
Transcendental syntax iv : logic

without systems

Jean-Yves Girard

Directeur de Recherches émérite

jeanygirard@gmail.com

January 24, 2022

For André

Abstract

A derealistic, system-free approach, with an example: arithmetic.

Keywords : logic, arithmetic, derealism.

1 bhk revisited

1.1 A system-free approach

According to a widespread prejudice, logic should depend upon a system
limiting the validity of its laws. Typically, the excluded middle should be
accepted in the classical chapel but refused in the intuitionistic bunker. A
conception that Kreisel refuted in his day: the polemics as to A ∨ ¬A does
not concern the system, but the connective, i.e., ∨ := ` vs. ∨ := ⊕.

The first evidences against this “fishbowl” view of logic date back to the
early 1930’s. Typically, Gentzen’s subformula property which restricts proofs
of A to the constituents of A, thus excluding the wider system in which A
may have been proved. But the most spectacular blow against bunkerisation
is to be found in bhk (Brouwer-Heyting-Kolmogoroff), which presents a sort
of functional definition of proofs (section 3).

This approach, which does not refer to any system, acknowledges the fact
that logic deals with pure reason, truths beyond discussion.

1

1.2 Axiomatic realism

Getting rid of systems means standing up against axiomatic realism, the
duality between syntax and its realistic counterpart, semantics.

But axiomatics and semantics have little to do with proofs. Being con-
cerned with falsification, they are, so to speak, scouting the intellectual
wilderness: the consistency of ¬A (or the existence of a model refuting A)
shows that we shouldn’t waste energy in trying to prove A. By telling us
where not to go, they are very precious auxiliaries, but too warped to be
anything more, since they yield contingent truths: A may be valid in system
T and its negation ¬A in system U, both being consistent.

Axiomatics and semantics deal with counterexamples, i.e., impermanence.
While our basic interest lies in logic, i.e., permanence.

1.3 The first leakage: emptiness

bhk, although the only approach respecting the meaning of the word “logic”,
has serious leaks. The most obvious being emptiness: what to do in presence
of formulas with no proofs, typically the absurdity 0 ? Since ¬A := A ⇒ 0,
a proof of a negation becomes a function with the empty set – an unfriendly
fellow – as target; this forces the source to be empty as well, in which case
the proof becomes the bleak empty function ∅.

The emptiness of 0 justifies the excluded middle: either A has a proof or it
has none, in which case the empty function which maps proofs of A to proofs
of 0 is a proof of ¬A. This is quite embarrassing and various modifications,
none of them definite, have thus been proposed, yielding various realisability

interpretations. Those “semantics of proofs” are only useful tools, not the
real thing – just like a scout is not the Army.

The only way to fix the leakage is to allow all formulas to have proofs, a
proposal which conflicts with consistency. Not quite indeed: it is enough to
distinguish, among proofs, the real ones from those which are here “to fill the
holes”. A situation akin to what happens with computer folders: those who
look empty to the user indeed harbour “invisible” files .xxx which contain
essential informations, the name of the folder or the list of its visible files.

Every proposition, including the absurdity 0 := !(フフフ `ヲヲヲ)⊗ヲヲヲ (section
3.4), admits “proofs”. A truth criterion (section 3) will determine which ones
are visible, i.e., “true”; in the case of absurdity, none.

2

1.4 The second leakage: operationality

The functions at work in definition 2 play an essential role, but their status
remains rather vague. Should we understand them as computable (recur-
sive) functions or plain set-theoretic graphs? Each answer leads to a specific
category of morphisms, i.e., a semantics. Categories presuppose the form

(whence the word “morphism”): their intrinsic essentialism makes them one
of the best semantic artifacts, but surely not a way out the bunker.

It seems that rock bottom was hit with the constellations of [4], that I will
rename designs. A product of the experience of proof-theory and computer
science, they embody the lessons of Gentzen (their stars are sort of logic-free
sequents), Herbrand (they socialise through unification), logic programming
(they look like deterministic prolog programs) and proof-nets.

Under certain circumstances, two designs may merge to form a new one
through a process that may diverge: this normalisation is akin to the tradi-
tional cut-elimination – or the resolution of logic programming.

This process, which corresponds to the functional application at work
in definition 2, presupposes neither logic nor categories: the merger of two
designs can be expressed as a composition. . . provided we select appropriate
sources and targets, but there is no univoque way to do so.

1.5 The third leakage: language

bhk is concerned with those formulas taken from a given language, typically
arithmetic. Of course, if we want to free ourselves from systems, we must
be ready to consider new formulas and connectives, including eccentric ones,
i.e., not limit ourselves to an a priori choice: we should be able to consider
general propositions, not only those available in a particular fishbowl.

The naive definition of those language-free formulas, called behaviours:

A behaviour is any set of designs.

is not technically mature: it must be regulated, typically to exclude the
nightmare of emptiness.

The basic example of such a regulation is given by the correctness crite-

rion of proof-nets. Which can be expressed in terms of a duality between
designs: P, the one under testing vs. T , the test. The test succeeds if the
combination P + T merges into a design of a certain form, notation

P ⊥ T

3

Hence given a set P of designs, we can define its orthogonal ∼P, i.e., the
set of tests it passes. The biorthogonal ∼∼P is, so to speak, the regulated
version of P, indeed the behaviour generated by P.

Definition 1

A behaviour is any non trivial set of designs equal to its biorthogonal.

“Non trivial” means that the behaviour and its orthogonal are non empty.
With denumerably many designs, the number of possible behaviours has the
power of the continuum. No fishbowl can harbour that many propositions!

1.6 The fourth leakage: usine

This happened to be the only leakage ever observed in the literature. As-
suming everything works swell – and it does with our definitions – remains
the problem of the distinction between usine and usage (factory and use, the
use of French emphasising the opposition). L’usage is nothing but the bhk

definition, which yields functions, etc. L’usine is the place where we get the
certainty that those so-called functions do what they mean to do.

The successful passing of the tests implies cut-elimination and consis-
tency. Therefore incompleteness forbids any form of absolute certainty as to
l’usine which usually involves infinitely many tests.

People addressing the issue did not seem to realise that they were up
against incompleteness. For instance those asking that, besides the functional
proof of definition 2, one should add an auxiliary proof that the function does
what it means to do. But how to deal with this “meta-proof”? If we treat it
in the bhk style, it will need in turn its own auxiliary proof, etc.: metas all
the way down. In [8], Kreisel proposed to make the meta-proof a formal one
in a system given in advance – but later claimed (private communication,
circa 1979) that this was a practical joke.

We do know that consistency proofs are impossible, that the Hilbert pro-
gram cannot be fixed. So let us address the issue without any dogmatism.
A behaviour G is the orthogonal of a set of tests, a “preorthogonal”. The
most elementary behaviours admit finite preorthogonals and will therefore
be subject to a completely finite checking. But the preorthogonal is, most of
the time, infinite and there is no way to implement infinitely many tests: the
fact that F is a bhk proof cannot be an absolute certainty. It can, however,
be justified by the usual tools of mathematics, i.e., within set theory.

See annex, p. 22 for further developments.

4

2 The architecture of logic

2.1 Logic vs. set theory

We propose to delegate the abstract testing (usine) to set theory: this makes
our ultimate – reductionist foundations – depend upon set theory. Just
like axiomatic realism, whose justification boils down to some set-theoretic
semantics. Both approaches, derealistic and realistic thus rest upon plain
mathematics, so let us compare the two approaches in foundational terms.

Set theory is a system, but a well-established one, so flexible and universal
that one hardly notices its boundaries: for us, it is mathematics, period.
If we insist upon absolute certainty (section 2.3), we must acknowledge the
possibility of a failure of this framework. This highly unreasonable occurrence
would equally affect both approaches.

Set theory being incomplete, it is likely that it cannot establish that
some proof is a proof, i.e., miss the fact that some design P belongs to some
behaviour G. But this limitation of the derealistic approach, based on far-
reached unprovable statements, is mainly theoretical. On the other hand, the
realistic approach is most effectively limited by the walls of its self-chosen
prison. As a consequence, the metastatic proliferation of systems.

Take for instance my system F of fifty years ago [3]: les candidats de

réductibilité – which are the prefiguration of behaviours – are handled by
means of the comprehension principle. If we still see it as a system, we
are bound to build extensions – not necessarily bad, like the constructions of
Coquand [1] –, but sort of prisons anyway. Or we could dump the idea of any
system and directly work on behaviours, with almost unlimited possibilities.

Last but not least, most systems are wrong because the semantic justifi-
cation leaks. The notion is easily tampered with and “bad witnesses” elimi-
nated: this is what happened to the embarrassing empty model of predicate
calculus (section 2.3).

2.2 Systems vs. toolbox

So we don’t quite need logical systems: if we are not happy with our formulas,
connectives, etc., define new ones by biorthogonality, establish their basic
properties and add them to our data base. This stock may take the form
of an open toolbox containing various designs together with the name of
the behaviour they belong to. A list of untyped artifacts – delogicalised

5

proofs – together with their types, those types being attributed externally,
by arbitrary mathematical methods. The toolbox requires no sophisticated
logical structure, e.g., a sequent calculus formulation: we can even use the
most archaic logical formulation (axioms and Modus Ponens), which allows
us to draw consequences from the principles listed in the data base, i.e.,
combine the tools. No cut-elimination, normalisation, etc. at the level of
the toolbox is needed, since it is the task of the tools themselves: when we
combine them by Modus Ponens, they initiate a converging merging process.

This is a major improvement over the fishbowl approach for which each
novelty prompted a change of system, the creation of a schismatic chapel.
An approach which culminated with logical frameworks [7] where systems
T,U,V, . . . could be put under the same roof with no right to communi-
cate : like hospital patients, each of them quarantined in his room, lest he
contaminate the others.

The fact that l’usine has been delegated to current mathematics, i.e., set
theory, makes our toolbox absolutely faultless – except the legitimate doubt
(section 2.3). The only limit to this approach is our own imagination.

2.3 Certainty

The logical discussions of yesteryear were polluted by the obsession of foun-
dations. We must adopt an adult approach to the question and reflect upon
our certainties or, dually, our doubts.

Generally, the testing cannot actually be performed – it is infinite – and
is delegated to set theory. It is legitimate to doubt as to the reliability of
set theory – in the same way we cannot be absolutely confident in the daily
return of the Sun. But these doubts are not quite reasonable. Some form
of certainty thus arises from the set theoretic foundation of logic: I call
it epidictic. Due to incompleteness, this certainty is only reasonable, not
absolute: it leaves some room for limited, but legitimate, doubts.

The old foundational approach did not distinguish between legitimate
and reasonable: it was seeking a sort of apodictic certainty – the one which
leaves not the slightest doubt – and neglected anything irrelevant to this
chimeric issue. It promoted a reductionistic viewpoint based on brute force
– consistency as rock bottom –, thus excluding any sort of finesse.

Like any kind of religious approach, the developments of the apodictic ide-
ology contradict its goals. The search for final justifications leads to overlook
obvious mistakes, for which the doubt is more than legitimate, reasonable:

6

typically the ludicrous principle ∀ ⇒ ∃. Based on the misuse of variables,
it is obviously false; but consistent hence, from the apodictic ideology which
deals with “strength”, a neglectable drawback. The Al Capone method was
applied to the embarrassing witness – the empty model – which refutes the
nonsense: it was disposed of on the way to Court, this is why models are
supposed to be non empty!

2.4 Constraints and freedom

As we observed with the dubious ∀ ⇒ ∃, each axiomatic system can be
justified by means of an ad hoc relation to reality. This is precisely why their
results are not portable: these systems are prisons, with their own approach
to reality, what they call semantics. If we can still use such a prostituted
expression, derealism is the ultimate semantics.

It is therefore much demanding and does not content itself with a model.
For instance, they were serious grounds for the logical constants 1 and ⊥

of linear logic: no need to explain the interest of having neutral elements
for the multiplicative connectives. However, altough a considerable amount
of energy was devoted to that peculiar task, the theory of proof-nets never
worked for those constants. There is only one way out, namely accept the
fact that 1 and ⊥ are wrong, i.e., impossible. Forcing them to integrate the
bulk of logic would destroy the whole architecture. By the way, if we insist
upon something of the like, ∀X (X ⊸ X) and ∃X (X ⊗ ∼X) will provide
reasonable ersatz, but not the real thing which remains a logical fantasy.

The point of good constraints is that they create freedom. Derealism
refuses 1 and ⊥ but accepts equality, the most notorious failure of axiomatic
realism, based upon the Leibniz definition

Any property of a is a property of b.

As observed in [5], individuals a and b can never be equal, since they can be
distinguished by their position w.r.t. “and”. Axiomatic realism will object
by claiming that we are actually speaking of the respective denotations, i.e.,
semantics, of these objects and that properties should be consistent with
denotations. But how do we know that a property only depends upon the
semantics? Elementary, my dear Watson: when it is compatible with. . .
equality! This circular riddle is implemented in various systems telling us
which properties are legit. Hence, without system, no Leibniz definition, no

7

equality. By the way, the proof-theoretical treatment of equality is admit-
tedly ad hoc: it involves generalised identity axioms embodying the cuts one
cannot eliminate, e.g., t = u, v = u,A[t] ⊢ A[v].

But who told us that there is a special, segregated category of “individ-
uals” proceeding from the Sky; furthermore that they harbour properties in
the same way dogs have a tail? Wouldn’t it be simpler if those individuals
were just plain propositions, equality being equivalence? This obvious solu-
tion can indeed be used to define natural numbers and prove the third and
fourth Peano axioms (section 5). Exit the aporia of the Leibniz equality.

So why did it take so long to integrate the most natural logical primitive?
Simply because of the classical prejudice: up to consistency, everything is
classical, hence the excluded middle

A ≡ B ∨ B ≡ C ∨ C ≡ A (1)

which implies the impossibility of three unequivalent propositions. Intuition-
ism, which does not agree on this, does not disagree either, i.e., proves ¬¬ (1).
Linear logic – which should not be seen as a system, but a space of freedom –,
by restricting the contraction rule to specific cases, makes (1) the exception,
by no means the rule. No doubt a useful exception, but which can be a pain
in the neck in some cases.

Another issue related to freedom: the paper [6] introduced light expo-

nentials, i.e., connectives dedicated to perenniality, with some relation to
computational complexity. They were developed in various systems (bll,

lll, ell. . .) whose relative qualities I shall not discuss for the very reason
that we move on sort of quicksand, with no real benchmark: the semantics
turns out to be more treacherous than ever. This is why it would be of utmost
importance to determine whether or not light exponentials are more than a
figment of axiomatic realism, in other terms whether they can be explained
in terms of behaviours.

3 Truth

3.1 The tarskian pleonasm

It suffices to compare bhk

8

Definition 2

A proof of A ⇒ B is a function F mapping any proof P of A to a proof

F(P) of B.

to Tarski’s “definition” of truth, e.g.,

Definition 3

A ⇒ B is true when the truth of A implies the truth of B.

(and its declinations for ∧,∨,¬ , . . . in terms of and, or, not, . . .) to see the
difference between an inspired approach and a pleonasm which boils down
to “A is true when A”. But the truism is the ultimate form of snobbery: you
think the Emperor is naked, mistake, you just don’t see his new clothes.

Indeed, the famous vérité de La Palice, a theory of truth due to a French
precursor of analytic philosophy, e.g.,

Un quart d’heure avant sa mort, il était encore en vie.

foreshadows definition 3.
The current opinion among non believers is that tarskian truth is, unfor-

tunately, correct. But even this correctness is dubious, since truth does not
apply to formulas but to proofs! Section 4.3 wil provide us with examples
contradicting the tarskian definition, which is thus not even a pleonasm.

3.2 Generalities about visibility

Remember that we definitely dumped fishbowls, hence no longer deal with
the formulas of a language, but with general behaviours (definition 1). Our
definition of truth takes the form:

Definition 4

G is true when it harbours a visible design.

The visible designs are the true ones, the actual proofs so to speak. Visibility,
yet to be defined, should enjoy certain implicit requirements:

• It should be closed under cut: hence, if P and F are proofs of G and
G ⇒ H, then the design F(P) of H must be visible, i.e., a proof of H.

• Some behaviour, typically the absurdity 0, must be without visible
element, i.e., not true.

9

If these requirements are satisfied, then truth is consistent: G and its classical
negation G ⇒ 0 cannot both have visible designs, i.e., both be true. An
exclusion that does not extend to linear negation: the self-dual behaviours
フフフ = ∼フフフ and ヲヲヲ = ∼ヲヲヲ are true.

Since truth deals with proofs and not with mere provability, the truth of
a compound behaviour cannot be reduced to the truth of its constituents.
Therefore it cannot follow any kind of truth table. In particular, a conjunc-
tion may be true while one of the conjuncts is not. So tarskian truth is worse
than a useless and snobbish ready-made, it is a plain mistake!

3.3 Multiplicative case

We shall first explain the solution in the case of the multiplicative proof-nets
of linear logic; we consider formulas built from literals p,∼ p, q,∼ q, r,∼ r, . . .
by means of ⊗ and `. Besides the usual ⊗ and `-links, we allow arbitrary

links
︷ ︸︸ ︷
p1, . . . , pk, with k > 0, which resemble axioms in the sense that they are

without premise. The usual correctness criterion is applied to the structures

built from those,
︷ ︸︸ ︷
p1, . . . , pk being seen as a vertex with edges p1, . . . , pk: this

generalises the usual case based on the sole
︷ ︸︸ ︷
p,∼ p, see section 3.5 below.

A proof structure with literals q1, . . . , qN (with possible repetitions, this
is the familiar nonsense about “occurrences”) can be seen as a partition P of

{1, . . . , N} the classes of which are precisely the “axioms”
︷ ︸︸ ︷
qi1 , . . . , qik used. A

switching of the proof-net yields another partition T of the same {1, . . . , N}.
Both partitions can be put together to form a bipartite graphs: the classes
being its vertices, an edge between X ∈ P and Y ∈ T is an element of
P ∩T . The Danos-Regnier criterion [2] requires that, for any T arising from
a switching, the induced graph is connected and acyclic. In particular X ∈ P
and Y ∈ T intersect in at most one point.

Let n and m be the respective numbers of partitions in P and T . If the
proof is correct, then n+m−N = 1 (Euler-Poincaré), what can be written
(2n−N)+(2m−N) = 2. The weight |P| := 2n−N , which does not depend
upon T , can be written as the sum of the weights of its “axiom links” defined

by |
︷ ︸︸ ︷
p1, . . . , pk | = 2− k. Our visibility definition writes as:

Definition 5

P is visible when |P| ≥ 0.

10

Observe that the weight of the familiar
︷ ︸︸ ︷
p,∼ p is 2− 2 = 0, hence a proof-net

using the familiar identity axioms is of total weight 0, hence visible.
Visibility satisfies the requirements of the previous section. First, it is

deductively closed: normalising a cut amounts at replacing
︷ ︸︸ ︷
p1, . . . , pk, p and

︷ ︸︸ ︷
∼ p, q1, . . . , qℓ (total weight 2 − (k + 1) + 2 − (ℓ + 1) = 2 − (k + ℓ)) with
︷ ︸︸ ︷
p1, . . . , pk, q1, . . . , qℓ (weight 2− (k+ ℓ), i.e., the same). Moreover, not every-
thing is true: typically, p ` q ` r, whose only correct proof-net, which uses

the axiom
︷ ︸︸ ︷
p, q, r of weight −1, is invisible.

Incidentally, we gave the fatal blow to tarskian truth: (p ` q ` r) ⊗ s is
true while p` q ` r is not.

3.4 The constants are dead, long live the constants!

Our multiplicative example has been oversimplified for pedagogic purposes.
Atoms indeed split into two classes, objective and subjective, each one being
closed under negation. This modification makes it possible to handle the
absurdity 0 and is the key to second order (section 5.2). It only affects the

weighing of “axioms”, written
︷ ︸︸ ︷
p1, . . . , pk, q1, . . . , qℓ, the pi being objective, the

qj subjective.

• If ℓ = 0, i.e., if the axiom is objective, then |
︷ ︸︸ ︷
p1, . . . , pk | = 2− k.

• Otherwise, |
︷ ︸︸ ︷
p1, . . . , pk, q1, . . . , qℓ | = −k

Subjective atoms, whatever their number, count for two objective ones.
Keeping definition 5 of visibility, it remains to show the deductive clo-

sure of truth. |
︷ ︸︸ ︷
p1, . . . , pk, q1, . . . , qℓ, p | takes the value −k if p is subjec-

tive; if p is objective, it takes one of the values 2 − (k + 1) (if ℓ = 0)

and −(k + 1) (if ℓ 6= 0). Ditto with |
︷ ︸︸ ︷
∼ p, r1, . . . , rk′, s1, . . . , sℓ′ |: possible

weights −k′, 2 − (k′ + 1) and −(k′ + 1). Both of them weight a − (k + k′)
where a takes one of the values 2, 0,−1,−2: a = 1 is excluded since this
would require, say, p to be objective and ∼ p subjective. On the other hand,
︷ ︸︸ ︷
p1, . . . , pk, q1, . . . , qℓ, r1, . . . , rk′, s1, . . . , sℓ′ weights 2 − (k + k′) or −(k + k′).
The weight can decrease during normalisation only if a = 2, in case ℓ = ℓ′ = 0
but the normalised “axiom” would weight 2− (k + k′).

Indeed, up to linear equivalence, there are only two atoms, the objective
フフフ (“fu”) and the subjective ヲヲヲ (“wo”). Both are provable, self-dual and

11

inequivalent. They can be used to define the absurdity by 0 := !(フフフ`ヲヲヲ)⊗ヲヲヲ.
Indeed, section 4.2 of [5], proves, without using the notations (フフフ andヲヲヲ were
still in limbo) the rule

⊢Γ, A

⊢Γ,⊤⊤⊤

which is an alternative formulation of the famous ex nihilo quod libet 0 ⊸ A.
Incidentally, the notion of épure (= working drawing) of paper [5] is different:

either k = 2, ℓ = 0 or k = 0. This ensures that |
︷ ︸︸ ︷
p1, . . . , pk, q1, . . . , qℓ | = 0,

hence épures are visible.
The constants (1 and ⊥) are dead, long live the constants (フフフ and ヲヲヲ).

Whose multiplicative combinations yield natural numbers (section 4 below).

3.5 Variables

According to a dubious tradition, propositional calculus should be built from
unspecified constants P,Q,R, Weird constants indeed, for which any-
thing can be substituted: this is what one usually calls variables! But such
variables should then be styled second order, a part of logic against which
a fatwa was declared. Let us call a spade a spade and use the notation
X, Y, Z, . . . to emphasise the fact that we are dealing with variables.

Those variables were part of proof-nets original, since we needed some sorts

of atoms. Those proof-nets made use of binary identity links
︷ ︸︸ ︷

X,∼X. They
are compatible with our truth definition, since they are binary; their weight
is always zero, since X and ∼X are simultaneously objective or subjective.

The restriction to the links
︷ ︸︸ ︷

X,∼X has nothing to do with a sort of
systemic ukase, it can be derived from closure under instanciation: the net
should remain correct when we replace its variables with independent propo-
sitions. This can take the form of a switching (already presented in [4], but
without the notationフフフ), involving the selection of a “value” for each variable
X with three cases :

X :=フフフ ∼X :=フフフ

X :=フフフ⊗フフフ ∼X :=フフフ`フフフ

X :=フフフ`フフフ ∼X :=フフフ⊗フフフ

This excludes all possible practical jokes, e.g.,
︷︸︸︷

X ,
︷ ︸︸ ︷

X, Y ,
︷ ︸︸ ︷

X,X,
︷ ︸︸ ︷

X,X,∼X.

12

3.6 General case

We are not quite dealing with proof-nets, but with the designs of a behaviour.
The main difference with the multiplicative case is that duplications and eras-
ings may occur during normalisation. Our numerical criterion is obviously
sensitive to these operations, hence we must be cautious.

The truth of P ∈ G is related to the testing process. So let T be a test
in ∼G, hence P ⊥ T . The actual performance of the test, a normalisation
in the sense of [4], involves the building of a connected-acyclic graph whose
vertices are made of two designs, PT and T ′, each ray of PT being a ray of
T ′; the edges are those common rays. PT and T ′ are obtained through a
unification (matching) procedure which replaces any star σ of those designs
with various substitutions σθi.

The visibility of P is obtained by means of a weighing of the stars of PT .
Remembering that rays are divided into objective and subjective ones, let
J t1, . . . , tk, u1, . . . , uℓ K ∈ PT , then:

• If ℓ = 0, then |J t1, . . . , tk K| = 2− k.

• Otherwise, |J t1, . . . , tk, u1, . . . , uℓ K| = −k.

The closure of visibility under cut is the consequence of the fact that the
matching between t and u of complementary colours is impossible if one is
objective and the other subjective. Generally, the testing should anticipate
general normalisation; in terms of truth, it should make sure that the PT are
representative of the PQ occurring during the actual normalisation of a cut
between P and a design Q, visible or not, in some ⊢∼G,Γ.

4 Natural numbers

We now restrict our attention to the multiplicative combinations of the self-
dual constants フフフ and ヲヲヲ. We shall classify them up to linear equivalence
(i.e., logical equality) A ≡ B := (A ⊸ B) & (B ⊸ A).

13

4.1 First series

Definition 6

The weight of the multiplicative A built from the sole フフフ is defined as the

common weight of all designs of A:

|フフフ| = 1

|A⊗ B| = |A|+ |B|

|A`B| = |A|+ |B| − 2

In particular, | ∼A| = 2− |A| and |A ⊸ B| = |B| − |A|.
For n > 0 define フフフn :=フフフ⊗フフフ⊗ . . .⊗フフフ (a n-ary tensor) and for n < 2

フフフn :=フフフ`フフフ` . . .`フフフ (a 2− n-ary par), both cases agreeing on フフフ1 :=フフフ.
Observe that ∼フフフn ≡フフフ2−n.

Theorem 1

A ≡フフフ|A|

Proof : by recurrence on the size of A, the basic case A =フフフ being trivial. If
A is a tensor B⊗C and B ≡フフフ|B|, C ≡フフフ|C|, then A ≡フフフ|B|⊗フフフ|C| ≡フフフ|A|. If
A is a “par” B`C, the previous case shows that ∼A is equivalent toフフフ| ∼A|,
hence A ≡ ∼フフフ2−|A| ≡フフフ|A|. ✷

フフフ0 =フフフ`フフフ is a sort of corrected version of the late neutral 1, ditto for
フフフ2 = フフフ ⊗フフフ w.r.t. ⊥. フフフ0 and フフフ2 are, so to speak, the logical part of the
multiplicative units. They basically work becauseフフフ andヲヲヲ no longer follow
any semantic paradigm!

All フフフn, for n ≥ 0, are provable. As a particular case, フフフ0, フフフ1 and フフフ2 are
provable together with their linear negations フフフ2, フフフ1 and フフフ0. For n < 0, the
フフフn are not provable; they are indeed refutable (section 4.3).

4.2 Second series

For n ∈ Z, we define the ヲヲヲn : ヲヲヲ0 :=ヲヲヲ, ヲヲヲn :=フフフn ⊗ヲヲヲ when n 6= 0.

Proposition 1

ヲヲヲ ≡フフフ0 ⊗ヲヲヲ

Proof : from ⊢ヲヲヲ,ヲヲヲ and ⊢フフフ0, we get ⊢ヲヲヲ,フフフ0 ⊗ヲヲヲ, hence the implication
ヲヲヲ⊸フフフ0 ⊗ヲヲヲ. Conversely, ⊢フフフ and ⊢フフフ,ヲヲヲ,ヲヲヲ admit designs of respective
weights 1 and −1 which combine into a design of weight 0 of ⊢フフフ⊗フフフ,ヲヲヲ,ヲヲヲ
which yields a proof of フフフ0 ⊗ヲヲヲ⊸ヲヲヲ. ✷

14

Hence ヲヲヲn ≡フフフn ⊗ヲヲヲ for all n ∈ Z. More generally:

Proposition 2

フフフm ⊗ヲヲヲn ≡ヲヲヲm+n

(obvious) and

Proposition 3

ヲヲヲm ⊗ヲヲヲn ≡ヲヲヲm+n

Proof : boils down toヲヲヲ⊗ヲヲヲ ≡ヲヲヲ. From ⊢ヲヲヲ,ヲヲヲ,ヲヲヲ, we getヲヲヲ⊗ヲヲヲ⊸ヲヲヲ;
conversely, ⊢ヲヲヲ,ヲヲヲ and ⊢ヲヲヲ yield ⊢ヲヲヲ,ヲヲヲ⊗ヲヲヲ, hence ヲヲヲ⊸ヲヲヲ⊗ヲヲヲ. ✷

Proposition 4

フフフn+2 `ヲヲヲ ≡ヲヲヲn

Proof : from ⊢ヲヲヲ,ヲヲヲ and designs in ∼フフフn+2 andフフフn of respective weights −n
and n, one gets a proof of ⊢ (∼フフフn+2⊗ヲヲヲ), (フフフn⊗ヲヲヲ), henceフフフn+2`ヲヲヲ⊸ヲヲヲn.
Conversely, from ⊢ヲヲヲ,フフフ2,ヲヲヲ, we get ⊢ ∼フフフn `ヲヲヲ, (フフフ2 ⊗フフフn) `ヲヲヲ, hence
ヲヲヲn ⊸フフフn+2 `ヲヲヲ. ✷

Theorem 2

Any multiplicative combination A of フフフ and at least one ヲヲヲ is provably

equivalent to some ヲヲヲn.

Proof : by recurrence on the size of A, the basic case A = ヲヲヲ being trivial.
If A is a tensor B⊗C, at least one of B and C uses aヲヲヲ and we are left with
the cases ヲヲヲm ⊗ヲヲヲn, フフフm ⊗ヲヲヲn and ヲヲヲm ⊗フフフn which by propositions 2 and 3
are equivalent to ヲヲヲm+n. If A is a “par” B ` C, the previous case shows that
∼A is equivalent to some ヲヲヲn, hence A ≡ フフフn `ヲヲヲ; using proposition 4, we
get A ≡ヲヲヲn−2. ✷

Definition 6 can be extended to multiplicative combinations ofフフフ andヲヲヲ:

Definition 7

|フフフ| = 1

|ヲヲヲ| = 0

|A⊗ B| = |A|+ |B|

|A`B| = |A|+ |B| − 2 if one ofA,B isヲヲヲ−free

|A`B| = |A|+ |B| otherwise

15

By 1 and 2, A is equivalent to either フフフ|A| or ヲヲヲ|A|. In general:

1. フフフm ⊗フフフn ≡フフフm+n and フフフm `フフフn ≡フフフm+n−2

2. ∼フフフn ≡フフフ2−n and フフフm ⊸フフフn ≡フフフn−m

3. ヲヲヲm ⊗ヲヲヲn ≡ ヲヲヲm `ヲヲヲn ≡ ヲヲヲm+n

4. ∼ヲヲヲn ≡ヲヲヲ−n and ヲヲヲm ⊸ヲヲヲn ≡ヲヲヲn−m

5. ヲヲヲm ⊗フフフn ≡ヲヲヲm+n and ヲヲヲm `フフフn ≡ヲヲヲm+n−2

6. ヲヲヲm ⊸フフフn ≡ ヲヲヲn−m−2 and フフフm ⊸ヲヲヲn ≡ ヲヲヲn−m

4.3 Truth and falsity

Theorem 3

The フフフn and ヲヲヲn are refutable for n < 0.

Proof : フフフn ⊸ヲヲヲn being equivalent toヲヲヲ0 (=ヲヲヲ), is provable; ¬ヲヲヲn ⊸ ¬フフフn is
thus provable, which reduces the theorem to the case ofヲヲヲn. Nowヲヲヲn ⊸ヲヲヲ−1

being equivalent to the provable ヲヲヲ−1−n, we are reduced to proving ¬ヲヲヲ−1:
from ⊢ ∼ヲヲヲ−1,ヲヲヲ−1 and ⊢フフフ, we get ヲヲヲ−1 ⇒ !ヲヲヲ−1 ⊗フフフ, i.e., ヲヲヲ−1 ⇒ 0 that is
the negation ¬ヲヲヲ−1. ✷

Let us sum up the basic facts about truth and falsity (i.e., refutability):

1. The フフフn and ヲヲヲn are true for n ≥ 0, false for n < 0.

2. The implications フフフm ⊸ フフフn, フフフm ⊸ ヲヲヲn and ヲヲヲm ⊸ ヲヲヲn are true for
m ≤ n, false when m > n.

3. The implication ヲヲヲm ⊸フフフn is true when n ≥ m+ 2, false otherwise.

The two series are thus distinct, the sole relation between them being the
double implication

フフフn ⊸ヲヲヲn ⊸フフフn+2

We definitely contradict the excluded middle (1) which forbids the ex-
istence of three provably unequivalent popositions! This implies necessary
divergences from classical truth which are made possible by the fact that

16

our truth applies to proofs and not to propositions. In particular the nov-
elty cannot be tamed by a change of truth tables, say replacing t,f with Z.
Typically, A of weight n can be equivalent to フフフn or ヲヲヲn.

The following table is a list of possible deviations (with t = true, f= false)
w.r.t. classical truth. The first line, with A = B =フフフ0, yields A `B =フフフ−2

and ∼A =フフフ2. The second line, with A =フフフ−1, B =フフフ1, yields A⊗ B =フフフ0

and A` B =フフフ−2. No deviation when both A and B are false. “`” is more
deviant than “⊗”: this is because negation does not exchange t and f.

A B A⊗ B A`B ∼A
t t f t

f t t f

A definite jailbreak from tarskism. . . and any sort of semantics.

5 Arithmetic

We shall now reconstruct arithmetic, not as a system, but as part of our open
logic. We basically need two sorts of quantifiers, first and second order.

5.1 First order quantification

First order quantification is about relative numbers, identified with the series
フフフn (n ∈ Z). The following can serve as a definition of individuals:

1. The variables x, y, z, . . . are individuals.

2. 1 :=フフフ is an individual.

3. If t, u are individuals, so are t+ u := t⊗ u and t− u := u ⊸ t.

Since logic is open, we don’t even require that (1)–(3) be the only way to
build individuals.

The usual rules of quantification do apply, provided we declare our vari-
ables. Incidentally, due to the presence of the closed individual フフフ, the
principle ∀ ⊸ ∃ holds : ∀xA[x] ⊸ A[フフフ] and A[フフフ] ⊸ ∃xA[x].

17

Variables indeed stand for arbitrary behaviours, analogous to the so-called
propositional “constants”, indeed variables, of logic. The basic parametric
proposition (i.e., predicate) is inequality:

t ≤ u := t ⊸ u

From which we can define equality:

t = u := (t ⊸ u) & (u ⊸ t)

The standard principles of linear logic allow us to establish certain principles
which are usally handled via axiomatics. Typically:

x ≤ x (2)

x+ (y + z) = (x + y) + z (3)

x + (y− z) ≤ (x + y)− z (4)

Let 0 := フフフ −フフフ(= フフフ `フフフ). Since individuals deal with relative numbers,
the third Peano axiom takes the form:

0 ≤ x ⊸ (x+フフフ) 6= 0 (5)

Which can be proved as follows: from 0 ≤ x we get 0 +フフフ ≤ x+フフフ, which,
combined with (x+フフフ) = 0, yields the refutable 0 +フフフ ≤ 0.

As to the fourth Peano axiom, the best we can get is the following:

(x+フフフ) ≤ (y +フフフ) ⊸ x ≤ ((y+フフフ)−フフフ) (6)

which makes use of x ⊸ ((x+フフフ)−フフフ). The implication ((x+フフフ)−フフフ) ⊸ x

is missing; it is however provable when x is a “successor”:

Theorem 4

((x+フフフ+フフフ)−フフフ) ≤ x+フフフ

Proof : ⊢∼ x, x and ⊢フフフ,フフフ,フフフ (weight −1) yield ⊢∼ x `フフフ `フフフ, x ⊗フフフ
(weight −1) hence, with ⊢フフフ (weight 1), ⊢(∼ x `フフフ`フフフ)⊗フフフ, x⊗フフフ. ✷

Summing up, we conclude that the fourth Peano axiom holds for successors,
so to speak SSx = SSy ⊸ Sx = Sy.

18

In terms of proof-nets, universal quantification is handled, as in [5], by
means of a switching choosing independent values for the variables: the
choices x =フフフ, x =フフフ`フフフ, x =フフフ⊗フフフ are enough (section 3.5 supra).

Existential quantification is handled as in [5], with a major simplification:
the existential witnesses G + G̃ were defined as linear combinations of all
elements in the finite G and G̃. We simplify our construction by using, instead
of the full t and ∼ t a specific test in each of them. With two consequences:

• We no longer use linear combinations (good riddance!).

• The same simplification can be used in the second order case where
behaviours are infinite.

First-order is basically weaker than the usual first order of Peano, who
could use axiomatics to decide which primitive is legal or not or which prin-
ciple is true. Since we are concerned with logic, we have no longer access
to ukases and are unable to establish the full fourth Peano axiom or define
the product t · u. The missing “axiom” is trivially proved under the form
x ∈ N ⊸ ((x +フフフ)−フフフ) ⊸ x by a recurrence (section 5.3), a second order
principle1, just as the missing product is second order definable (section 5.4).

By the way, one of the blind spots of bhk was the handling of purely
universal statements of arithmetic. Basically a proof of ∀xA[x] is treated
pointwise as a function mapping n ∈ N to a proof of A[n], which, being a
plain computation, can be described in advance, hence the “proof” reduces to
the “meta-proof” of section 1.6, which in turn reduces to meta-meta-proofs
all the way down. Observe that ((n +フフフ) −フフフ) ⊸ n holds pointwise but
that the proofs do not proceed from a common design; there is indeed one
for n > 0 which does not merge with the case n = 0.

5.2 Second order propositional case

Although there is no use for it, let us start with second order propositional
quantification, i.e., system F. This was the stumbling block of [5], due to the
fact that behaviours are usually infinite: we cannot encapsulate an infinite
set inside a design. By the way, should we attempt such a nonsense, we
would enter into a wild goose chase as to the cardinality of behaviours.

The original treatment of F [3] involved candidats de réductibilité, which
suggests the following definition.

1Which also proves x ∈ N ⊸ 0 ≤ x, hence x ∈ N ⊸ (x+フフフ) 6= 0.

19

Definition 8

A candidate of base T + U , where T ,U are orthogonal tests, is any behaviour

G such that T ∈ G and U ∈ ∼G.

Existential quantification is handled as follows:

Analytically: the proof of ∃XA[X] obtained from A[T] makes use of a wit-

ness T + U , namely the base of the behaviour T, seen as a candidate.

Synthetically: the behaviour ∃XA[X] is defined by:

∃XA[X] := ∼∼(
⋃

T

A[T]) (7)

Our choice of witness is basically a simplification of what we proposed in [5]:
since there is no hope of packing together the full T,∼T, we cannot avoid
partiality (section 6.1 of [5]). Singling out elements T ∈ T and U ∈ ∼T

makes it even more partial, but this partiality matters no more in the context
of infinite behaviours. Incidentally observe that the existential case actually
defines a behaviour: the practical joke of an empty orthogonal is avoided,
since it contains the switching J

pα(mag(xdy)),pα̃(mag(xdy))
K ([5], section 6.1)

which checks the orthogonality of the pillars T ,U of the base.
Universal quantification is handled by a plain intersection:

∀XA[X] :=
⋂

T

A[T] (8)

Definitions (7) and (8) follow the original pattern used for system F ([3])
which now yields a justification of second order principles.

5.3 Recurrence

The principle of recurrence, a.k.a. mathematical induction is usually written:

∀y (A[y] ⊸ A[y+フフフ]) ⇒ (A[0] ⊸ A[x]) (9)

with two defects, one being that it is an axiom, i.e., an ukase proceeding
from the Sky, the other being that it is a schema, i.e., a sort of meta-axiom
introduced in order to circumvent the fatwa against second order. Replacing
the schema with the obvious second order definition makes it possible to

20

define natural numbers, Dedekind style, as the smallest set containing zero
and closed under successor:

x ∈ N := ∀X (∀y (X(y) ⊸ X(y+フフフ)) ⇒ (X(0) ⊸ X(x))) (10)

From which the implication x ∈ N ⊸ (9) follows. A useful variant is obtained
by applying (9) to !A[x]⊗ (A[x] ⊸ A[x]), which yields:

x ∈ N ⊸ ∀y (A[y] ⇒ A[y +フフフ]) ⇒ (A[0] ⇒ A[x]) (11)

The handling of quantification over predicates, here unary, is inspired
from the propositional case. We should introduce a notion of parametric
candidate. First by separating positive from negative occurrences. Typically,
x ⊸ x should be written as x− ⊸ x+ and later subject to the constraint
x− = x+. In terms of parametric candidates, this means that we should
consider doubly indexed families Gm,n (m,n ∈ Z) of candidates enjoying:

m′ ≤ m,n ≤ n′ ⇒ Gm,n ⊂ Gm′,n′ (12)

i.e., covariant in n, contravariant in m; the negation will thus be covariant
in m, contravariant in n. They should also be provided with a base T + U
such that, for all m,n ∈ Z, T (∼ m, n)+U(m,∼ n) is a base of Gm,n. Typically,
if Gm,n := m ⊸ n, T and U stand for switchings of ` and its dual ⊗, so that
T (∼ m, n) and U(m,∼ n) are switchings of m ⊸ n and m⊗∼ n.

5.4 Product

The product (t · x) ≃ y is defined by a quantification over binary predicates:

∀X (∀x ∀y (X(x, y) ⊸ X(x+フフフ, y+ t)) ⇒ (X(0, 0) ⊸ X(x, y))) (13)

We can then prove the existence of the product by recurrence on x:

x ∈ N ⇒ ∃y (!(y ∈ N)⊗ (t · x) ≃ y) (14)

The predicate (t·x) ≃ y is handled by means of a sort of graph recurrence,
which amounts at replacing the variable X of definition (13) with a specific
binary predicate A[x, y]. For instance, with A[x, y] := x ∈ N, we get:

(t · x) ≃ y ⊸ x ∈ N (15)

21

Consider A[x, y, x′, y′] := x = x′ ⊸ y = y′; the following are provable:

A[0, 0, 0, 0] (16)

A[0, 0, x′ +フフフ, y′ + t] (17)

A[x +フフフ, y+ t, 0, 0] (18)

A[x, y, x′, y′] ⊸ A[x +フフフ, y+ t, x′ +フフフ, y′ + t] (19)

A “graph recurrence” w.r.t. x′, y′, using (16) and (17) yields

(t · x′) ≃ y′ ⊸ A[0, 0, x′, y′] (20)

Another “graph recurrence” w.r.t. x′, y′, using (18) and (19) yields

(t · x′) ≃ y′ ⊸ (A[x, y, x′, y′] ⊸ A[x+ t, y+ t, x′, y′]) (21)

And a graph recurrence w.r.t. x, y, using (20) and (21) yields:

(t · x) ≃ y ⊸ ((t · x′) ≃ y′ ⊸ A[x, y, x′, y′]) (22)

in other terms, the unicity of the product.
Incidentally, the fact that the product is only second order definable may

be related to the typical second order feature known as the incompleteness of
arithmetic, which relies on an encoding making a heavy use of the product.

A L’usine, again

Usine vs. usage, it’s Church vs Curry. The existentialist approach of Curry
is quite respected by the notion of behaviour. On the other hand, the es-
sentialism inherent to the typing à la Church leads to systems and must be
deeply modified. I propose the following :

A type (Church style) is a (finite) battery of tests.

This is compatible with polymorphism : several batteries may be used to
“type” the same design. However, there is a problem, the definition seeming
not to apply in full generality, because of the absence of finite preorthogonals.

I propose the following solution : instead of a preorthognal of behaviour
P, a preorthogonal of a sub-behaviour of P. Orthogonality to such a pre-
orthogonal need not be necessary, it is only sufficient. On the other hand, it
may remain finite, hence the possibility of a battery of tests. Let us give two
examples.

22

A.1 Identity

The principle A ⊢ A, the identity “axiom”, poses a problem of finiteness.
It is tested through simultaneous tests, for ∼A and A, which is possible in
certain cases, but doesn’t work in general.

Let us suppose that A correspond to general behaviour A, with not finite-
ness restriction. I still know how to justify ⊢∼A,A because it is sufficient

to test it against generic pairs, that of a test for ∼A and for A with no
reference to A which therefore takes the moral value of a variable X. We
know that the cases :

A =フフフ ∼A=フフフ (23)

A =フフフ⊗フフフ ∼A=フフフ`フフフ (24)

A =フフフ`フフフ ∼A=フフフ⊗フフフ (25)

do suffice. They force the presence of a star J∼A(x), A(x) K, if I abusively
denote the respective locations of ∼A and A by ∼A(x), A(x). This implies
in turn that the said star does belong to the behaviour ⊢∼A,A.

These tests are not necessary : if A = B ⊗ C and ⊢∼A,A has been
obtained by “η-expansion” from ⊢∼B,B and ⊢∼C,C, they fail.

We just witnessed the native sufficient testing. Remark that its two parts
are not independent : if A is tested asフフフ⊗フフフ, ∼A must be tested asフフフ`フフフ.

A.2 Existence

Existence can be informally reduced to a very peculiar case, that of the
implication ∀X A⊢A[T/X], in other terms ⊢∃X ∼A,A[T/X]. We must test
(T , T ′,P) where P is the identity ⊢∼A[T/X], A[T/X]. We just observed
that this identity possesses a sufficient battery of tests. We conclude that P
belongs to the behaviour associated with ⊢∼A[T/X], A[T/X].

In order to show that (T , T ′,P) is in the behaviour (7) corresponding
to ⊢∃X ∼A,A[T/X], we imitate the argument given for system F : the
comprehension principle shows that the behaviour associated with T is a set,
and we use the “substitution lemma” of [3].

A.3 Finitism

The finitistic pattern advocated by Hilbert is correct provided we throw in
some necessary distinctions. Three layers are needed :

23

Usine : typing à la Church, but system-free. It enables us to predict what
proofs will do.

Usage : typing à la Curry, naturally system-free. A behavourial approach,
what proofs are actually doing.

Adequation : cut-elimination, so to speak. It shows the accuracy of the
prediction of l’usine.

The first two layers are the opposite sides of finitism, of a completely different
nature. The first person who (vaguely) understood the distinction was Lewis
Carroll (1893), who mistook l’usine for the “meta” of l’usage and built a
ludicrous wild goose chase which he dared compare with Zeno’s paradox.
Indeed, by replacing a cut on A with a a cut on A ⇒ A, next a cut on
(A ⇒ A) ⇒ (A ⇒ A), etc. Carroll’s Achilles is constantly fleeing away from
the Tortoise. . . no wonder it never reaches him.

The third layer, adequation, does not belong to finitism : it is where an
infinitary, eventually set-theoretic, arguement must be thrown in. . . with no
possible way of bypassing it.

vitam impendere logicæ

24

References

[1] T. Coquand and G. Huet. The calculus of constructions. Information

and Computation, 76:95 – 120, 1988.

[2] V. Danos and L. Regnier. The structure of multiplicatives. Archive

for Mathematical Logic, 28:181 – 203, 1989.

[3] J.-Y. Girard. Une extension de l’interprétation fonctionnelle de

Gödel à l’analyse et son application à l’élimination des coupures

dans l’analyse et la théorie des types. In Fenstad, editor, Proceedings

of the 2nd Scandinavian Logic Symposium, pages 63 – 92, Amsterdam,
1971. North-Holland.

[4] J.-Y. Girard. Transcendental syntax 1: deterministic case. Math-

ematical Structures in Computer Science, pages 1–23, 2015. Computing

with lambda-terms. A special issue dedicated to Corrado Böhm for his

90th birthday.

[5] J.-Y. Girard. Transcendental syntax 3: equality. Logical Methods in

Computer Science, 2016. Special issue dedicated to Pierre-Louis Curien

for his 60th birthday.

[6] J-Y Girard, A. Scedrov, and P. Scott. Bounded linear logic : a modu-

lar approach to polynomial time computability. Theoretical Com-

puter Science, 97:1 – 66, 1992.

[7] R. Harper, F. Honsell, and G. Plotkin. A framework for defining

logics. LFCS report series, Edinburgh, 162, 1991.

[8] G. Kreisel. Mathematical logic. In T. L. Saaty, editor, Lectures in

modern mathematics, vol III, pages 99 – 105. Wiley & Sons, New York,
1965.

25

