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À Claire Delaleu (1991-2009)

Nous nous aimions : toi ma Petite Tortue ; moi l’oncle dont tu étais, enfant, car-
rément amoureuse, je crois. C’est curieux comme j’entends mieux ta voix, cette petite
voix si ténue de Claire, depuis que je sais que tu ne m’appelleras plus.

Introduction

Motivations
Geometry of Interaction (GoI) reacts against the absence of any satisfactory
explanation for logic. The usual one is that of a symbolic calculus of truth
values, which supposes that truth values preexist and formulas as well. This was
later improved into a symbolic calculus of category-theoretic diagrams, what is
still unsatisfactory: since this calculus rests upon an oriented rewriting, one side
is more equal, more commutative, than the other. The aim of GoI is therefore
to find a space where truth, commuting diagrams, etc. are no longer primitive
and where dynamical processes (proof-search, rewriting, a.k.a. normalisation)
are primitive: let us call such processes projects (or designs).

The curious preexistence of formulas makes logic dependent over ad hoc
syntactical choices: most convenient to write PhDs, but at the same time a
severe morphological flaw. GoI should thus define formulas independently of
any language: let us call such language-free formulas behaviours or conducts.

We thus bestow a central status to deduction from which everything (esp.
syntax) should proceed, whence the syntax-free approach, projects and be-
haviours. This is Philosophy of Science, but not the usual sterile and incompe-
tent comment on (or rather: against) living science we are accustomed to.
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Proposing a reconstruction of logic not resting upon syntactic a priori is
not only of utmost philosophical interest, it is is also important from various
technical points, including down to earth syntactical manipulations: light logics
([10], ch. 16), i.e., low complexity logics, are not clearly grounded (in particular
cannot be accessed through A semantics B); the present paper induces many
clarifications in this area.

Architecture
This sixth GoI paper (after [4, 5, 6, 7, 8]) is the first to present a consistent and
systematic reconstruction of logic. For a detailed introduction to the program,
see [10], although chapters 20 and 21 are now partly obsolete.

The previous papers of the series were concerned with the representation of
proofs by means of operators and the study of the feedback equation which ac-
counts for normalisation. The use of operators is natural, since proof-nets ([10],
ch. 11) dwell in matrix algebras, of which operator algebras are generalisations;
among them, von Neumann algebras are the natural choice, since closed under
directed suprema. Only lately, it occurred to me that the algebra is more ba-
sic than its inhabitants1. W.r.t. an appropriate choice of a vN algebra (the
hyperfinite factor) we give a possible answer to the most basic morphological
questioning: A what is a formula? B. Which supposes explaining what is a proof,
what is truth, how formulas do socialise (connectives) etc. And which excludes
the usual inductive constructions of the style A atoms are formulas, formulas are
closed under. . . B whose limitations have already been expounded.

Any decent logical morphology rests upon implication: this was already the
case at the time of Aristotle; this remains true nowadays, simply we focus upon
linear implication2. We explain it through an adjunction, typically, in quantum
coherent spaces (QCS, [10], ch. 17), through:

tr(F · (A⊗B)) = tr([F ]A ·B) (1)

which says that measuring (by means of B) the application [F ]A of F to A is
the same as measuring F by means of A⊗B. QCS have many qualities, coming
from their A non-commutativity B: typically, booleans become spins. . . and two
major drawbacks: that of a categorical interpretation, whence unable to explain
dynamics, thus complexity; and, at a deeper level, their incompatibility with
infinite dimension, the latter drawback being related to the former.

The founding adjunction of Geometry of Interaction (GoI) is:

det(I − F · (A⊕B)) = det(I − [F ]A ·B) · det(I − FA) (2)

and the problem at stake is a reorganisation of logic around (2), involving the
definition of projects (representing proofs) and behaviours or conducts (sets of
projects, representing formulas). The paper proposes the following solutions:

1The same is true in geometry: a curve is more primitive than its points!
2B.t.w., the distinction between several implications made no sense for syllogistics!
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(i) Everything takes place in the3 hyperfinite factor, for two reasons: the
existence of a trace, enabling the use of determinants; the uniqueness of
this factor, enabling the use of various isomorphisms, usually outer.

(ii) The basic artifact, the project c = c ·+· γ+C, makes use of a wager c, i.e.,
a real number, which A homogenises B equation (2), i.e., takes care of the
A extra B factor det(I − FA). For convenience determinants are replaced
with their (co)logarithms, thus wagers take their values in R ∪ {∞}; the
default wager is 0.

(iii) The most important component of the project c is its plot C, a hermitian
of norm at most 1. C dwells, not quite in the hyperfinite factor, but in
its tensorisation with an idiom space C, which is a finite-dimensional vN
algebra, treated up to isomorphism: when two projects are put in duality,
their respective idioms are tensorised, i.e., remain private; this privacy was
styled long ago [7] A communication without comprehension B. The novelty
is that the idiom is non-commutative: this is crucial for the contraction
rule; a contrario, A additive contraction B, i.e., the superimposition at work
in the additive case, is but the commutative form of contraction. Indeed,
the idiom corresponds to the idea of resource: this is why idiom-free (i.e.,
perennial) projects can be duplicated.

(iv) A subtle point: the idiom is equipped with a A pseudo-trace B γ, a sort of
trace that need neither be normalised nor positive. Pseudo-traces are an
elegant way to cope with algebraic combinations of projects and, in fine,
with equivalence relations, which were a bit mistreated (bihaviours) in my
previous large scale reconstruction, ludics [9].

(v) Given two projects a = a ·+·α + A, b = b ·+·β + B, idiom tensorisation
yields variants A‡, B† of A,B and one defines, using the cologarithmic
determinant ldet (relative to the pseudo-trace tr⊗ α⊗ β):

�a |b� := aβ(IB) + bα(IA) + ldet(I −A‡B†) (3)

(vi) The projects a, b are polar, notation a |∼ b iff �a |b� 6= 0,∞. Conducts
are sets of projects equal to their bipolar. The exclusion of the value ∞
corresponds to the acyclicity criterion of proof-nets; while the exclusion
of 0 is reminiscent of connectedness.

(vii) With the help of conducts, one can develop multiplicatives, but hardly
go beyond. In order to cope with the other logical primitives, one must
consider a morphological constraint, polarisation, which tames wagers —
roughly speaking, forces them to be 0.

(viii) This is not enough, for one cannot swap polarities. In order to do so, a
refinement of polarisation, lateralisation (left = negative, right = positive),
is introduced. Lateralised conducts, a.k.a. behaviours, are our ultimate
logic artifact.

3Of type II1, the default type.
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Summary of results
Let us now review the main achievements and novelties of the paper:

Polarisation: (and lateralisation) is not as expected. The tensor A⊗B is
defined when at least one of A or B is a negative conduct. The deep reason
for that difference w.r.t., say, ludics [9], is that, in the non-commutative
case, the inductive analysis (look at the last rule used and act accordingly)
no longer makes sense.

Exponentials: weakening on positive conducts is free of charge, the same with
contraction on perennial conducts, i.e., idiom-free positive conducts. Ex-
ponentiation !A therefore depends upon an isomorphism which A kills B

the idiom. W.r.t. an appropriate choice Ω, conducts validate the first
order rules of the iconoclast logic ELL ([10], ch. 16); behaviours seem to
be closer to the other light logic, LLL.

Isomorphisms: the usual isomorphisms of logic, including the most impor-
tant of them all, !& = ⊗!, are available as literal equalities, but for the
distributivity ⊗⊕ ' ⊕⊗ which is only up to isomorphism.

Witnesses: those are (positive) conducts made of projections. Witness be-
haviours are remarkably stable, e.g., closed under ⊕ and `: indeed, the
two disjunctions coincide on witnesses! In ludics, designs were the result
of a complex elaboration, involving the choice of a first action, thus tak-
ing care of a fruitful paradox, namely the Gustave function ([10], ch. 12).
Behaviours A lateralise B certain conducts w.r.t. a base, i.e., a witness,
thus disentangling Gustave-like situations.

Non commutativity
As to the mathematical treatment, I tried to stay, as far as possible, A non-
commutative B in the sense of Connes [1]. The main novelties of this paper
must be ascribed to this bias; I hope that GoI may eventually reach a state
where some sophisticated results coming from operator algebra may apply.

All abuses of commuting projections which were prominent in the first items
of GoI, e.g., [5], disappeared. Of course, do remain those abuses which are part
of the data: as observed long ago by quantum physicists, we subjects are — in-
dividually and collectively: this is intersubjectivity — A commutative B. This is
why connectives (which take care of socialisation) involve disjoint (hence com-
muting) carriers. The only point which remains strongly, indefectibly, A commu-
tative B is truth, treated in the spirit of quantum measurement: truth is relative
to the choice of a viewpoint, i.e. a sort of A base B.

While the logical vulgate defined truth as an absolute, I define (honestly,
nothing to do with Tarski’s plagiarism of Molière’s dormitive virtue of opium:
the A veritive value of truth B) truth subjectively, i.e., w.r.t. a viewpoint.

The paper cannot be read without some mathematical culture, e.g., some
acquaintance with topology (which has little in common with the punishment
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known as Scott domains) and functional analysis: C∗-algebras, vN algebras.
The materials are accessible in standard textbooks such as [11]; my own pre-
sentation of the topics, in the last chapters of [10], can be more accessible to a
logician, since precisely written in view of logical applications.

Thanks to Esfan Haghverdi for stimulating discussions, to Thomas Seiller for
signaling multiple bugs and typos and, last but not least, to Georges Skandalis
for his expertise on vN algebras.

1 The adjunction

1.1 The Fuglede-Kadison determinant
In what follows, A is a finite factor, thus admitting a unique trace tr(·).

Theorem 1 (Fuglede & Kadison, [3])
If u ∈ A is invertible, define:

det(u) := etr(log(|u|)) (4)

The determinant thus defined is multiplicative, monotonous and commutes to
directed infima. The determinant can then be extended to the full A and is still
multiplicative, monotonous and commuting to directed infima.

Contrarily to the usual determinant Det(·), det(·) takes its values in R+;
indeed, if A =Mn(C):

det(u) = |Det(u)|1/n (5)
If u ≥ 0, then |u| :=

√
u∗u = u, whence, if u is invertible, det(u) = etr(u); in

particular, if a is hermitian and ‖a‖ < 1, then det(I − a) = e−colog(I−a), with:

colog(I − a) := a+ a2/2 + a3/3 + . . . (6)

The following proposition summarises the basic properties of det(·).

Proposition 1

(i) det(u) ∈ {0, 1} when u is a partial isometry; det(u) = 1 iff u is unitary.

(ii) det(u∗) = det(u).

(iii) det(I − uv) = det(I − vu).

(iv) det(I − u) = 1 when u is nilpotent.

Proof : (iii) If v is unitary, det(I − uv) = det(v(I − uv)v∗) = det(I − uv). In
general, write v = λ1v1 + . . .+ λ4v4, with the vi unitary ([11], 4.1.7).

(iv) Let π be the projection of the closure of the range of u; then
det(I − u) = det(I − πu) = det(I − uπ). If u2 = 0, then uπ = 0 and we
are done; otherwise, redo the same thing with uπ, etc. 2

As an extension by directed infima, the Fuglede-Kadison determinant is
barely continuous.
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1.2 The feedback equation
Assume that, modulo a block decomposition I = a + b (a, b projections)

F :=
(
F11 F12

F21 F22

)
and A (with Aa = aA = A) are hermitians of norm ≤ 1.

The feedback equation:

F11A(x) + F12(y) = x (7)
F21A(x) + F22(y) = y′ (8)

yields an operator ([F ]A)(y) := y′ such that [F ]A ·b = b · [F ]A = [F ]A, provided
the equation (7, 8) has a solution. It turns out that:

• The solution — if it exists — is unique: a hermitian of norm ≤ 1.

• If I − F11A is invertible, then:

[F ]A = F22 + F21A(I − F11A)−1F12 (9)

In the invertible case, application is associative (i.e., Church-Rosser):

[F ](A+B) = [[F ]A]B (10)

• [F ]A is a sort of functional application. In the same way Modus Ponens
is better handled by cut, functional application finds a symmetrical for-
mulation through the notion of a cut-system (σ, u) [8]: the feedback σ is a
partial symmetry. (7) (with u, σ, σ2 in the respective roles of F,A,a) now
becomes (σ2(x) = x, (I − σ2)(y) = y, (I − σ2)(y′) = y′):

u(x+ y) = σ(x) + y′ (11)

if u =
(
a b
b∗ c

)
w.r.t. the decomposition I = s + t := σ2 + (I − σ2), the

solution, when σ − a is invertible, is the normal form σJuK:

σJuK := c+ b∗(σ − a)−1b (12)

a straightforward reformulation of (9). The general feedback equation (7,
8) can be reduced to the form (11), by means of a change of underlying
Hilbert space: instead of opposing F with A, we oppose u (the direct sum
F ⊕A) to σ (which flips inputs and outputs).

• Cut-systems are the right — and slightly illegible — approach to the
feedback equation. The associativity of the normal form rewrites as:

(σ + τ)JuK = τJσJuKK (13)
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One can decompose a general feedback as the sum σ = σ+ + σ− of a
positive (σ+ is a projection) and a negative (−σ− is a projection) feedback.
For lopsided feedbacks (e.g., σ+, σ−), the normal form can be consistently
generalised so as to commute with directed suprema (σ+) or infima (σ−).
The (non-trivial) achievement of [8] is that:

σ−Jσ+JuKK = σ+Jσ−JuKK (14)

thus enabling to define uJσK through (13). This induces a general defini-
tion of the functional application [F ]A, which heavily relies on the detour
via the symmetrical framework of cut-systems — which enables the de-
composition σ = σ+ + σ−, without analogue in the functional case [F ]A.

1.3 Associativity
We replace det(·) with its cologarithm ldet(·); when ‖u‖ < 1 and u = u∗:

ldet(I − u) = tr(u) + tr(u2)/2 + tr(u3)/3 + . . . (15)

In general, if ‖u‖ < 1, then ldet(I−u) is not real, thus fails to be the cologarithm
of det(I − u). However, if ‖u‖, ‖v‖ < 1 and u, v are hermitian, then
ldet(I−uv) = ldet(I−vu) = ldet(I−uv)∗, whence ldet(I−uv) ∈ R; furthermore,
if u, v ≥ 0, then ldet(I − uv) = ldet(I −

√
vu
√
v) ≥ 0.

Assume that, modulo a block decomposition I = a + b:

F :=
(
F11 F12

F21 F22

)
G :=

(
A 0
0 B

)
(= A+B)

Theorem 2

ldet(I − F (A+B)) = ldet(I − [F ]A ·B) + ldet(I − FA) (16)

Proof : the proof requires cut-systems: assume that, I = s + t = σ2 + τ2; then:

ldet(σ + τ − u) = ldet(s + τ − σJuK) + ldet(σ + t− sus) (17)

If, modulo the block decomposition I = s+ t, u =
(
a b∗

b c

)
, then (17) rewrites:

ldet(σ + τ − u) = ldet(τ − σJuK) + ldet(σ − a) (18)

Observe that (σ+ τ −u)(I −z) = σ+ τ −u, (σ+ t−sus)(I −z) = σ+ t−sus,
with z := ker(σ− a)): if σ− a is not injective, ldet(I − z) =∞ and (18) holds.

Assuming σ ≥ 0, i.e., σ = πand π − a injective, then
(
π − a −b∗
−b τ − c

)
=

0@√π−a 0
0 t

1A0@ π 0
−b(π−a)−1/2 t

1A0@π 0
0 τ−σJuK

1A0@π −(π−a)−1/2b∗

0 t

1A0@√π−a 0
0 t

1A
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The coefficient −(π−a)−1/2b∗, which involves the unbounded operator
(π−a)−1/2, is indeed bounded, see [8], with adjoint −b(π−a)−1/2, the closure of
−b(π−a)−1/2. From the multiplicativity of the determinant and the fact that
triangular matrices are of the form I − u with u nilpotent, we get (18).

The same holds if σ = −ν ≤ 0. The full (17) follows from the associativity
of the normal form (13) and the lopsided cases π,−ν:

ldet(σ+τ−u) = ldet(π − ν +τ−πJuK) + ldet(I−πuπ)
= ldet(s+τ−σJuK) + ldet(σ+ t−νπJuKν) + ldet(I−πuπ)
= ldet(s+τ−σJuK) + ldet(σ+t−sus)

2

Observe that ldet(I − FA) = ldet(I − F11A).

1.4 The adjunction
Compared with (1), equation (16) suffers from a want of homogeneity, due to
the term ldet(I − FA); in practice (e.g., when interpreting logic), FA is often
nilpotent, which may explain why this term has no analogue in (1).

In order to obtain a satisfactory adjunction, one must homegeneise: instead
of an operator, one introduces the pair of a wager w ∈ ] −∞,+∞], the set of
possible values for the cologarithm of a positive real, and an operator, notation
w + U . Define [f + F ](a+A) := f + a+ ldet(I − FA) + [F ]A, then:

(a+b)+f+ldet(I−F (A+B)) = (f+a+ldet(I−FA))+b+ldet(I−[F ]A·B) (19)

thus, defining �c+ C |d+D� := c+ d+ ldet(I − CD):

Theorem 3 (Adjunction)
The application [f + F ](a+A) is characterised by:

�f + F |(a+ b) + (A+B)� = � [f + F ](a+A) |b+B� (20)

Proof : (20) is theorem 2. It remains to show that d+D ;�c+ C |d+D�
determines d+D. First, �c+ C |0 + 0�= c determines c; then,
D ; ldet(I − CD) determines C: since ldet(I − (λC)D) = λ(tr(CD) + o(λ)),
D ; ldet(I − CD) determines D ; tr(CD). The latter dependency is linear;
if tr(CD) = 0 for all D, then tr(D2) = 0, whence D = 0 by the faithfulness of
the trace. 2

The adjunction (19) can thus be used as an abstract definition of functional
application in finite factors.
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1.5 Traces and determinants
Trace and determinant make sense in any finite vN algebra. Three properties
have been used:

Cyclicity: tr(uv) = tr(vu) yields the mutiplicativity of the trace.

Positivity: tr(uu∗) ≥ 0, subsumed by tr(I) = 1, yields the the monotonicity
of the trace.

Normality: ultraweak continuity yields the extension to directed infima.

In a finite algebra, there are non-zero elements of the predual (section C.2)
which are positive and cyclic. Indeed, the most general notion of trace for a finite
algebra is that of a central trace, [11] ch. 8: a cyclic and normal4 conditional
expectation (section C.8) from A onto its center. In the particular case of an
algebra with a finite dimensional center, that we can write A =

⊕
i∈I Ai — I

being the set of minimal projections of A, so that Ai := iAi —, the central
trace associates to u ∈ A the element

∑
trai

(iui) · i of the center.
Any normal and cyclic form on A writes ϕ(u) = f(tr(u)), where f is a linear

form on the center of A: if A =
⊕

i∈I Ai, ϕ(u) =
∑
fitrai(iui).

For reasons that find their origin in ludics, especially the half-baked bi-
haviours [9] it is important to consider non positive traces, i.e., to replace posi-
tivity with the weaker:

Hermiticity: tr(u) = tr(u∗).

Definition 1 (Pseudo-trace)
If A is a finite vN algebra, a pseudo-trace is an element α of the predual of A,
which is hermitian, cyclic, faithful (see infra)) and such that α(I) 6= 0.

Faithfulness generalises the notion of a faithful state: if α is hermitian, then
A splits into a direct sum A = A− ⊕ A0 ⊕ A+, with α(uu∗) < 0,= 0, > 0 for
u 6= 0, u ∈ A−,A0,A+; α is faithful when A0 = 0. There is small problem
with the determinant: if u splits as u− ⊕ u+, then det(u) := det(u−) det(u+)
can take the undetermined value (+∞)0. Indeed the sign of α(I) determines
this ambiguous case while staying multiplicative. In terms of cologarithms,
ldet(u) := ldet(u−) + ldet(u+), with:

−∞+ (+∞) = +∞ (if α(I) > 0)
−∞+ (+∞) = −∞ (if α(I) < 0)

Proposition 2
If the finite vN algebras A,B are equipped with pseudo-traces α, β, then:

ldetλα(I − u) = λldetα(I − u) (21)
ldetα⊕β(I − u⊕ v) = ldetα(I − u) + ldetβ(I − v) (22)

ldetβ(I − ϕ(u)) = ldetα(I − u) (23)
ldet(I − (u⊗ π)) = ldet(I − u) · β(π) (24)

4Ultraweakly continuous.
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With u ∈ A, v ∈ B; in (21) λ ∈ R, in (24) π is a projection of B, in (23) ϕ is a
normal ∗-isomorphism from A to B such that α = β ◦ ϕ.

Proof : obvious. In (23), ϕ need not be unital, i.e., enjoy ϕ(IA) = IB: we only
use α(IA)β(IB) > 0. Modulo this remark, (24) follows from (21) and (23), using
ϕ(u) := (β(π))−1 · u⊗ π. 2

1.6 Idioms
GoI is now idiomatic; operators dwell in tensors products of the form R ⊗ D,
where D is a finite dimensional algebra and R is the hyperfinite factor5. When
relating two operators trough a tensor or a cut, the idioms must be tensorised:
from A ∈ R⊗A and B ∈ R⊗ B, we form A‡, B† ∈ R⊗ (A⊗ B):

(a⊗ b)‡ := a⊗ (b⊗ IB) (25)
(a⊗ c)† := a⊗ (IA ⊗ c) (26)

If A,B are equipped with pseudo-traces (definition 1) α, β, then A ⊗ B is
equipped with the pseudo-trace α⊗ β.

Moreover, operators are given together with wagers: for reasons of ho-
mogeneity, when changing the idioms, a + A, b + B must be replaced with
a ·β(IB)+A‡, b ·α(IA)+B†. Which explains the restriction α(I) 6= 0 on pseudo-
traces. By the way, the final restriction on wagers is that a ∈ R ∪ {α(IA) · ∞}.

Of course, we could have followed the alternative way, and formed the idiom
B ⊗ A, with a stricty isomorphic result; indeed, the canonical ∗-isomorphism
ϕ : R⊗ (A⊗ B) 7→ R ⊗ (B ⊗A), combined with proposition 2 (23) shows that
ldet(I −A‡B†) = ldet(I −B‡A†). This last formula is very hard to read — not
to speak of writing it! Although its contents is rather trivial: a common idiom
has been created by tensorisation, period.

Idioms are, so to speak, the bound variables of GoI. In logic, a bureaucratic
discipline called α-conversion and specially devoted to the handling of bound
variables, has been introduced. α-conversion is so boring, so devoid of interest,
that I never paid any attention to it, thus writing (λxx)λxx instead of the correct
(λxx)λyy. I propose to do the same with idioms, thus ignoring the superscripts
A‡, B†. But we need first to indulge in some α-conversion6, GoI-style!

Definition 2 (Projects)
Let R be the hyperfinite factor. A project a = a ·+·α + A of idiom A, where
A is a finite dimensional vN algebra, consists in the following data:

• A pseudo-trace α on A.

• A A real B number a ∈ R ∪ {α(IA) · ∞}, the wager.
5Of type II1, called A matricial B in [11], ch. 12.
6The analogy between idioms and bound variables is helpful but technically incorrect:

actual bound variables can be handled without the help of idioms, just by naming them after
the location of their binder, De Bruijn-style!
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• A hermitian operator A ∈ R⊗A of norm ≤ 1, the plot.

The notation a ·+·α + A is incorrect: it mentions neither A, which is however
determined as the source space of α, nor the carrier a, to be introduced below.

Definition 3 (α-conversion)
If a = a ·+·α + A is a project of idiom A, if ϕ is a ∗-isomorphism of A into
another idiom B such that β ◦ ϕ = λα (λ ∈ R), then ϕ(a) := λa ·+·β + ϕ(A) is
a variant of a, an isovariant if λ = 1. More generally, two projects are variants
when they have a common variant in the previous sense.

If B ⊂ A is a (unital) subalgebra of A such that A ∈ R⊗B, then a is a variant
of a ·+·α � B +A �R⊗ B.

Proposition 3
Among all unital subalgebras B ⊂ A such that A ∈ R ⊗ B, there is a smallest
one, the minimal idiom of a.

Proof : let A0 be the subalgebra generated by the θ(A), where Θ : R⊗A 7→ A
is induced by an element θ of the predual of R, i.e., Θ(u⊗ v) := θ(u)⊗ v. 2

Two variants have therefore isomorphic minimal idioms.
GoI is built so as to be variant-independent; this is why A,B are replaced

with their variants A‡, B†; one might as well have chosen the variants A†, B‡,
or variants involving a bigger idiom, e.g., some A⊗ B ⊗ C.

Definition 4 (Extraneousness)
Two projects a, b with the same idiom and pseudo trace A, α are alien when
their respective minimal idioms A0,B0 ⊂ A commute to each other and are such
that, for all u ∈ A0, v ∈ B0:

α(u) · α(v) = α(uv) · α(IA) (27)

The typical example is that of A⊗ IB, IA ⊗ B ⊂ A⊗ B:

Proposition 4
With the hypotheses and notations of definition 4, A0⊗B0 is isomorphic to the
algebra generated by A0 ∪ B0, the isomorphism ϕ being such that
ϕ(u⊗ IB0) = u, ϕ(IA0 ⊗ v) = v for u ∈ A0, v ∈ B0.

The construction of A‡, B† is thus a way to built alien variants of A,B. Ex-
traneousness is a sophisticated version of α-conversion, whose technical contents
is the absence of interference, of A comprehension B, between the idioms.

We shall therefore work, not quite with projects, but with equivalent classes
(w.r.t. variance). When combining projects in a multiplicative way (which in-
cludes cut), we shall select alien elements in the respective classes. The resulting
object will be well-defined up to variance.
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2 Conducts
From now on, R is the hyperfinite factor of type II∞. The reason for this minor
modification is explained in the next section.

2.1 Carriers
Definition 5 (Carriers)
A carrier a ∈ R is a finite projection. If a is a carrier, then one defines Ra :
aRa = {u ∈ R ; au = ua = u}. A project a = a ·+·α + A of idiom A is of
carrier a when A ∈ Ra ⊗A = (a⊗ IA)(R⊗A)(a⊗ IA). Two carriers a, b are
disjoint when ab = 0 (= ba).

Carriers take into account the locative aspects of GoI. The replacement of type
II1 with II∞ ensures that we have no worry about the existence of A enough B

disjoint carriers.
The hyperfinite factor of type II∞ is unique up to isomorphism (yet another

result of Connes [1]). It admits a semi-finite trace, unique up to renormalisation:
tr′ = λtr for some λ > 0; one chooses such a trace once for all. When a 6= 0 is a
carrier, then Ra is of type II1, thus isomorphic to the hyperfinite factor of that
type; the only minor detail is that tr �Ra is not normalised, since tr(a) > 0 has
no reason to be equal to 1, but this hardly matters!

Although we should write expressions of the form ldet(a ⊗ α(IA) − AB),
etc., we shall content ourselves with ldet(I − AB), which is less pedantic and,
anyway, perfectly correct if we think twice.

2.2 Duality
Definition 6 (Duality)
Let a := a ·+·α+A, b := b ·+·α+B be alien projects of carrier a; one defines:

�a |b� := a+ b+ ldet(I −AB) (28)

a and b are polar, notation a |∼ b iff �a |b� 6= 0,±∞.

The determinant is relative to the pseudo-trace (tr �Ra)⊗ α.

Proposition 5

a |∼ b ⇔ b |∼ a

An explicit formulation of (28), when a := a ·+·α+A, b := b ·+·β+B, still
of the same carrier a, are not supposed to be alien:

�a |b� := aβ(IB) + bα(IA) + ldet(I −A‡B†) (29)

The equivalence between the two notions follows from the obvious:

12



Proposition 6
If a |∼ b (in the sense of (29)) and a′, b′ are variants of a, b, then a′ |∼ b′.

In (28) � a | b�∈ R ∪ {α(IA) · ∞}; polarity thus excludes the two values
0,∞. One should see this exclusion as the analogue of the correctness property
of proof-nets ([10], ch. 11): connectedness and acyclicity respectively corre-
sponding to the exclusion of the outputs 0 and ∞.

Definition 7 (Conducts)
A conduct A of carrier a is a A set B of projects of carrier a equal to its bipolar.

Of course, due to the use of arbitrary idioms, a conduct cannot be a set, but
this remark is pure nonsense. Up to variance, conducts do form a set.

2.3 Partial projects
Besides the standard duality, there is a coarser one, based upon �a |b� 6=∞,
and whose antagonists are styled partial. Indeed, making full use of non-positive
pseudo-traces, a conduct generates a vector space and the map �·| ·� extends
into a bilinear form.

In what follows, A is a conduct of carrier a.

Definition 8 (Partial projects)
If we relax faithfulness and the condition α(IA) 6= 0 (we can thus even afford
to have A = 0), we obtain partial projects. If ai := ai ·+·αi + Ai are partial
projects of idioms Ai, if λi ∈ R (i = 1, . . . , n), we define:

n∑
1

λi · ai :=
n∑
1

λiai ·+·
n⊕
1

λiαi +
n⊕
1

Ai (30)

of idiom
⊕n

1 Ai. The set ℘A of partial projects of A is the closure of A under
finite linear combinations7.

The binary function � · | · � naturally extends into a function from
℘A × ℘∼A into R, for instance by means of the formula (29). We define
the equivalence relation ≡A on ℘A:

a ≡A b :⇔ ∀c ∈ ∼A �a |c�=�b |c� (31)

The typical case is that of an isovariant (definition 3): a ≡A ϕ(a).

Theorem 4 (Linearisation)
The quotient `A := ℘A/≡A is a real vector space. The application �· | ·�
from `A× `∼A to R is bilinear.

Proof : in (31), one can replace A ∀d ∈ ∼A B with A ∀d ∈ ℘∼A B. 2

7A is anyway closed under non-zero homotheties.
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Definition 9 (Internal completeness)
An ethics of carrier a is any A set B E of projects of carrier a; E generates a
conduct, namely the bipolar A := ∼∼E. The ethics E is said to be complete
when any equivalence class of projects in A has a witness in E:

∀a ∈ A ∃e ∈ E a ≡A e (32)

Theorem 5 (Ethic lemma)
If α(IA) = β(IB), one can replace in (31) A ∀d ∈ ∼A B with A ∀d ∈ E B, where
E is any ethics for ∼A.

Proof : let c ∈ A; then a ≡A b iff for all λ ∈ R λa− λb + c ∈ A, i.e.,
λa− λb + c ∈ ∼E, thus, iff for all c ∈ E �a |c�=�b |c� . 2

The condition A α(IA) = β(IB) B makes sure that λa− λb + c is a project; in
the polarised case, rescaling (definition 17) renders this restriction pointless.

2.4 Images and projections
The inclusion A ⊂ A⊕B cannot make sense stricto sensu for questions of car-
rier. However, a project of carrier a can be seen as a project of carrier a + b.
Whence the notion of injection, which is not problematic at the level of projects
or ethics. But, injection does not commute at all with negation; its converse,
projection, is better behaved.

Let a, b be carriers, then:

Definition 10 (Images)
If Φ ∈ R, ‖Φ‖ ≤ 1, is such that Φ = bΦ, the image under Φ of a project
a = a ·+·α+A of carrier a is the project Φ(a) := a ·+·α+ (Φ⊗ IA)A(Φ∗⊗ IA)
of carrier b. If E is an ethics of carrier a, its image under Φ is the ethics
Φ(E) := {Φ(a); a ∈ E} of carrier b.

Example 1
The natural example is that of a projection Φ := b; two subcases are of interest:

Projection: if b ⊂ a, then b(a), noted ab, is the projection of a on b; if E is
an ethics of carrier a, its projection on b is Eb := {ab; a ∈ E}.

Injection: if a ⊂ b, then b(a) (= a), noted ab is the injection of a in b; if E is
an ethics of carrier a, its injection in b is Eb := {ab; a ∈ E}.

Definition 11 (Faithfulness)
A subcarrier b ⊂ a is A-faithful (w.r.t. a conduct A of carrier a) when, for all
a ∈ A, ab ∈ A and ab ≡ a.

Proposition 7
Let b ⊂ a be A-faithful; then:

(i) For all a ∈ ℘A, ab ∈ ℘A and ab ≡ a.
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(ii) b is ∼A-faithful.

(iii) Ab is a conduct.

(iv) (∼A)b = ∼(Ab).

Proof : (i) Immediate.

(ii) Using (i) and the general property:

�ab |b� = �a |bb� = �ab |bb� (33)

(iii) By the ∼A-faithfulness of b and (33), the polar of (∼A)qp, i.e., the set of
projects of carrier a polar to the bb (b ∈ ∼A) is equal to A. Whence the
polar of (∼A)b is equal to Ab. This also proves (iv). 2

Proposition 8

ab
|∼ b ⇔ a |∼ bb ⇔ ab

|∼ bb

Example 2
If b ⊂ a, a conduct A of carrier b induces the two dual injections of carrier a:
∼∼Aa and ∼(∼A)a. However, b faithfully projects both injections onto A.

3 The social life of conducts

3.1 Multiplicatives
Let a, b be disjoint carriers.

Definition 12 (Application)
If a := a ·+·α+A and f := f ·+·α+ F are alien projects of respective carriers
a,a + b and idiom A, one defines the project [f]a of carrier b and idiom A:

[f]a := f + a+ ldet(I − FA) ·+·α+ [F ]A (34)

where [F ]A has been been defined in section 1.

An explicit formulation of the same thing, when a := a ·+·α+A and
f := f ·+·ϕ+ F are not assumed to be alien, is the project of idiom F ⊗A:

[f]a := fα(IA) + aϕ(IF ) + ldet(I − F ‡A†)) ·+· (ϕ⊗ α) + [F ‡]A† (35)

Definition 13 (Multiplicatives)
If A,B are conducts of carriers a, b, one defines the conducts of carrier a + b:

A−◦B := {f ∈ A ; ∀a ∈ A [f]a ∈ B} (36)
A⊗B := ∼(A−◦ ∼B) (37)
A`B := ∼A−◦ B (38)
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Theorem 6 (Adjunction)

A⊗B = ∼∼(A�B) := ∼∼{a⊗ b ; a ∈ A, b ∈ B} (39)

with a⊗ b := a+b ·+·α+(A+B) when a ∈ A, b ∈ B are alien.

Proof : not quite a surprise: this is a by-product of theorem 3. 2

Corollary 6.1
The tensor product is commutative, associative, with neutral element the con-
duct >>> := {0 ·+·α+ 0 ; α pseudo− trace on some idiomA} of carrier 0.

The neutral element of ` is 0 := {a ·+·α+ 0 ; a 6= 0, α pseudo− trace . . . }.

Remark 1
It is useful to rephrase the previous results in terms of ethics: E� F and E−◦ F
can still be defined when E,F are ethics. Observe that:

∼∼(E� F) = (∼∼E)⊗ (∼∼F) (40)
E−◦ (∼∼F) = (∼∼E)−◦ (∼∼F) (41)

Proposition 9

℘(A−◦B) = ℘A−◦ ℘B

3.2 Quantifiers
Let I 6= ∅ be a non empty index set (usually uncountable).

Definition 14 (Universal quantification)
If A[i](i ∈ I) is a family of conducts of carrier a, then ∀i∈I A[i] is the conduct
of carrier a defined by:

∀i∈I A[i] :=
⋂
i

Ai (42)

The definition makes sense because of:

Proposition 10
Any intersection of conducts of carrier a is a conduct of carrier a.

Proof : since an intersection of polars is the polar of a union:⋂
i

∼E[i] = ∼
⋃
i

E[i]
2

Proposition 11

℘∀i∈I A[i] =
⋂
i

℘Ai
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Theorem 7 (Distributivity)

A −◦ ∀i∈I B[i] = ∀i∈I (A−◦B[i]) (43)

Remark 2
Existential quantification is defined dually as ∃i ∈ I A[i] := ∼∼

⋃
i∈I A[i]. In

terms of ethics, the following remark is useful:

∼∼
⋃
i∈I

Ei = ∃i∈I ∼∼E[i] (44)

Second order quantification is treated in appendix, section A.

3.3 Additives
Let a, b be disjoint carriers.

Definition 15 (Additives)
If A,B are conducts of respective carriers a, b, we define:

A⊕B := ∼∼(Aa+b ∪Ba+b) (45)
A & B := ∼(∼Aa+b) ∩ ∼(∼Ba+b) (46)

Proposition 12
The two definitions are dual, i.e.:

∼(A⊕B) = ∼A &∼B

Additives are commutative, associative, with as respective neutrals, the void
conduct (⊕) and the full conduct (&) of carrier 0.

Little more can be said; a good transition towards polarisation.

4 Polarised conducts

4.1 Polarisation
Definition 16 (Daimon)
If a ∈ R, the project Daia := a ·+· 1 + 0, of idiom C and pseudo-trace 1(z) := z
is called a daimon; proper if a 6= 0.

Definition 17 (Polarised conducts)
A conduct A is positive when it enjoys the following:

Daimon: A contains all proper daimons Daia, a 6= 0.

Rescaling: if a, b 6= 0 and a ·+·α+A ∈ A, then b ·+·α+A ∈ A.

Negative conducts are defined as the polars of positive conducts; a conduct is
polarised when it is either positive or negative.
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Proposition 13
A conduct A is negative iff it enjoys the following:

Wager: all projects of A are wager-free, i.e., with a null wager.

Rescaling: if a ∈ A and λ 6= −α(IA), then a + λDai0 ∈ A.

Proof : �a ·+· 1 + 0 |b ·+·β +B�= aβ(IB) + b; since β(IB) 6= 0, it turns out
that b ·+·β+B is polar to all proper daimons iff b = 0. If a := a ·+·α+A ∈ A
with a 6= 0, then �a |b + λDai0�=�a |b� +λa 6= 0 for all λ 6= −β(IB) iff
� a | b�= aβ(IB), i.e., iff the component ldet(I − A‡B†) is null. Whence the
equivalence between the two rescaling conditions. 2

Remark 3
Negative rescaling can be understood as the closure under non-unital variants
(definition 3); by the way, negative rescaling holds for positive conducts too.

Corollary 13.1
If an ethics A is positive (in the obvious sense), so is its bipolar.

Proof : the conditions A daimon B and A rescaling B induce by duality conditions
A wager B and A rescaling B on ∼A which, in turn, induce conditions A daimon B

and A rescaling B on ∼∼A. 2

Corollary 13.2
All non wager-free projects of a positive conduct A are homothetic as elements
of the vector space `A.

Proof : if a 6= 0, then � a | b�= aβ(IB) =�Daia | b� (proof of proposi-
tion 13), whence a ≡A Daia. The Daia are pairwise homothetic. 2

Definition 18 (Proper conducts)
A positive conduct A is proper when it does not contain the improper daimon
Dai0. A negative conduct A is proper when non empty.

Proposition 14
The polar of a proper polarised conduct is proper.

Proof : �0 ·+· 1 + 0 |0 ·+·β +B�= 0, whence a mutual exclusion. 2

4.2 Polarisation of multiplicatives
Polarisation is reasonably compatible with multiplicative constructions, although
their A table of polarities B is quite unexpected.

Proposition 15
Assume that A,B are polarised conducts with disjoint carriers a, b:

(i) If both are negative, A⊗B is negative; and proper if both are proper.
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(ii) If A is positive, if B is negative and proper, then A⊗B is positive; and
proper in case A is proper.

(iii) If both are positive, then A⊗B is positive and unproper.

Proof : −⊗− = −: immediate.

+⊗− = +: if A is positive, if B is proper negative, let b := b ·+·β + B ∈ B;
then Daia ⊗ (b + λDai0) ∈ A⊗B. If c := c ·+· γ + C ∈ ∼(A⊗B), then
�Daia ⊗ (b + λDai0) | c�= aγ(IC) + cβ(IB + λ) + ldet(I − B‡C†) can
be nullified by an appropriate choice of a and λ, unless c = 0: this proves
A daimon B. Moreover, since A�B (theorem 6) obviously enjoys rescaling,
so does its bipolar. If A is proper and c ∈ ∼A is total, then it is immediate
(this is indeed weakening, section 5.1 infra) that c ∈ ∼(A⊗B).

+⊗+ = u: A⊗B contains all (a + b) ·+· 1 + 0. The tensor product contains
all the (a+ b) ·+· 1 + 0, with a, b 6= 0, hence 0 ·+· 1 + 0. Dually, [f]· cannot
send all the a ·+· 1 + 0 into something wager-fre. 2

Consistently proposition 14, the neutral >>> of corollary 6.1 is negative.
Let us restate the polarity table for linear implication in the proper case:

(i) If A is negative and B is positive, then A−◦B is positive.

(ii) If A,B have the same polarity, then A−◦B is negative.

(iii) If A is positive and B is negative, then A−◦B is unproper.

In terms of cotensor, the important thing to memorise is that a n-ary A par B

A1 ` . . .`An of proper polarised conducts is proper iff at most one of them is
negative, consistently with the maintenance of sequents in ludics [9].

4.3 Additives
Let a, b be disjoint carriers; if f, g are wager-free projects of carrier a+b, define
f & g := f + g, provided α(IA) + β(IB) 6= 0.

Proposition 16
If A,B are positive conducts of respective carriers a, b, then:

∼{f & g ; f ∈ ∼A, g ∈ ∼B} = ∼∼Aa+b ∪ ∼∼Ba+b (47)

Proof : if a |∼ f & g, then � a | xf + λDai0� + � a | yg + µDai0� 6= 0, for
any x, y 6= 0 and ad hoc λ, µ. Then x � a | f� +y � a | g� 6= 0 for all
x, y 6= 0, whence one and only one among �a | f� , �a |g� is nonzero. Since
f, g are not related, the choice is always the same, i.e., either a ∈ ∼∼Aa+b or
a ∈ ∼∼Ba+b. The converse inclusion is almost immediate. 2

Theorem 8 (Disjunction property)
Aa+b ∪ Ba+b is a complete ethics for A⊕B.
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Proof : by the proposition and example 2. 2

Theorem 9 (Mystery of incarnation)
{a & b ; a ∈ A, b ∈ B} is a complete ethics for A & B.

Proof : both results are immediate, modulo the ethic lemma (theorem 5). 2

Corollary 9.1
If A,B are positive (resp. negative) and proper, so is A⊕B (resp. A & B).

Proposition 17
& is (literally) commutative, associative, with as unit the tensor unit >>>.

Remark 4
The theorem was named Amystery of incarnation B in view of its obvious analogy
with the mystery of incarnation of ludics [9]. The general idea of incarnation
corresponds to a conditional expectation mapping a conduct onto another one.
Such a theory of incarnations (no longer A the B incarnation) is still to be written.

4.4 Distributivity
For questions of carrier, ` cannot literally distribute over &. However, If
a, b, c,d, e,f , g are disjoint carriers and u (resp. v) is a partial isometry from
a + b (resp. a + c) onto d + e (resp. f + g) s.t. ua = du (resp. va = fv),
consider Distr := 0 ·+· (1⊕ 1) + ((u+ u∗)⊕ (v + v∗)) of idiom C⊕ C. Then, if
A,B,C are negative conducts of respective carriers a, b, c:

(i) Distr ∈ (A−◦B & C) −◦ (u(A−◦B) & v(A−◦C)).

(ii) Distr ∈ u(A−◦B) & v(A−◦C) −◦ ((A−◦B & C)).

(iii) If f = f ·+·ϕ+ F ∈ (A−◦B & C), then [Distr]([Distr]f) =
f ·+· (ϕ⊕ϕ⊕ϕ⊕ϕ) + ((a+b)F (a+b) +aFa+aFa+ (a+c)F (a+c)),
which is ≡ to f when f = 0.

(iv) If g = g ·+·ψ + G ∈ u(A−◦B) & v(A−◦C), then [Distr]([Distr]g) =
g ·+· (ψ⊕ψ⊕ψ⊕ψ)+((d+e)G(d+e)+dGd+fGf +(f +g)G(f +g)),
which is ≡ to g when g = 0.

Distr therefore implements a sort of distributivity, up to ≡. By the way, the
possibility to neglect the parasitic expressions aFa, dGd, fGf is a pure result
of polarisation: for instance, if f = 0 and a = 0 ·+·α+A ∈ A, the wager of [f]a
must be 0, whence ldet(I −A‡F †) = 0.

5 Exponentials
The polarised exponentials turn out to be ELL-style ([10], ch. 16).

20



5.1 Structural rules
Polarisation enables weakening in the positive case.

Proposition 18
If c ∈ A⊗B, where B is of carrier b and A is negative, then cb ∈ B.

Proof : a project f ∈ ∼B induces a A function B fa+b ∈ A−◦ ∼B: since a ∈ A
is wager-free, [fa+b]a = f. Now, � f |cb�=� fa+b |c� 6= 0,∞. 2

But contraction fails in presence of idioms: a′ ⊗ a” cannot be written [f]a:
this would require something like F ⊗A ' A⊗A for all A, hopeless!

5.2 Perennial conducts
Definition 19 (Perenniality)
A project is perennial when of the form 0 ·+· 1 + A. A perennial ethics is a
negative ethics made of perennial projects. A perennial conduct is the bipolar
of a perennial ethics; it is therefore negative.

Let a, b, c be disjoint carriers and let u, v be partial isometries between a and
(respectively) b, c. Consider the idiom M2(C) and, as pseudo-trace, the nor-
malised trace tr on M2(C), so that R ⊗ M2(C) ' M2(R). We define the

project Contr := 0 ·+· tr +
[
u+ u∗ v
v∗ 0

]
. Then:

Theorem 10 (Contraction)
If A is a perennial conduct of carrier a, then Contr implements a rescaling of
the map a ; u(a)⊗ v(a). In particular Contr ∈ A−◦ (u(A)⊗ v(A)).

Proof : if a = 0 ·+· 1 + A, then [Contr]a = 0 ·+· tr +
[
uAu∗ + vAv∗ 0

0 0

]
, which

is a rescaling of u(a)⊗ v(a) by means of the map z ;

[
z 0
0 0

]
. 2

Notice the use of a non-commutative idiom.

5.3 An amenable group
A type II1 vN algebra A[G] is hyperfinite iff G is amenable (section C.8).

Commutative groups, locally finite groups are amenable. Amenability is
stable under most constructions, in particular semi-direct products, with one
major exception, free groups, see [11], 8.7.30.

Proposition 19
There exists an amenable group G containing a copy of the free monoid gener-
ated by two elements l, r
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Proof : since Z is amenable, the semi-direct product G = Z|Z| o Z is amenable.
G is the set of all ((sk),m), where (sk) is a function from Z to Z almost always
null, and m ∈ Z, with ((sk),m)((tk), n) := ((sk + tm+k), n + m). It admits
l := ((δ0k), 0) and r := ((0k), 1) generate a free monoid: let ck := nk for
0 ≤ k ≤ p, let ck = 0 otherwise; then ln0rln1r . . . rlnp = ((ck), p). 2

5.4 Perennialisation
Here H stands for the hyperfinite factor (of type II1). The idea of perennial-
isation is first to standardise idioms, replacing them — when possible — with
the hyperfinite factor, then to exploit the isomorphism R⊗H ' R. There is a
first difficulty, namely that idioms are finite-dimensional ; howevever, one could
easily accept idioms which are both finite and hyperfinite.

Definition 20 (Extended projects)
An extended project is a sort of project where the idiom space A is both finite
and hyperfinite, i.e., embeddable in H. The polarity between extended projects
is defined in the obvious way. If A is a conduct, then the extended project a is
affiliated to A, notation a η A iff a is polar to ∼A.

Definition 21 (Connectedness)
A project, extended or not, a := a ·+·α+A is connected when its pseudo-trace is
positive. An extended project is standard when its idiom is H, the pseudo-trace
being tr. Any connected project a can be standardised, i.e., replaced with the
extended ϕ(a), where ϕ is any ∗-isomorphism of A into H such that tr ◦ϕ = α.
If a ∈ A is connected, then ϕ(a) η A.

Definition 22 (Perennialisation)
Let Φ be a normal ∗-isomorphism from R⊗H into R. If a = a ·+· tr + A is
a standardised project, one defines the project !Φa := a ·+· 1 + Φ(A) of carrier
Φ(a ⊗ IH). If A is a negative conduct of carrier a, one defines the ethics
]ΦA := {!Φa; a = a ·+· tr +A ∈ A} and the negative conduct !ΦA := ∼∼]ΦA,
both of carrier Φ(a⊗ IH).

Definition 23 (Exponentials)
G being the amenable group of proposition 19, let M ⊂ |G| be the monoid
generated by l, r. If H[X] denotes the X-fold tensor power of H and the crossed
productH[|G|]oG refers to the automorphic action g(

⊗
h uh) :=

⊗
h ugh, define:

Ω : R⊗H ' R⊗H[M ] ⊂ R⊗ (H[|G|] o G) ' R

We define the exponential !A := !ΩA; and ?A := ∼!∼A.

Theorem 11 (Exponentiation)

!(A & B) = !A⊗ !B (48)
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Proof : using remark 1 (40), the right hand side can be replaced with
∼∼(]A� ]B). The elements of ]A� ]B are of the form 0 ·+· 1 + Ω(A + B),
where 0 ·+· tr+A η A, 0 ·+· tr+B η B, i.e., 0 ·+· tr+(A+B) ∈ A & B, whence
]A� ]B ⊂ ](A & B) and !A⊗ !B ⊂ !(A & B). Indeed, if a, b are the carriers of
!A, !B, 0 ·+· 1 + Ω(C) ∈ ](A & B) iff 0 ·+· 1 + (aΩ(C)a + bΩ(C)b) ∈ ]A� ]B;
we show that, in such a case, 0 ·+· 1 + Ω(C) ∈ ∼∼(]A� ]B) = !A⊗ !B, from
which we shall get the converse inclusion !(A & B) ⊂ !A⊗ !B.
Consider the canonical map Θ : H 7→ R⊗(H[|G|] oG) ' R⊗H sending H to the
component of index 1 ∈ G of the tensor product H[|G|]; if ν ∈ H is a projection
of trace 1/2, let ϕ := Ω(Θ(ν) · (a⊗l)); it is immediate that 0 ·+· 1 +Ω(A) ∈ ]A
iff 0 ·+· 1 + ϕΩ(A)ϕ∗ ∈ ]A, similarly for B and ψ := Ω(Θ(I − ν) · (b ⊗ l)).
Whence 0 ·+· 1+Ω(C) ∈ ]A� ]B iff 0 ·+· 1+(ϕΩ(C)ϕ∗+ψΩ(C)ψ∗) ∈ ]A� ]B.
Since ϕΩ(C)ϕ∗ + ψΩ(C)ψ∗ = (ϕ + ψ)Ω(C)(ϕ∗ + ψ∗), it follows that, dually
speaking, a ·+·α + A ∈ ?∼A iff a ·+·α + (ϕ∗ + ψ∗)A(ϕ + ψ) ∈ ?∼A; bidually
speaking, 0 ·+· 1+D ∈ !A⊗ !B iff 0 ·+· 1+(ϕ+ψ)D(ϕ∗+ψ∗) ∈ !A⊗ !B. Since
(ϕ + ψ)Ω(C)(ϕ∗ + ψ∗) = (ϕ + ψ)(aΩ(C)a + bΩ(C)b)(ϕ∗ + ψ∗), we conclude
that 0 ·+· 1 + Ω(C) ∈ !A⊗ !B iff 0 ·+· 1 + (aΩ(C)a + bΩ(C)b) ∈ !A⊗ !B: this
proves our claim. 2

Remark 5
The specific perennialisation Φ = Ω seems the most natural, but alternative
exponentials !ΦA, for suitable choices of Φ, may have interesting properties.

Remark 6
In order to get (48), the carriers of A,B must be disjoint, whence A & B cannot
be defined when the carriers intersect like in (A`C) & (B`C). Whence the
loss of literal distibutivity.

5.5 Promotion
Exponentiation enables contextual promotion A from Γ − A, get !Γ − !A B.

Theorem 12 (Promotion)
The principle !A, !(A−◦B) − !B can be implemented in GoI.

Proof : let a,a′, b, b′ be disjoint carriers, let u, v be partial isometries from a
to a′ and from b to b′. If A,B are negative conducts of respective carriers
a, b, we are seeking an inhabitant of (!A⊗ !(u(A) −◦ B) −◦ !v(B)). Indeed,
c := 0 ·+· 1 + (u + u∗ + v + v∗) inhabits (A⊗(u(A) −◦ B) −◦ v(B)) and sends
0 ·+·α+A, 0 ·+·ϕ+ F to 0 ·+·α⊗ ϕ+ v([F †]u(A‡)).
A Banging B c basically means internalising the operations (·)†, (·)‡. For this,
observe that the sets lM and rM are disjoint, because M is a free monoid.
In particular H[lM∪rM ] ' H[lM ] ⊗H[rM ]. It is therefore possible to internalise
(·)†, (·)‡ by the conjugations w.r.t. the unitaries l, r.
We thus define !c := 0 ·+· 1 + Ω(u⊗ r∗l + u∗ ⊗ l∗r + v ⊗ r + v∗ ⊗ r∗). 2
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Corollary 19.1
Contextual promotion works for A ! B.

Proof : assume that, say A,B − C; then one gets A −◦ (B −◦ C), and, since
context-free promotion is free of charge, !(A −◦ (B −◦ C)). Now, the theorem
yields !A, !B, !(A−◦ (B −◦ C)) − !C, whence, by a cut, !A, !B − !C. 2

6 Lateralised logic

6.1 The witness theorem
Definition 24 (Witnesses)
If p ∈ R is a carrier, one defines the sets:

Zp := {a ·+· (λ⊕−µ)+(u⊕v) ; u,v⊂p, λtr(u)=µtr(v), λ, µ>0, a 6=0}
Pp := {0 ·+· 1 + u ; 0 6= u ⊂ p}

and the conduct Up := ∼∼(Zp ∪Pp) of carrier p.

Theorem 13 (Witness)
The conducts Up are positive and proper; moreover:

(i) U0 is the positive neutral 0 := ∼>>>.

(ii) If p 6= 0, then Zp ∪ {0 ·+·x+ p ; x 6= 0} is a complete ethics for Up.

(iii) If 0 ·+·α+A ∈ Up is positive, then A is a (nonzero) projection.

(iv) If p, q are disjoint, then Up⊕Uq = Up`Uq.

Proof : for b 6= 0, b := b ·+· (2⊕−1) + (0⊕ 0) ∈ Zp; if a = a ·+·α+A ∈ ∼Zp,
�a |b�= a+bα(IA) 6= 0 for all b 6= 0: this forces a to be wager-free. Moreover,
since Zp ∪ Pp enjoys positive rescaling, so does its bipolar: we conclude that
Up is positive. Moreover, observe that ∼Zp ∩ ∼Pp is proper:
� 0 ·+· 1 + p/2 | 0 ·+·β + q �= λtr(q)β(IB) log 2; from this, it follows that
0 ·+· 1 + p/2 ∈ ∼Zp ∩ ∼Pp. Thus, Up = ∼(∼Zp ∩ ∼Pp) is proper as well.

(i) There are not that many conducts of empty carrier: U0 being positive and
proper, it must be equal to 0. The remaining items being either vacuous
or trivial in the case of null carriers, we assume that p, q 6= 0.

(ii) Since Up ⊂ ∼Zp, 0 ·+· tr(v) + u ≡Up 0 ·+· tr(u) + v (u,v ⊂ p nonzero),
so Up = ∼∼(Zp ∪ {0 ·+·x+ p ; x 6= 0}). If b ∈ Up is wager-free, if
a, a′ ∈ ∼Up, λ ∈ R, then a + λa′+λcDai0 ∈ ∼Zp, with c := −α(IA). If
�b |a�+λ�b |a′�= 0, then �b |a + λa′+λcDai0�= 0 and
�0·+·1+p |a + λa′+λcDai0�=�0 ·+· 1+p |a�+λ�0 ·+· 1+p |a′�=0
whence b ≡Up 0 ·+·x+ p for some x 6= 0.
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(iii) If a = 0 ·+·α+A ∈ Up (α > 0), then �a |0 ·+· 1 + λ�= c colog(1− λ),
whence (tr ⊗ α)(An) = c. Since A is hermitian, 0 ≤ A2 ≤ I, whence
0 ≤ A4 ≤ A2; since tr⊗ α is faithful and positive, (tr⊗ α)(A4 − A2) = 0
yields A4 = A2: A2 is a projection and the partial symmetry A is the
difference A = A+ −A− of two projections s.t. A+A− = 0; then
A2 = A+ +A− and (tr⊗ α)(A−A2) = 0 yields A− = 0, i.e., A2 = A.

(iv) Let f=f ·+·ϕ+F ∈ Up`Uq, a=0·+·α+A ∈ ∼Up, b=0·+·β+B ∈ ∼Uq,
with ϕ(IF ) = α(IA) = β(IB) = 1; write � f |a⊗ b�= f + ga+hb+kab,
with ga := ldet(I−FA), hb := ldet(I−FB). If x, y 6= 0, then
� f |aλ + (x− 1)Dai0 ⊗ bµ + (y − 1)Dai0�= fxy + gay + hbx+ kab 6= 0,
whence one and only one of the four reals f, ga, hb, kab is 6= 0. If a′ ∈ ∼Up
with α′(IA′) = 1, define a” := a + a′ −Dai0 or a” := a− a′ + Dai0 so
that a” ∈ ∼Up; the three cases a/b, a′/b, a”/b select one among f, g, h, k,
therefore always the same. Same remark for the argument b, whence we
conclude that the departure f/g/h/k is independent of the arguments
a, b. Assume k 6= 0; let x := 0 ·+· 1 + xp ∈ ∼Up, y = 0 ·+· 1 + yq ∈ ∼Uq
(x, y ∈]0, 1[ ). Then kxy = ldet(I − xyF12(I − yF22)−1F21(I − xF11)−1).
The convergence radius of the analytical function kx : y ; kxy tends to
infinity when x → 0; but kx(y) =� [f]x | y�= colog(I − cxy) has the
convergence radius 1, contradiction. Three cases remain:

f: then f ≡ Daif .

g: then f ∈ ∼∼(Up)p+q.

h: then f ∈ ∼∼(Uq)p+q.

Whence, using weakening, Up`Uq = Up⊕Uq. 2

6.2 The first action
In ludics [9], an essential role is devoted to actions: thus, in a behaviour A⊕B,
the first action of a proper design chooses between A and B. In GoI, the role
of first actions is played by positive projects of the form 0 ·+·α + A, with A a
nonzero projection. If B ⊂ Up is a conduct of carrier p, its positive projects
are of the required form by theorem 13 (iii): such a conduct may be seen as a
A space of first actions B. It must be noticed that, whereas Up admits, up to
equivalence, at most one first action, it is no longer the case with B ⊂ Up whose
equivalence is usually coarser than the one induced by ≡Up. A few examples
may help:

(i) When p 6= 0, Up admits (up to equivalence) exactly one first action.

(ii) If p · q = 0, the first actions of ∼∼(Up)p+q ⊂ U(p + q) are those of U(p).
Indeed, if a = 0 ·+·α+ A ∈ ∼∼(Up)p+q with A · (q ⊗ IA) 6= 0, it is easy
to find a project in ∼(Up)p+q not polar to a.
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(iii) If p · q = 0, p, q 6= 0, then Up ⊕ Uq = ∼∼(Up)p+q ∪ ∼∼(Uq)p+q by
theorem 8. Thus the first actions 0 ·+·α + A of Up ⊕ Uq split into two
equivalence classes: either A ⊂ p⊗ IA or A ⊂ q ⊗ IA.

(iv) The case of Up`Uq is reduced to the previous one by theorem 13 (iv).

6.3 Lateralisation
The remarkable stability of positive subconducts of witnesses is the missing link
between GoI and ludics; it is now possible to define behaviours, which are sorts
of A conducts with a first action B, thus allowing changes of polarity.

Definition 25 (Behaviours)
If p ⊂ a ∈ R are carriers, a right behaviour of base p and carrier a is a positive
conduct A of carrier a such that Ap ⊂ Up.
Polars of right behaviours are called left behaviours; indeed a left behaviour of
base p is a negative conduct containing (∼Up)a.

Consistently with the change of expression (left/right ; negative/positive), this
refined form of polarisation is styled lateralisation.

Example 3
The simplest example of a right behaviour of base p and carrier p is Up, in
particular 0 := U0, the disjunctive neutral.

Proposition 20
Let E,F be ethics of respective carriers a ⊃ p; then:

Ep ⊂ F ⇔ (∼F)a ⊂ ∼E (49)

Proof : both sides are equivalent to ∀a ∈ E ∀b ∈ ∼F a |∼ b . 2

Corollary 20.1
Let E be an ethics for the positive conduct A of carrier a and assume that
p ⊂ a is such that Ep ⊂ Up. Then A is a right behaviour of base p.

Proof : Ep ⊂ Up ⇔ ∼(Up)a ⊂ ∼E = ∼A ⇔ Ap ⊂ Up. 2

7 The social life of behaviours

7.1 Multiplicatives
7.1.1 Right case

Definition 26 (Right tensor product)
If A, B are right and left behaviours of bases p, q and disjoint carriers a, b, then
A⊗B is the positive conduct of carrier a + b, indeed a right behaviour of base
p, of definition 13.
One defines, mutatis mutandis, the A par B of two behaviours of opposite later-
alities, which is a negative conduct, indeed a left behaviour of base p.
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Proposition 21
A⊗B is a right behaviour of base p.

Proof : by weakening, ∼A ⊂ ∼A`∼B; hence (A⊗B)a is included in (thus,
equal to) A. Then (A⊗B)p = (Aa)p = Ap ⊂ Up. 2

Remark 7
The result persists when B is a plain negative conduct.

7.1.2 Left case
Definition 27 (Left tensor product)
If A, B are left behaviours of bases p, q and disjoint carriers a, b, then A⊗B
is the negative conduct of carrier a+b, indeed a left behaviour of base p+q, of
definition 13. One defines, mutatis mutandis, the A par B of two right behaviours,
which is indeed a right behaviour of base p + q.

Lemma 22.1
If E,F are ethics of disjoint carriers a, b and p ⊂ b, then
(E−◦ F)a+p ⊂ E−◦ Fp.

Proof : immediate; see remark 1 for the definition of E−◦ F. 2

Proposition 22
A⊗B is a left behaviour of base p.

Proof : dually, assume that A, B are right behaviours; the lemma yields
(A`B)p+c ⊂ Ap `Bq ⊂ Up`Uc ⊂ U(p + q). 2

7.2 Delateralisation
Definition 28 (Shift)
If A is a left behaviour of carrier a and base p, if s is a non zero carrier disjoint
from a, one defines the right shift ´sA := Us⊗A, a right behaviour of base s
and carrier a+s. One defines, mutatis mutandis, the left shift ˆsa := ∼Us`A
of a right behaviour.

Theorem 14 (Delateralisation)
The usual logical principles of the shift can be implemented in behaviours.

Proof : we treat the case of a context Γ = B,C, where B,C are right behaviours
of bases q, r. We assume that A is a a behaviour of base p. We assume that
the three carriers and s are pairwise disjoint.

Right case: if a = 0 ·+·α+A ∈ A`B`C, where A is a left behaviour, then
´sa := 0 ·+·α+ (s⊗ IA +A) ∈ ´sA`B`C.
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Left case: if a = 0 ·+·α+A ∈ A`B`C is positive, then:

(A`B`C)p+q+r = Ap `Bq `Cr ⊂ Up`Uq `Ur = Up⊕Uq ⊕Ur

By theorem 13, ap+q+r = 0 ·+·α+c, with c a nonzero projection included
in one of p⊗ IA, q ⊗ IA or r ⊗ IA. Let n be such that
n · tr(s) ≥ tr(p), tr(q), tr(r), and let ϕ be the (non-unital) ∗-isomorphism

from A to A′ :=Mn(C)⊗A =Mn(A): ϕ(u) :=


u 0 . . .
0 0 . . .
. . . . . . . . .
. . . . . . . . .

, the
pseudo-trace on A′ being Tr⊗A.
Then, by remark 3, ϕ(a) := 0 ·+·α′+(I⊗ϕ)A(I⊗ϕ∗) ∈ A`B`C. Let
u ∈ R ⊗ A′ be a partial isometry of domain c and image s′ ⊗ IA′ , with
s′ ⊂ s. Then ˆsa := 0 ·+·α′+((I⊗ϕ)A(I⊗ϕ∗)+u+u∗) ∈ ˆrA`B`C.
Indeed, if b ∈ ∼A, then [ˆra](´rb) = [a]b.

2

7.3 Quantifiers
Definition 29 (Quantifiers)
If A[i](i ∈ I) is a non empty family of behaviours of the same carrier a, the
same base p and the same laterality, one defines ∀i∈ I A[i] :=

⋂
i∈I A[i], which

turns out to be another behaviour of the same carrier, base and lateralisation.
One defines dually ∃i∈I A[i] := ∼∼

⋃
i∈I A[i].

Proposition 23
∀i∈I A[i] is a behaviour.

Proof : Right: if i0 ∈ I, then (∀i∈I A[i])p ⊂ A[i0]p ⊂ Up.

Left (dually): if the A[i] are right behaviours, then
⋂
i A[i] ⊂ Up. By the

corollary to proposition 20, ∃i∈IA[i] is a right behaviour. 2

Remark 8
A ˆs B being an instance of A par B, it distributes over universal quantification.

7.4 Additives
Definition 30 (Additives)
If A,B are behaviours of the same lateralisation, of bases p, q and disjoint
carriers a, b, definition 15 yields conducts of carrier a + b, indeed a behaviour
of base p + q with the same lateralisation as A,B.

Proposition 24
If A,B are right behaviours, so is A⊕B.

Proof : if E := Aa+b∪Ba +b, then Ep+q ⊂ Up⊕Uq ⊂ U(p+q). We conclude
using the corollary to proposition 20. 2
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7.5 Du côté de chez Gustave
From the Gustave function (see, e.g., [10], ch. 12), we shall only remember the
ternary structure (A⊕B)` (A′⊕B′)` (A”⊕B”) that coherent spaces cannot
disentangle into something simpler, e.g., (A⊕B) `B′ ` (A”⊕B”).

Assuming (A⊕B) `B′ ` (A”⊕B”) of base r := a+b+a′ +b′ +a”+b”:

((A⊕B) ` (A′ ⊕B′) ` (A”⊕B”))r ⊂ (Ua⊕Ub) ` (Ua′ ⊕Ub′) ` (Ua”⊕Ub”)
⊂ Ua⊕Ub⊕Ua′ ⊕Ub′ ⊕Ua”⊕Ub”

from which we get the existence of a A first action B.

7.6 Secularisation
If A is a left behaviour of carrier a and base p, then !A (definition 22) is a nega-
tive conduct, but not a left behaviour. This problem is perhaps the explanation
for the other iconoclast logic, indeed the original one, LLL ([10], ch. 16). In
case, this would definitely show the soundness of the present approach, which
manages to explain both light logics out of natural geometric constraints, and
not in the usual Deus ex machina, i.e., essentialist, way. I just put together a
few facts:

(i) Conducts may socialise with behaviours: when A is a right behaviour and
B is a negative conduct, A⊗B is a right behaviour (remark 7). It is
therefore possible to use ! on the left of an implication: if A,B are left
behaviours, so is !A−◦B.

(ii) In terms of sequent calculus, this requires a special maintenance for A ! B,
e.g., through the familiar underlining technique ([10], ch. 15).

(iii) However, due to the want of dereliction, it is not reasonable to represent
implication by !A−◦B, and !A−◦ !B is still not a behaviour. The idea is
to use a lateralised subrogate for A ! B, the secularisation §.

(iv) Promotion subsists under the weaker form A from Γ − A, get !Γ − §A B

(Γ, A left lateralised).

Definition 31 (Semi-standard projects)
In the spirit of definition 21, an extended project is semi-standard when of the
form a := a ·+· (tr⊕−tr)+A, the A idiom B being now H⊕H and the A pseudo-
trace B being tr ⊕ −tr. If a ∈ A, choose ϕ such that (tr ⊕ −tr) ◦ ϕ = α ; then
ϕ(a) η A.

Definition 32 (Secularisation)
If a := a ·+· (tr⊕ tr)+(A⊕B) is a standardised project of carrier a, one defines
the project §̄a := a ·+· (1	 1) + (Ω(A)⊕ Ω(B)).
If A is a right behaviour of carrier a and base p, one defines the right behaviour
§̄A := ∼∼{§̄a : a η A} of carrier Ω(a⊗ IH) and base Ω(p⊗ IH).
One symmetrically defines §A := ∼§̄∼A; obviously !A ⊂ §A.
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Proposition 25
If A is a left behaviour, then §A is a left behaviour.

Proof : follows from the lemma:

Lemma 25.1
§̄Up ⊂ UΩ(p⊗ IH).

In this Kamchatka of the paper, I feel like skipping one proof, easy anyway. 2

A Second order quantification
A purely locative approach would consist in defining, for r > 0, ∀rX A[X],
where X varies over all conducts of carrier r, where r is a given carrier such
that tr(r) = r. The problem is with the change of A size B: the replacement
of ∀rX with ∀sX is a cinch — using projections — when 0 < s ≤ r, but is
problematic when s > r. Defining8 nat := ∀1X(!(X−◦X)−◦ !(X−◦X)), we
see that nat has size 4 > 1 and cannot be substituted for X, thus barring any
decent form of recurrence.

The correct definition is semi-locative; in a spirit loosely inspired from the
coherent interpretation of second order quantification ([10], ch. 8), we shall
A approximate B conducts by means of conducts of smaller size. One should
thus define variable conducts and projects.

A.1 The negative universe
Instead of a general (and illegible) definition of variability, I will content myself
with the case of those negative conducts arising from variables X,Y, . . . , the
constant >>> (conjunctive unit), ⊗,&, ! and an ad hoc redefinition of implication
(to be used throughout this section):

A−◦B := {f ∈ A−◦B ; f wager− free} (50)

which is such that A−◦B is negative when both A,B are negative. It will turn
out that second order universal quantification — still to be defined — is also
part of those operations internal to negative conducts.

A sort of negative universe has thus been introduced, where no change of po-
larity is actually needed: an alternative to lateralisation and behaviours. Should
we need disjunction, the second order definition:

A⊕B := ∀X (A−◦X)−◦ ((B −◦X)−◦X) (51)

would provide a sort of ersatz.
The negative universe is most likely ELL-like: usual data translate as

bool := ∀X((X ⊗X)−◦X), bin := ∀X((!(X −◦X)⊗ !(X −◦X))−◦ !(X −◦X)),
nat := ∀X(!(X −◦X)−◦ !(X −◦X)).

8The formula A forgets B the four delocations of X.
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A.2 Variability
I restrict myself to those conducts obtained by means of X,>>>,⊗,&, !,−◦,∀X.
I try, as much as possible, to minimise the use of isomorphisms; typically, the
carriers a under consideration are such that Ω(a ⊗ I) = a, where Ω is the
perennilaisation of section 5.4.

Supports: we fix, once for all, a carrier v such that tr(v) = 1. Second order
variables X,Y, . . . will stand for negative conducts of carrier v. Liter-
als ϕ(X),∼ψ(Y), . . . are obtained by means of delocations ϕ,ψ, . . . , i.e.,
partial isometries of domain I (the full space) and pairwise disjoint images
ϕϕ∗, ψψ∗, . . . , the supports of ϕ(X),∼ψ(Y), . . . which are infinite pro-
jections containing the carriers ϕ(v),∼ψ(v), . . . : some A extra space B is
needed to handle second order substitution. It is indeed the case that the
carrier (resp. the support) of a compound negative conduct A is the sum
of the carriers (resp. supports) of its literals. In particular, the carrier a
of a conduct A[X] depending on X can symbolically be written (m+n) ·v,
which means A m occurrences (= delocations) of X and n occurences of
other literals, free or bound B.

Substitution: the substitution of B for X in A cannot keep the carrier con-
stant, for the simple reason that the carrier b of B is a priori distinct from
v. However, the carrier c of A[B/X] is included in the support of A. The
carrier of A[B/X] can symbolically be written m ·b+n ·v; if b is symboli-
cally written p ·v, we get the expression (mp+n) ·v: a perfectly incorrect
— but legible — way to speak of the various isomorphisms at stake. Since
mp + n ≤ (m + n)(p + 1), there is a (non unital) ∗-isomorphism (noted
·[B/X]) from cRc into aRa⊗Mp+1(C).

Quantification: if a ∈ ∼A[B/X], then a[B/X] is a project of carrier a, pro-
vided we consider the component Mp+1(C) of the image of the isomor-
phism ·[B/X] as idiomatic. ∀X A is defined as the polar of all a[B/X],
when a ∈ ∼A[B/X] for some negative conduct B.

A.3 An example: natural numbers
Proofs of (X−◦X), . . . , (X−◦X) − X−◦X, yield matricesMn; those matrices are
plain, i.e., embody the delocations: this explains the coefficients v. Typically:

M0 :=
[

0 v
v 0

]
M3 :=



0 0 0 0 0 0 0 v
0 0 v 0 0 0 0 0
0 v 0 0 0 0 0 0
0 0 0 0 v 0 0 0
0 0 0 v 0 0 0 0
0 0 0 0 0 0 v 0
0 0 0 0 0 v 0 0
v 0 0 0 0 0 0 0
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Next, the Mn are then perennialised, yielding matrices Nn. The case n = 3 in-
volves elements d1, d2, d3 of the free monoid, e.g., r, lr, l2r which are incompat-
ible as prefixes, i.e., such that dia = djb implies a = b and i = j. For legibility,
let us introduce the notation a := Ω(v ⊗ d1), b := Ω(v ⊗ d2), c := Ω(v ⊗ d3):

N0 :=
[

0 v
v 0

]
N3 :=



0 0 0 0 0 0 0 a∗

0 0 b∗a 0 0 0 0 0
0 a∗b 0 0 0 0 0 0
0 0 0 0 c∗b 0 0 0
0 0 0 b∗c 0 0 0 0
0 0 0 0 0 0 c 0
0 0 0 0 0 c∗ 0 0
a 0 0 0 0 0 0 0


Finally comes the contraction/weakening, yielding 4× 4 matrices Pn:

P0 :=

0 0 0 0
0 0 0 0
0 0 0 v
0 0 v 0

 P3 :=

 0 A 0 B
A∗ 0 C 0
0 C∗ 0 0

B∗ 0 0 0


where A,B,C, . . . are the 4× 4 matrices:

A :=

0 b∗a 0 0
0 0 c∗b 0
0 0 0 0
0 0 0 0

 B :=

0 0 0 a∗

0 0 0 0
0 0 0 0
0 0 0 0

 C :=

0 0 0 0
0 0 0 0
0 0 0 0
0 0 c 0


The idiom of Pn isMn+1(C), whence the 4×4 matrices A,B,C for n = 3. The
map θ from {1, . . . , 8} to {1, . . . , 4}×{1, . . . , 4}, which sends 1, 3, 5, 7 to respec-
tively (1, 1), (1, 2), (1, 3), (3, 4) and 2, 4, 6, 8 to (2, 1), (2, 2), (2, 3), (4, 4) enables
one to replace the 8× 8 matrix N3 with the 4× 4 matrix P3 whose coefficients
are in turn 4× 4 matrices.

What we just constructed can be noted Pn[v] to emphasise the dependency
upon the carrier v. Should we perform an extraction on B of carrier b, then
Pn should become Pn[b], an element of !(B−◦B)−◦ !(B−◦B). The important
point is that this extraction can be implemented, using delocations, by a sort
of contraction. For instance, if tr(b) = 2, an appropriate variant of the project
Contr of section 5.2 will do the job: if ϕ,ψ are partial isometries between v
and b′, b” such that b = b′ + b”, define u := Ω(ϕ ⊗ I), v := Ω(ψ ⊗ I), so that
b = uvu∗ + vvv∗.

B Truth

B.1 Viewpoints
It R is equipped with the Lebesgue measure µ, if T is a partial measure-
preserving bijection from X ⊂ R to Y ⊂ R, then T̃ (f) := f ◦ T defines a
bounded operator on L2(R). Indeed, T̃U = T̃ Ũ , T̃ ∗ = T̃−1, whence T̃ is a
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partial isometry, of domain and image X̃, Ỹ (= L2(X),L2(Y )) where X and Y
denote the identity maps of X and Y .

Definition 33 (Viewpoints)
A viewpoint is a normal representation of R in L2(R), what we (abusively)
write R ⊂ B(L2(R)) such that, for any X ⊂ R, with µ(X) < ∞, X̃ ∈ R and
tr(X̃) = µ(X).

Lemma 26.1
Let a ∈ pRp with p finite and ‖a‖ ≤ 1 be such that tr(an) = 0 for all n > 0;
then ldet(I − a) = 0 in the two following cases:

(i) a is hermitian.

(ii) a is a partial isometry.

Proof : 2ldet(I − a) = ldet((I − a)(I − a∗)) = −log4 + ldet(I − b), with
b := 1/4(3I + a + a∗ − aa∗). Since ‖aa∗ − a − a∗‖ ≤ 3, 0 ≤ b ≤ I and
ldet(b) =

∑
n>0 tr(bn)/n. If a is hermitian, the bn are polynomials in a and

tr(bn) = (3/4)n, whence ldet(b) = colog(1 − 3/4) = log 4 and ldet(I − a) = 0.
If a is partial isometry, then bn = xnI + yn(a + a∗) + znaa

∗ + wna
∗a and

tr(bn) = xn + (zn +wn)tr(aa∗). The coefficients xn, zn, wn do not depend upon
a; in particular, if a2 = 0, then ldet(I − a) = 0 and ldet(I − b) = log 4, whence
the two series

∑
n>0 xn = log 4 and

∑
n>0(zn + wn)tr(aa∗) = 0 are absolutely

convergent. The same holds for any partial isometry a. 2

Lemma 26.2
If T̃ ∈ R, where T is a partial measure-preserving bijection from X ⊂ R
(µ(X) <∞) to Y ⊂ R; then tr(T̃ ) = µ({x ; T (x) = x}).

Proof : if Z ⊂ X is measurable, let TZ : Z 7→ T (Z) be the restriction of T to
Z. If A := {x ∈ X ; T (x) 6= x}, then tr(T ) = tr(TA) + µ(X \ A): it remains
to prove that tr(TA) = 0; in other terms that tr(T ) = 0 when T (x) 6= x for
all x ∈ X. By the strong continuity of the trace, there is a maximal (up to a
negligibility) Z ⊂ X such that tr(TZ) = 0. If, up to negligibility, Z 6= X, there
is a non-negligible W ⊂ X \ Z such that T (W ) ∩W = ∅; it is immediate that
tr(TZ∪W ) = 0, contradicting the choice of Z. Whence tr(T ) = tr(TZ) = 0. 2

Proposition 26
If T̃ ∈ R, where T is a partial measure-preserving bijection from X ⊂ R
(µ(X) <∞) to Y ⊂ R, then ldet(I − T̃ ) = 0 or ldet(I − T̃ ) =∞.

Proof : if the set {z ; ∃n > 0 Tn(z) = z} is of measure 0, lemma 26.2 yields
tr(T̃n) = 0 for all n > 0, whence, by lemma 26.1 (ii), ldet(I − T̃ ) = 0. Oth-
erwise, let N > 0 be such that Z := {z ; TN (z) 6= 0} is not negligible. Then,
writing T = TZ ∪ (T � Z) and T̃ = T̃Z + T̃ � Z, with TZ · (T � Z), we get
ldet(I − T̃ ) = ldet(I − T̃Z) + ldet(I − T̃ � Z). By lemma 26.2, the terms
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tr(T̃ � Z
kN

)/kN are equal to µ(Z)/kN . Whence ldet(I − T̃ � Z) = +∞ and
ldet(I − T̃ ) = +∞. 2

Let us come back to the feedback equation: if w.r.t. a decomposition I = a⊕b,

F :=
(
F11 F12

F21 F22

)
and A = aAa, then [F ]A = F22 + F21A(a − F11A)−1F12,

provided a−F11A is invertible. My contention is that this formula is still valid
when a− F11 is injective and (a− F11A)−1F12 is total, whence (since of closed
graph) bounded; I prove it in a particular case:

Lemma 27.1
If a − F11A is injective, ldet(I − F11A) < +∞ and (a − F11A)−1F12 is total,
then [F ]A = F22 + F21A(a− F11A)−1F12.

Proof : let B be such that bBb = B; a standard computation shows that
ldet(I−F ·(A+B)) = ldet(I−F11A)+ldet(I−(F22 +F21A(a−F11A)−1F12B).
Whence, using theorem 3, [F ]A = F22 + F21A(a− F11A)−1F12. 2

Proposition 27
If a = X̃, b = Ỹ are disjoint carriers and if the partial measure-preserving
bijections A,F induce partial isometries Ã, F̃ ∈ R of respective carriers a and
a + b, then [F ]A = Ũ for some partial measure-preserving bijection U .

Proof : let Z := {x ∈ R ; ∃n > 0 (F11A)n(x) = x}; one easily reduces the prob-
lem to the case where µ(Z) = 0. Consider the partial bijection
U := F22 ∪F21(A∪AF11A∪AF11AF11A∪ . . .)F12: a + F̃11A+ ˜F11AF11A+ . . .

is a left inverse of a−F11A and (a + F̃11A+ ˜F11AF11A+ . . .)F̃12 comes from a
partial bijection and is thus bounded. The result follows from the lemma. 2

Remark 9
If µ(Z) = 0, the (F̃11A)N tend to 0, strongly: a case of strong nilpotency.

B.2 Subjective truth
If R ⊂ B(L2(R)) is a viewpoint, then a base e1, . . . , en of the idiom A induces
a viewpoint R⊗A ⊂ B(L2(R× {1, . . . , n})) (' B(L2(R))).

Definition 34 (Success)
a := a ·+·α+A is successful w.r.t. a viewpoint R ⊂ B(L2(R)) when:

(i) The carrier a of a is of the form X̃.

(ii) a is wager-free (a = 0) and positive (α > 0).

(iii) W.r.t. a base e1, . . . , en of the idiom A, A = T̃ for a certain partial
measure-preserving map from a subset of R × {1, . . . , n} to a subset of
R× {1, . . . , n}.
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Definition 35 (Truth)
A conduct A of carrier a is true w.r.t. a viewpoint R ⊂ B(L2(R)) when a is
of the form X̃ and A contains a project a successful w.r.t. the viewpoint. A is
false when ∼A is true.

Theorem 15 (Compositionality of truth)
If a = X̃, b = Ỹ , if the conducts A and A−◦B of respective carriers a,a + b
are true, then B is true.

Proof : a := 0 ·+·α+ T̃ ∈ A, f := 0 ·+·ϕ+ Ũ ∈ A−◦B, then
[f]a := ldet(I − Ũ‡11T̃

†) ·+· [Ũ‡]T̃ †. If ∼B is true, then 0 ·+· 1 + 0 ∈ B is
successful; if b ∈ ∼B, then � [f]a | b� 6= ∞ implies ldet(I − Ũ‡11T̃

†) 6= ∞,
using theorem 3. Now, if T,U are measure-preserving partial bijections of
R×{1, . . . , n}, R×{1, . . . ,m}, then T̃ †, Ũ‡ come from partial bijections T †, U‡

of R × {1, . . . , n} × {1, . . . ,m}. By proposition 26, ldet(I − Ũ‡11T̃
†) = 0, since

the value ∞ has just been excluded. By proposition27, [Ũ‡]T̃ † is of the form Ṽ ,
whence [f]a is successful. 2

Corollary 15.1 (Subjective consistency)
A conduct cannot be both true and false w.r.t. a given viewpoint.

Proof : ∼A = A−◦0, where 0 := {a ·+·α+ 0 ; a 6= 0} of carrier 0 is the neutral
element of A par B, which contains no wager-free project. 2

B.3 The subjective paradox
A conduct can be true or false depending on the viewpoint:

Proposition 28
There exists a conduct C and viewpoints P1,P∈ such that C is true w.r.t. P1

and ∼C is true w.r.t. P2.

Proof : should we define truth in the finite dimensional case, then a viewpoint
would become a plain base. Let u, v ∈M3(C) be the partial symmetries:

u :=

−1 0 0
0 1 0
0 0 0

 v :=

0 0 0
0
√

2/2
√

2/2
0
√

2/2 −
√

2/2

 whence I − uv=

1 0 0
0 1−

√
2/2

√
2/2

0 0 1


det(I − uv) = 1 −

√
2/2 6= 0, 1. u := 0 ·+· 1 + u is successful w.r.t. the base

{(
√

2/2,
√

2/2, 0), (
√

2/2,−
√

2/2, 0), (0, 0, 1)}, while v := 0 ·+· 1 + v succeeds
w.r.t. the canonical base. It suffices to define C := ∼{v}. The argument is
made rigourous by replacingM3(C) withM3(pRp) =M3(C)⊗ pRp. 2
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B.4 Subjectivity vs. subjectivism
Subjectivity has nothing to do with subjectivism; it is indeed its antidote. Let
us start with a famous example: Ptolemaic astronomy was the most A objec-
tive B science ever, allowing no room for the subject; however, it produced the
subjectivistic delirium of epicycles. Later on, Kepler, Galileo, were able to dis-
antangle this mess by restoring some subjectivity: observations are realtive to
a viewpoint, Earth.

A similar problem occurs in logic, especially when dealing with cognitive
questions: here the subject — the cognitive process — is part of the data. Take
the interesting remark that an absent information is false: a bank has no record
of its non-clients; handled subjectively, this works swell, since one can easily
determine whether or not the bank considers Mr. Girard as part of its clients.
The same idea, handled objectively, would amount at deciding whether or not
Mr. Girard is a client under, say, an assumed name, i.e., independently of any
cognitive process. The replacement of A I don’t know B by A one cannot know B,
i.e., A one cannot prove B led to those modern epicycles — non-monotonic logics,
closed world assumption, etc. —, which were refuted long before their invention
by incompleteness, which, in fine, exposes the limitations of a blunt objectivity.

A constructive9 approach thus requires to rebuild the objectivity by tak-
ing into account the subjective aspects of logic: after all, logic is about about
reasoning, language, etc. In contrast with the objectivistic fantasy known as
semantics.

For instance, formulas do no proceed from the sky; they proceed from their
own operationality. What can be internalised by means of the negation, which
thus takes in charge logical normativity : before refuting, negation forbids. This
idea of A negation as norm B was first implemented in ludics [9]: although the
expression has a game-theoretic flavour, ludics is strongly antagonistic to A game
semantics B which, as the name suggests, relies on a ready-made normativity,
thus missing the point.

GoI is even more radical, since it introduces a doubt — absent from ludics —
as to the underlying combinatoric universe. The idea being that, like in the
quantum world, logical artifacts interact A wavelike B, but that questions like
truth are rather base-dependent, i.e., A measurement-like B.

This approach can hardly be considered as subjectivistic. Typically, the
choice of a viewpoint is implicit in the statement of a problem: through the
decomposition of a formula into its significant subformulas — a decomposition
which suits our own analyticity, thus subjective. In practice, there will be a
preferred viewpoint — like in astronomy, the geocentric viewpoint —, but the
existence of other viewpoints — A non standard B ones, if the term were not too
heavily connoted — introduces unexpected possibilities of interpretation.

9Forget the sectarian connotation taken nowadays by this expression, which basically means
that object and subject must be constructed, do not preexist.
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C Von Neumann algebras

C.1 Operator algebras
There are two main brands of operator algebras:

C∗-algebras: complex Banach involutive Banach algebras, whose norm satis-
fies ‖uu∗‖ = ‖u‖2.

Von Neumann algebras: sub-C∗ algebras of some B(H) closed under the
weak (equivalently the strong, the ultraweak) topology. The most stan-
dard definition is the equality to the bicommutant.

A commutative C∗-algebra is isomorphic to a space C(X): continuous complex-
valued functions on some compact set X. A commutative vN algebra is isomor-
phic to some L∞(X,µ), where (X,µ) is a measure space. The two main brands
of operator algebras can thus be described as non commutative topology or non
commutative measure theory.

C.2 The predual
Von Neumann algebras are conveniently considered implemented, i.e., acting on
some Hilbert space H, whence the inclusion A ⊂ B(H). But the theory does not
depend upon any particular representation; when dealing with isomorphisms
of vN algebras, one must consider normal ∗-isomorphisms, i.e., isomorphisms
of C∗-algebras which are utraweakly continuous; ultraweak continuity is the
same as weak continuity on the unit ball. It can also be characterised as the
commutation to directed suprema of positive hermitians.

Up to isomorphism, von Neumann algebras are exactly the dual C∗-algebras,
i.e., those isomorphic to the dual of some Banach space. The predual of the vN
algebra A, unique up to isomorphism, consists of the ultraweakly continuous
forms, often styled normal, i.e., weakly continuous on the unit ball of A. Typi-
cally, the predual of `∞ is `1.

C.3 Factors
Definition 36 (Factors)
A factor is a von Neumann algebra whose center is trivial, i.e., consists in the
scalar multiples of the identity.

The theory of von Neumann algebras reduces to the study of factors: A can
be written as a sum of factors — discrete or continuous — indexed by its center.

Definition 37 (Comparison of projections)
Between the projections of a von Neumann algebra A, one defines the preorder
relation 4, with associated equivalence ∼:

π ∼ π′ ⇔ ∃u (u∗u = π and uu∗ = π′) (52)
π 4 π′ ⇔ ∃π′′ (π = ππ′′ and π′′ ∼ π′) (53)
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In a factor, the preorder ∼ is total; this induces a classification of factors over
a separable Hilbert space:

• In (resp. I∞): order type {0, . . . , n} (resp. N ∪ {+∞}).

• II1(resp. II∞): order type [0, 1] (resp. [0,+∞]).

• III: order type {0,+∞}.

The symbol A +∞ B has a special meaning; it denotes the class of the identity,
when the identity is infinite, i.e., not alone in its equivalence class.

C.4 The trace
Definition 38 (Finiteness)
A is finite when I stands alone in its equivalence class: uu∗ = I ⇒ u∗u = I.

The finite factors are those of type In(n <∞) and II1. In a finite factor, given
projections π, π′ 6= 0, define an A euclidian division B: π = π′1 + . . . + π′n + π”
with π′1 ∼ . . . ∼ π′n ∼ π′, π” 4 π′, π” 6∼ π′, what one writes π ∼ n.π′ + π”;
n and the remainder π” (up to ∼) are unique. This enables one to define the
dimension of a projection by a continued fraction. Typically, π is of dimension
1/2 when π ∼ I − π. Dimension extends by linearity to linear combinations of
projections, then to the full algebra by ultraweak continuity: this is the trace:
finite algebras are algebras with a trace.

Definition 39 (Trace)
In the vN algebra A, a trace is an ultraweakly continuous state τ such that:

τ(uv) = τ(vu)

The trace is thus an element of the predual.

Proposition 29
A factor is finite iff it admits a trace (necessarily unique).

For factors of type In, the trace (in the sense of definition 39) is obtained by
renormalising the usual algebraic trace: τ(u) = 1/n · Tr(u).

C.5 Algebra of a discrete group
If G is a discrete (i.e., finite or denumerable) group, the space of complex linear
combinations of elements of G is the convolution ring A(G) of G:

(
∑
g

xg · g) ∗ (
∑
h

yh · h) :=
∑
gh=k

xgyh · k (54)

The convolution product can be extended to square-summable sequence: it
sends `2(G)× `2(G) into `∞(G).
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Definition 40 (Algebra of a group)
The group algebra of G is defined as:

A[G] := {x ∈ `2(G) ; ∀y ∈ `2(G) x ∗ y ∈ `2(G)} (55)

x ∈ A[G] induces an operator on the space space `2(G); A[G] is thus identified
with a subalgebra of B(`2(G)), indeed a vN algebra, since the commutant of the
right convolutions rg(y) := y ∗ g.
A[G] admits the trace:

tr(
∑
g

xg · g) := x1 (56)

Proposition 30
A[G] is a finite algebra.

Definition 41 (i.c.c. groups)
G is with infinite conjugacy classes (i.c.c.) iff, for all g ∈ G, g 6= 1, the set
{h−1gh;h ∈ G} of conjugates of g is infinite.

Proposition 31
The algebra A[G] of an i.c.c. group is a type II1 factor.

C.6 Crossed products
Let G be a discrete group and α be an automorphic representation of G on A,
i.e., an homomorphism associating to any g ∈ G an automorphism αg of the vN
algebra A ⊂ B(H). On the Hilbert space H⊗ `2(G), we can consider:

• For u ∈ A, the operators α̃(u)(x⊗ g) := αg−1(u)(x)⊗ g.

• For g ∈ G the operators `g(x⊗ h) := x⊗ gh.

Definition 42 (Crossed product)
The crossed product A oα G is the vN subalgebra of A ⊗ A[G] generated by
(i.e., the bicommutant of) the α̃(u) and the `g.

One easily checks that:
`gα̃(u)`∗g = α̃(αg(u)) (57)

The α̃(u) thus generate a vN algebra isomorphic with A, and the conjugations
u ; `gu`

∗
g act as the original αg. In other terms, A oα G is the vN algebra

obtained from A by A internalising B the αg.

Proposition 32
If A is a factor and the αg are outer for g 6= 1, then Aoα G is a factor.
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C.7 Hyperfiniteness
Definition 43
A vN algebra A is hyperfinite when there exists a denumerable sequence
A0 ⊂ A1 ⊂ A2 . . . of finite-dimensional subalgebras s.t. A is the closure (weak,
strong, or the bicommutant) of the union

⋃
nAn.

Hyperfiniteness has nothing to do with finiteness; in most types: In, I∞, II1,
II∞, IIIλ(0 < λ ≤ 1), there is exactly one hyperfinite factor. Typically:

Theorem 16 (Murray-von Neumann)
Up to isomorphism, there is only one hyperfinite factor of type II1, the one
usually referred to as A the B hyperefinite factor.

C.8 Amenable groups
The most important characterisation of hyperfiniteness is due to Connes:

Theorem 17 (Injectivity)
A vN algebra A is hyperfinite iff it is injective, i.e., if there is a linear projection
Π of norm 1 of B(H) onto A.

Proposition 33 (Tomiyama, 1957)
If Π is a linear projection of B(H) onto A such that ‖Π(u)‖ ≤ ‖u‖(u ∈ B(H)),
then Π is a conditional expectation, i.e.:

(i) Π is positive: Π(u) ≥ 0 when u ≥ 0.

(ii) Π(I) = I.

(iii) If a, b ∈ A, u ∈ B(H), then Π(aub) = aΠ(u)b.

Coming back to group algebras, A[G] is injective iff G is amenable:

Definition 44 (Amenability)
An invariant mean on G is a state on `∞(G) which is left invariant:

µ(
∑
g

xg · g) = µ(
∑
g

xg · hg) (58)

G is amenable iff it admits an invariant mean.

Remember that a state µ on a vN algebra A is a positive (µ(uu∗) ≥ 0) and
normalised (µ(1) = 1) linear form on A.

The typical non amenable group is the free group with two generators; for-
tunately for us, there is an amenable group containing a copy of the free monoid
(proposition 19).

The crossed product of the hyperfinite factor H with an amenable group of
outer atomorphisms remains hyperfinite, i.e., is isomorphic to H.

NON SI NON LA
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