x) := p0(x), r(x) := p0(c ·x), s(x) := p0(mag(l ·x)), t(x) := p0(mag(r · x))) by

the three ordeals: J
r(x)

K+J
s(x),t(x)
0(x)

K and J
s(x)

K+J
r(x),t(x)
0(x)

K and J
t(x)
0(x)

K.

0 admits as a A preproof B the anima J
t(x)

K+J
r(x) , s(x)

K which complies

with the ordeals for 0. However, there is no proof of 0, i.e., no épure V + G
6The daimon of ludics [2] proposed also a sort of animist A preproof B; its existence was

dependent upon a polarisation of logic (negative/positive behaviours) a bit painful to handle.
The approach through épures offers a simpler and better knitting.
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complying with these ordeals. Indeed, any anima complying with them should
use the rays r(x) , s(x) , t(x) ; since it can contain neither J

r(x) , t(x)
K nor

J
s(x) , t(x)

K, it must contain J
t(x)

K and also J
r(x) , s(x)

K, which mixes the

objective r(x) and the subjective s(x) and is thus animist.
This establishes the consistency of transcendental syntax: the absurdity has

no A proof B, i.e., harbours no épure.
By the way, the épure J

R(x) , r(x)
K + J

S(x) , s(x)
K + J

T (x) , t(x)
K is a

proof of the sequent `>>>,0.

4.4 Cut-elimination
The knitting usine/usage, i.e., cut-elimination, is an opportunity to see how
normalisation works for épures in a simple case. Consider a cut [C] := [>>>⊗ 0];
the cut is normalised as usual, by painting p>>>(x) and p0(x) in green and adding

the feedback (in magenta) J
p>>>(x),p0(x)

K.

The feedback J
p>>>(x),p0(x)

K can be replaced with its specialisation, its A η-
expansion B on the three sublocations r·x, s·x, t·x, i.e., with the sum T1+T2+T3

with T1 := J
R(x),r(x)

K, T2 := J
S(x),s(x)

K and T3 := J
T (x),t(x)

K.

Define O := J
R(x),S(x)

K and let O1 := J
T (x),s(x),t(x)

pC(x)
K + J

r(x)
K and

O2 := J
T (x),r(x),t(x)

pC(x)
K + J

s(x)
K and O3 := J

T (x),t(x)
pC(x)

K. As well as the Pi by

P1 := J
R(x),S(x),s(x),t(x)

pC(x)
K + J

r(x)
K, P2 := J

R(x),S(x),r(x),t(x)
pC(x)

K + J
s(x)

K

and P3 := J
R(x),S(x),t(x)

pC(x)
K.

The ordeals for C are the O +Oi and P1 (i = 1, . . . , 3), the P1 being can-
celling. If Q is an ordeal for Γ, an épure V +M for Γ, [C] must therefore comply
with the Q+O +Oi and Q+ Pi (i = 1, . . . , 3), the Q+ Pi being cancelling.

If V +M complies with the Q+O +Oi, then V +M+Q+O strongly
normalises into a constellation C s.t. C +Oi strongly normalises into pΓ+C(x)

for i = 1, 2, 3. The free rays of C are T (x) , t(x) , r(x) and s(x) , together with

the pΓ(x). These rays are dispatched in various stars; considering O1 and O2,
we see that r(x) and s(x) cannot be in the same star as T (x) or t(x) ; they

must indeed share the same star U := J
r(x) , s(x) ,pΓ′(x)

K for some Γ′ ⊂ Γ.

V +M+Q strongly normalises into a constellation D s.t. D +O nor-
malises into C. The constellation D involves additional free rays R(u1) , S(u1) ,
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. . . ,R(un) , S(un) ; the star U is obtained from a subconstellation D′ ⊂ D; now,

if D′ 6= U , one of the stars of D′ must contain one of the two rays r(x) , s(x) and

one among the R(ui) , S(ui) . Now the cancelling ordeal P1 (resp. P2) forbids

any star involving R(ui) or S(ui) and s(x) (resp. r(x) ).

The normal form D of V +M+Q thus contains U := J
r(x) , s(x) ,pΓ′(x)

K.

Now, D + T 1 + T2 normalises into D′ which is obtained from D by replacing

U := J
r(x) , s(x) ,pΓ′(x)

K with U ′ := J
R(x),S(x)
pΓ′(x)

K.

W.r.t. normalisation, U ′ := J
R(x),S(x)
pΓ′(x)

K and T3 := J
T (x),t(x)

K play the

same role as the stars O := J
R(x),S(x)

K and O3 := J
T (x),t(x)
pC(x)

K; the only dif-

ference being the choice of uncoloured rays (pΓ′(x) vs. pC(x)). The constellation
D + T 1 + T2 + T3 thus normalises into J pΓ(x) K. Since V +M+Q normalises
to D, we proved that V +M+Q+T1 +T2 +T3 strongly normalises to J pΓ(x) K.

Like in ludics, cut-elimination works for general animæ. Now remember
that the normal form of an épure is an épure; and that the normal form of a
vehicle made of binary stars is still made of binary stars; therefore, provided
normalisation converges, the normal form of a proof remains a proof. This means
that our notion of consistency is a real, deductive one, not a paraconsistent, non
deductive doohickey. In fact, we can define truth as the existence of a proof in
the sense of section 4.3. Which is definitely more satisfactory than the Tarskian
approach — truth as the fact of being true.

5 First order predicate calculus
We content ourselves with the usine aspects, skipping the adequation with usage.

5.1 First order quantifiers
Usual predicate calculus makes use of variables or terms as if they were natural
things to consider. Our first problem is to find the conditions of possibility
for first order variables; it is indeed very difficult to say what they stand for.
Computer science however provides us with a stisfactory answer: a variable is
an address, i.e., a location. In particular, it bears no relation with the variables
x, y, z, . . . used in rays, stars and constellations. In order to avoid confusion, I
therefore propose to use α, β, γ, . . . for variables and σ, τ, ρ, . . . for individuals
defined as multiplicative expressions (section 2.3).

Our goal is to interprete first order predicate calculus based upon literals
σ = τ , ∼(σ = τ) by means of the connectives ⊗,`,<,n,&,⊕,>>>,0 and the
quantifiers ∀α, ∃α, ∀β, ∃β, ∀γ, ∃γ, etc.
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Sequents now take the dependent form `β Γ, where β = β1, . . . , βn is a list
of variables: those which are declared, i.e., allowed to occur freely in Γ. The
rules for quantification are the following:

` β,α Γ, A

` β Γ,∀αA

` β Γ, A[σ/α]

` β Γ,∃αA
The ∀ rule removes α (supposedly not occurring in Γ) from the stock of

declared variables β, α; in the ∃ rule, the variables occurring in σ must be chosen
among β = β1, . . . , βn. In particular, since there is no closed individual, one
cannot prove any sequent of the form `∃α1A1, . . . ,∃αkAk; as a consequence,
∀αA⇒ ∃βA[β/α] fails.

5.2 Explicit substitution
We define pα, pα̃, pA from p∀αA (or p∃αA) by7:

pα(x) := p∀αA(r · x), pα̃(x) := p∀αA(l · x), pA(x) := p∀αA(c · x)

pα(x) := p∃αA(l · x), pα̃(x) := p∃αA(r · x), pA(x) := p∃αA(c · x)

We must now face the conditions of possibility of variables. Which is defi-
nitely more demanding than the flippant axiomatic approach for which a variable
is hardly more than a symbol styled A variable B.

• A variable α is either universal or existential. The axiomatic variable used
in the dubious proof of ∀αA ⇒ ∃αA belongs to neither category: it has
therefore been excluded.

• A variable occurs under the dual form α/α̃.

• α occurs both in the prefix ∀α (or ∃α) and various occurrences in the body
A; the most important occurrence is the prefix, related to the other ones
by an explicit substitution, for which a special sublocation xcy is used.

• Explicit substitution is not the sole use of the prefix; another sublocation
xdy is needed. In the universal case, it takes care of the occurrences of α
in existential witnesses; in the existential case, of the limited complemen-
tarity between the two parts G, G̃ of the mould.

Whether quantified existentially or universally, α and α̃ are expected to occur
in A. Let us concentrate on an occurrence αi of α. If B := ∃αA (or ∀αA), then
qαi

(x) is of the form pB(c·(t1·(t2 . . . (tm·(g·x)) . . .))), where the ti are constants
l, r, c, . . .. Moreover, the ordeals for A actually use qαi

((. . . (x · yn) . . . y2) · y1)
where the variables yi take into account exponentiations.

In the traditional formulation of existential quantification, a substitution
must be performed, qαi becoming some qσ. Consistently with transcendental-
ism, this operation cannot be the deed of some Tarskian demon proceeding from

7Observe tha swapping between pα and pα̃.
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the sky: it must be expressed as an explicit substitution, to mention an impor-
tant contribution [1] of the same Curien to whom this paper is dedicated. What
is substituted will be localised at the address pα and delocating lego bricks to
and fro pαi

will be provided. With the shorthand abc for a · (b ·c), e.g., xcy3y2y1

for x · (c · (y3 · (y2 · y1))):

J
qα(grn(xct1 . . . tmyn . . . y1))

qαi
(xyn . . . y1)

K + J
pαi(xyn . . . y1)

qα(mag(xct1 . . . tmyn . . . y1))
K

If αi were a real atom, we would write the direct connection J
pαi(xyn . . . y1)

qαi(xyn . . . y1)
K;

instead, we transit through qα. Observe the internal use of grn(·) and mag(·)
which make our intermediate locations subjective. These two stars are part of
the ordeals for the quantifiers ∃α and ∀α. Ditto for occurrences α̃j of α̃.

5.3 Universal quantification
The passage from `β,α Γ, A to `β Γ,∀αA does not affect the épure.

The ordeal for ∀αA is made of the star J
qA(x)

q∀αA(x)
K, of the explicit substitu-

tions (section 5.2) for the αi and α̃j , as well as:

J
qα(grn(xdy))

pα(grn(xdy))
K + J

pα(mag(xdy))

qα(mag(xdy))
K + J

qα̃(grn(xdy))

pα̃(grn(xdy))
K + J

pα̃(mag(xdy))

qα̃(mag(xdy))
K

These four stars are used to connect moulds (infra) depending upon α, α̃
with our switches. Observe the use of a constant d 6= c: this is to keep a clear
distinction between the occurrences of α in the A of ∀αA (handled by c) and
the occurrences of α used in existential witnesses (handled by d).

Moreover, a ternary switch accounts for the generic nature of α:

∀⊗: J
qα(mag((lx)y)),qα(mag((rx)y))

qα(grn(xy))
K+J

qα̃(mag((lx)y))

qα̃(grn(xy))
K+J

qα̃(mag((rx)y))

qα̃(grn(xy))
K.

∀`: J
qα(mag((lx)y))

qα(grn(xy))
K+J

qα(mag((rx)y))

qα(grn(xy))
K+J

qα̃(mag((lx)y)),qα̃(mag((rx)y))

qα̃(grn(xy))
K.

∀Id: J
qα(mag(xy))

qα(grn(xy))
K + J

qα̃(mag(xy))

qα̃(grn(xy))
K + J

qα(mag(x′y))

qα(grn(x′y))
K + J

qα̃(mag(x′′y))

qα̃(grn(x′′y))
K,

except if x = x′ or x = x′′ (explanation infra).
The position ∀⊗ (resp. ∀`) corresponds to the choices α = ⊗, α̃ = ` (resp.

α = `, α̃ = ⊗); both ensure the synchronisation between α and α̃. The third
position ∀Id is there to exclude a practical joke, namely that an épure making
use of the sole sublocations (lx)y and (rx)y used in the first two switchings.
Moreover, in the spirit of the connective n [4], the stars are duplicated; the
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duplicated star J
qα(mag(x′y))

qα(grn(x′y))
K comes with coherences w.r.t. J

qα(mag(xy))

qα(grn(xy))
K

and J
qA(x)

q∀αA(x)
K: in both cases x′ 6= x. Ditto with J

qα̃(mag(x′′y))

qα̃(grn(x′′y))
K.

5.4 Moulds
An existential variable, say α, is bound to receive a value, namely a gabarit
G; its negation α̃ will simultaneously receive the value G̃. Since we are deal-
ing with A first order B, G must correspond to a multiplicative individual σ,
i.e., depend upon universal variables — typically those declared in our sequent
calculus. G and G̃, delocated in pα, pα̃ will form a mould, i.e., an existential
witness. These moulds are always subjective: derealism is a typical product
of existential quantification. Remember that an individual is a multiplicative
expression depending upon variables (indeed universal ones) β, β′, β′′, . . . (but
not their negations), possibily with repetitions. For reasons of legibility, I will
concentrate on an example, namely that of σ := β ⊗ β.

G := J
pβ(grn(xdly)) , pβ(grn(xdry))

pα(grn(xy))
K + J

pα(mag(xy))

pβ(mag(xdy))
K

As future component of an épure, G has been painted blue . Observe the use
of d in xdly (instead of xly).

Consistently with [5], the gabarit corresponding to σ̃ is defined as

G̃ := (
3

5
·`L ˇ

+
4

5
·`R) + J

pα̃(mag(xy))

pβ̃(mag(xdy))
K

with:

`L := J
pβ̃(grn(xdly))

pα̃(grn(xy))
K + J

pβ̃(grn(xdry))
K

`R := J
pβ̃(grn(xdry))

pα̃(grn(xy))
K + J

pβ̃(grn(xdly))
K

The mould Mσ corresponding to the individual σ is defined as the sum G + G̃
of the two constellations just defined.

A gabarit, originally coloured in magenta/green has been rewritten in blue,
the original colours becoming mag(·) and grn(·). However, we didn’t take care
of the second pair of colours (originally cyan/red ) used for mosaics [5]. If these
colours are rendered by cya(·) and red(·), our mould is therefore expected to
use rays of the form pα(red(xy)) , pα(cya(xy)) , pα̃(red(xy)) , pα̃(cya(xy)) .

5.5 Existential quantification
If `β Γ,∃αA has been obtained from `β Γ, A[σ/α], then its proof is obtained by
summing up the proof V +M of the premise and the mouldMσ corresponding
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to σ and located at pα, pα̃.
The ordeal for ∃αA makes use of the following constellations:

J
pα(grn(xcy))

qα(grn(xcy))
K + J

qα(mag(xcy))

pα(mag(xcy))
K + J

pα̃(grn(xcy))

qα̃(grn(xcy))
K + J

qα̃(mag(xcy))

pα̃(mag(xcy))
K

which naturally bridges with the explicit substitutions of section 5.2. And

J
qα(cya(xy))

pα(cya(xy))
K + J

pα(red(xy))

qα(red(xy))
K + J

qα̃(cya(xy))

pα(cya(xy))
K + J

pα̃(red(xy))

qα(red(xy))
K

which takes care of the mosaic aspects [5] of the mould.
The four-ary switch:

∃Ldd: J
qA(x),pα(grn(xdd))

q∃αA(x)
K + J

pα̃(grn(xdd))
K

∃Ldx: J
qA(x),pα(grn(xdx))

q∃αA(x)
K + J

pα̃(grn(xdx))
K

∃Rdd: J
qA(x),pα̃(grn(xdd))

q∃αA(x)
K + J

pα(grn(xdd))
K

∃Rdx: J
qA(x),pα̃(grn(xdx))

q∃αA(x)
K + J

pα(grn(xdx))
K

together with the star J
pα(mag(xdy)),pα̃(mag(xdy))

K (a sort of identity link

restricted to the sublocation xdy), tests what can be checked of the comple-
mentarity between the two parts G, G̃ of the mould: as explained in section 6.1
below, this only ensures a partial complementarity, a sort of dinaturality. The
choice and dd/dx in the switch compensates the impossibility to use y; a similar
gimmick was used in [4] to handle <.

5.6 Predicate variables
As we explained in [4], propositional constants are a mistake — of the same sort
as non generic variables; ditto for predicate constants. Predicates are indeed
universally quantified variables; but the quantifier is kept implicit. What follows
is rather sketchy: the precise treatment would involve too much red tape.

In presence of an injective pairing, unary predicates are enough. A predicate
P (·, ·) is a lacunary structure with two A holes B to be filled with an individual
σ and its negation σ̃: P (σ, σ̃), together with a root, the two holes being disjoint
sublocations of the root. They do occur in atoms as P (σ, σ̃) and Q̃(τ̃ , τ).

The main synthetic problem is to ensure that identity links between atoms
do relate P with P̃ (and not with Q or Q̃), hence P (σ, σ̃) with P̃ (τ̃ , τ); moreover,
that σ (= τ) relates with τ̃ and σ̃ with τ .

18



What is ensured by a switching of the implicit universal quantification ∀P :
either P (σ, σ̃) is interpreted by the binary connective σ ⊗ σ̃ (in which case
P̃ (σ̃, σ) becomes σ̃`σ), or P (σ, σ̃) is interpreted by the binary connective σ` σ̃
(in which case P̃ (σ̃, σ) becomes σ̃ ⊗ σ). Since the switchings of the various
P,Q, . . . are independent, the only possibility is to relate P (σ, σ̃) with P̃ (τ̃ , τ);
the relation between σ and τ is taken care of by the general handling of first
order variables.

Unfortunately, our usine justifies (σ = τ ⊗ σ = τ) ( (P (σ, σ̃) ( P (τ, τ̃)),
i.e., something like linearity of P . If we keep in mind that ∀P should eventually
be cut with ∃P which refers to arbitrary moulds, we get the definitely faulty
(σ = τ ⊗ σ = τ) ( (A[σ, σ̃] ( A[τ, τ̃ ]). Indeed, predicate variables should only
enjoy the weaker σ = τ ⇒ (P (σ, σ̃) ( P (τ, τ̃)). Instead of switching P/P̃ with
linear connectives ⊗/` (or `/⊗), I propose to switch them with the non linear
< and n: either P (σ, σ̃) is interpreted by the binary connective σ< σ̃ (in which
case P̃ (σ̃, σ) becomes σ̃n σ), or P (σ, σ̃) is interpreted by the binary connective
σ n σ̃ (in which case P̃ (σ̃, σ) becomes σ̃ < σ).

6 Epidictics

6.1 Partiality
The derealism at work in quantification is reponsible for the loss of certainty:
logic is no longer apodictic, an expression whose etymology is A proven B. This
phenomenon can be ascribed to the subjective — synthetic — component of the
proof, the mould. The mould M usually comes in two parts G, G̃ supposedly
the negation of each other: G̃ = ∼G. I use the graphism ∼G,∼G̃ to speak of the
A actual B negations, which may differ from G̃,G.

The problem originates from the fact that negation (and implication, based
on an implicit use of negation) are not genuine connectives: we cannot really
construct ∼A from A. This is obvious when we look at proof-nets: the negation
of the conjunction ⊗ is given by ` and vice versa; however, it is possible to show
that the two connectives negate each other. Now given arbitrary G and G̃, can
we still check that they negate each other? Indeed, by writing an identity link
between the two, it is possible to check whether or not `G, G̃ holds: in other
terms whether ∼G̃ ( G (equivalently, ∼G ( G̃). If G and G̃ actually negate
each other, we just written the familiar identity principle. The component
J
pα(mag(xdy)),pα̃(mag(xdy))

K of ordeals actually checks that ∼G̃ ( G.

But what is missing is the cut rule, i.e., the converse `∼G,∼G̃, in other
terms the implication G ( ∼G̃ (equivalently, G̃ ( ∼G). Eighty-odd years
of cut-elimination theorems taught us that cut-elimination is by no means a
straightforward notion: it embodies, in some sense, all foundational issues.
Therefore the converse cannot be checked. This opens the possibility of a sort
of schizophrenia: the mould consists of a laxist form (G) and a strict one (∼G̃).
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This situation was first noticed by Schütte [7], who interpreted second order
logic by partial valuations — i.e., three-valued models —: a strict version,
being true, vs. a laxist one, being unfalse. The cut rule required the equivalence
between the two versions, hence the totality of the A valuation B. Cut-elimination
was thus reduced to a matter of completion of a partial valuation into a total
one. Schütte’s approach remains the most direct explanation of a possible gap
between G A not false B and ∼G̃ A true B. But also the bleakest: the third value u
— A u B for undefined, but also useless, unfit — has a propensity to phagocyte
the real ones t,f, to the point that most formulas take this very unexciting
value. A much better handling of the same is to be found in dinaturals, another
shizophrenic approach in which a morphism from the strict to the laxist version
is provided. The A hexagonal B diagrams (see, e.g., [3]) express, through a want
of compositionality, the possibility of a mimatch usine/usage; this in a more
civilised way than the value A unfit B.

6.2 Quantification
We reached the conclusion that quantification is a matter of propositional logic.
But there are, traditionally speaking, various quantifications, first, second and
even higher order ones. My claim is that there is but one quantification dealing
with partial moulds, i.e., moulds enjoying ∼G̃ ( G. The problem being that
those partial moulds do not guarantee l’usage.

The situation is rather similar to that of naive set theory: the naive compre-
hension axiom can be handled by means of partial sets as ⊂ al — a strict and
a laxist version. Typically, if a := {x;x 6∈ x}, then a ∈ al \ as. The principles of
zf are ways of ensuring totality, i.e., as = al. But prior to zf, there were also
type theories dedicated to the same problem.

Epidictics8 is the fact of claiming the totality of specific moulds. The easiest
way is to devise specific classes of moulds whose totality we ascertain: since sev-
eral choices can can coexist, this explains the apparent plurality of quantifiers.

I essentially considered the A first order B case ∀α,∃α: the epidictic restric-
tion consists in choosing our moulds among multiplicative individuals. The
matching between σ and σ̃, although external, is rather unproblematic.

I didn’t quite consider second order quantification, except in the castrated
forms ∀XX,∃XX: due to the absence of ∼X, epidictics hardly matters. Of
course, second and higher order quantifications should be investigated, keeping
in mind that we can fine tune our quantifiers so as to, say, represent weak forms
of arithmetic recurrence.

But the real problem at stake is the use of a single, untyped quantifier, in the
spirit of set theory. We know that hastily written epidictic principles — like the
first version of Martin-Löf’s type theory — may fail, i.e., happen to be partial.
The question indeed is not quite that of finding a universal epidictics: incom-
pleteness forbids us forever to answer this question; moreover, no consensus on

8Expression created in analogy with A apodictic B; the epidictic style is the style of excessive
praise, typical of obituaries: A The greatest man who ever lived B.
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the right principles may be expected, witness the literature on A predicativity B.
The real problem is to understand the structure of the epidictic layer, if any.
For instance, Martin-Löf’s type theory [6] involves epidictic judgments of the
kind A A is a type B. Something is proven there, but what? We would like to
know the transcendental status of these proofs, in particular determine in which
way this sort of epidictic judgment is part of the logical process.

At the present moment, epidictics is but a name on a blank area of the
logical charts; hence a sort of new frontier for logic.

Jean-Yves Girard
Directeur de Recherches émérite

jeanygirard@gmail.com

non si non la
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