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Abstract

We present a quantum interpretation of the perfect part of linear
logic, by means of quantum coherent spaces. In particular this yields
a novel interpretation of the reduction of the wave packet as the ex-
pression of η-conversion, a.k.a, extensionality.

Acknowledgements : this work has been essentially carried out in Octo-
ber 2002, and issued as privately circulated notes in French. The sources
were my recent ludics, [9], that I was trying to make “quantic” for a couple
of years, in relation to my much older “geometry of interaction”, [6], an
explanation of logic in terms of Hilbert space operators. In Spring 2002, I
got a definite jolt from the work of Selinger, [11], in particular his handling
of “density matrices”. This definite version benefited from discussion with
colleagues interested in the interface with quantum physics, Ctirad Klimč́ık,
Thierry Paul, and Richard Zekri. It also benefited from the intercession of St
Augustine, an output of the discussions led inside the informal group LGC
“la Logique comme Géométrie du Cognitif”, whose aim is to reconsider var-
ious philosophical and methodological issues that were fumbled by the “lin-
guistic turn” of last century, see the page http://www.logique.jussieu/www.joinet.

1 Introduction

1.1 What is the question ?

From the beginning, it has been clear that something should be clarified
between logic and quantic, that there was a logico-physical puzzle. In such
a delicate situation, the main question was to find the right question.
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1.1.1 The punishment of nature

According to Herodotus (VII,35), a tempest destroyed the military bridges
built by Xerxes over the Hellespont ; he decided to punish nature and to
have the sea whipped. To some extent, this is what logicians wanted to do
to quantum physics, to punish it for being “against common-sense”. Among
the untold things was surely the idea of a complete schizophrenia between
nature and spirit : our beautiful minds were harboured by the wrong world
and this was a mere accident. The logical accounts of quantum phenomenons
were contrived on purpose, as in the notorious quantum logic ; the subliminal
message being : “quantum or not, just a matter of encoding”.

1.1.2 The failure of quantum logic

We remember what happened to quantum logic —or worse, we no longer re-
member. Technically speaking, the idea of replacing Boolean algebras with
the lattice of closed subspaces of a Hilbert space is obviously wrong : there
is a fine negation (the orthogonal complement), but nothing like a decent
conjunction, in other terms there is no simple account of the intersection of
two spaces in terms of operators : π ∩ π′ = π · π′ only when π, π′ commute.
Worse, the expulsion of the Hilbert space in favor of abstract “orthomodular
lattices” didn’t bring much water in this desert.
Viewed from a distance, there was a methodological mistake. Boolean al-
gebras are the truth values of classical logic, they are used as semantics,
the external world, in opposition with syntax, which deals with us, as ob-
servers. Quantum logic wanted to keep the opposition semantics/syntax,
and, inside the same mould, slightly alter the semantics, from something
simple (Boolean algebras) to something artificial (the closed subspaces of a
Hilbert). But if there is something that the quantum world refuses, this is
this simple minded view of an external reality. The logician Frege thought
that any expression was denoting something ; but the word “impulsion”,
denotes nothing in quantum physics, worse, if we want it to denote some-
thing, we are performing an irreversible damage. In other terms we cannot
separate between the world and its observation.
This explains the failure of quantum logic. There is little to say about other
attempted interpretations, for instance via Kripke models, which are sort of
branching parallel universes. These structures are so floppy that they give
us back what we want to see in them : they are indeed Loyola models, they
obey perinde ac cadaver.
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1.2 Augustine vs. Thomas

We reverse the paradigm. We don’t consider quantum as “immoral”, we no
longer try to “tame” it through some do-it-yourself logic. On the contrary,
we consider the quantum world as nice, natural, welcoming. So nice indeed
that logic should be interpreted, given a new space of freedom, inside the
quantum world. This program forces me to say a few worlds as to the
opposition between essentialism and existentialism, between Thomas and
Augustine, the respective fathers of these two opposite conceptions.

1.2.1 Logical essentialism

Logic is surely born essentialist. And the essentialist interpretation is still
overwhelmingly dominant. Take for instance Tarski’s definition of truth :
“A ∧ B is true iff A is true and B is true”. The essence of conjunction
is primitive, all you can do is to express conjunction in terms of a meta-
conjunction. . . We can say the same about a subtler logician, Kreisel, who
proposed to reinterpret Brouwer’s existentialist paradigms inside a formal
system given in advance. To sum up : there are preexisting logical laws.
Logical artifacts, proofs, models,. . . are constructed accordingly to the law.
The reward for obeying the law is that everything goes right.

1.2.2 Logical Augustinism

The weak point of essentialism is that, if everything goes right, it means that
something could go wrong, but how is it possible when the artifacts always
follow the law ? The Augustinian1 approach would be to admit that artifacts
like proofs are anterior to logical declarations. Such was the viewpoint of
the intuitionistic school (Kolmogoroff, Heyting : proofs as functions), and
it seems that Gödel shared this opinion. However, the technical contents
remained low.
Quantum is rather on the Augustinian side. An electronic spin is neither
up or down w.r.t. a given axis, say ~Z. If we only admit spins in these
specific states, then we follow the logical laws governing boolean operations.
But nature may shuffle the cards, tilt the gyroscopes, so that our would-
be boolean has no definite spin on axis ~Z. In an essentialist approach,
this is illegal, immoral, and the measure of the value on this axis is simply
forbidden. But we know from quantum physics that this measurement can
take place, and that it involves the process known as the reduction of the
wave packet, see section 5.3 for a logical discussion. Anyway, it is plain that
the quantum world follows no rule.
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1.3 The input of intuitionistic and linear logics

1.3.1 Functional interpretations

Around 1930, an alternative explanation of logic was presented by Kolmogo-
roff and Brouwer’s pen-holder, Heyting. Proofs were basically functions,
e.g., “a proof of A ⇒ B is a function from proofs of A to proofs of B”.
This (sloppy) definition supposed that, somewhere, lived functions which
were anterior to logic. In the late sixties, the Curry-Howard isomorphism
expounded the categorical aspects of logic (proofs as morphisms) “a proof of
A⇒ B is a morphism from A to B”. These interpretations gave more and
more importance to the proof, seen as a program, independent of logic. The
original essentialist pattern was eventually turned upside down : a proof of
A becomes a program enjoying specification A.

1.3.2 Locativity

It is obvious that the same program can enjoy distinct specifications, this
is known as subtyping. We shall encounter subtyping in this paper, namely
the subtyping Bool ⊂ Spin (a Boolean, i.e., an electronic spin up or down
w.r.t. the axis ~Z, is a spin, i.e., a general electronic spin). What is specific
about Spin is that it contains as many isomorphic copies Bool ~A of Bool
as we want (one for each point of the unit sphere S2) ; the isomorphism
is not difficult to explain as a spiritual property ; essentialism considers
things as they should be. However, the fact that Spin is the reunion of
all Bool ~A cannot be explained in this way. This has to do with things as
they are, with their precise location, with their physical incarnation, so to
speak. In Augustinian terms, the objects come with a precise location, and
isomorphism is the result of an accident —or rather a voluntary delocation.
Locativity can embody spiritualism, whereas the converse is wrong2.

1.3.3 Linear logic and actions

The technical input of linear logic, see, e.g., [7], was to replace proofs as
functions with proofs as actions. In the linear implication A −◦ B, the
premise is destroyed. This perfect (or perfective) aspect of linear logic is
an essential novelty, in harmony with quantum phenomenons, typically the
fact that a measurement alters the current state. Linear logic contains also
imperfect connectives, which are more “classical”. They are not studied in
this paper : they require infinite dimension but, since this work crucially
depends on the convergence of the trace, their study has been postponed.
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1.3.4 Polarity

Why is the implication ∀∃ ⇒ ∃∀ is wrong ? The usual answer is that in ∀x∃y
the y depends on x, whereas in ∃y∀x, y is independent of x. . . This “answer”
is as original as Tarski’s definition of truth ; it would be more honest to say
“it is like this, period”. I propose an explanation, based on the concept
of polarity (positive/negative). This major divide gradually emerged from
computer science in the years 1990, especially in the work of Andreoli on
proof-search, [1]. This notion roughly separates :

Positive / Negative

⊕,⊗ / &,
�

active / passive
lim→ /

lim←
synchronous / invertible

`1 / `∞

explicit / implicit

object / subject

wave / measurement

The basic discovery of Andreoli is that operations of the same polarity com-
mute. When polarities differ, we only have post-commutation of positive :
a group +− can be replaced with a group −+ (like in usual life, it is easy to
postpone a decision). This is why ∀∃ ⇒ ∃∀ is wrong and ∃∀ ⇒ ∀∃ is correct.

1.3.5 Program of work and achievements

Intuitionism brought “proofs as functions, linear logic proposed “proofs as
actions”. We propose to refine this paradigm into “proofs as quantum ac-
tions” : by this me means that a proof of an implication A−◦B is any sort of
transformation mapping “waves of type A” into “waves of type B”, among
which we include pure unitary transformations as well as pure measure-
ments. Following a successful logical pattern, such transformations should
also be seen as “waves of type A −◦ B”, not as sort of “super-operators”,
like in Selinger’s paper [11].
Hence proofs will be interpreted by operators. These operators should con-
tain as particular cases, the usual “density matrices” and also the usual
wave transformations and wave reductions, also expressed by hermitian op-
erators. The only essentialist (i.e., coming “from the hat”) concession is the
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choice of various finite-dimensional Hilbert spaces, but this is only because
our formulas diverge in infinite dimension, otherwise we would once for all
fix a separable Hilbert space. The basic duality is expressed by the formula :

u |∼ v ⇔ 0 ≤ tr(uv) ≤ 1 (1)

It is to be observed that logic will define various orderings between hermi-
tians, and that a proper symmetry, such as the flip σ(x⊗y) = y⊗x might be
declared positive. This is because our framework embodies not only waves,
but also “negative” (in the sense of polarity) artifacts, i.e., wave transfor-
mations h uau∗.
The extension to infinite dimension, in relation to the bosonic or fermionic
behaviour of the imperfect (non-linear, traditional) part of logic, is very
exciting. But it seems that it deserves another treatment.

2 Commutative coherent spaces

Coherent spaces are usually presented in terms of a web, i.e., a carrier X
together with a reflexive and symmetric relation on X, its coherence. We
shall replace this essentialist approach, in which the coherence relation is
primitive with an alternative existentialist, Augustinian, in which coherence
is the result of interaction. The starting remark is that we are basically
interested in cliques, i.e., coherent subsets of the carrier, and that the nega-
tion deals with anti-cliques, i.e., incoherent subsets, so that a clique and an
anti-clique intersect on at most one point3.

2.1 Revisiting coherent spaces

Definition 1
Let X be a set ; two subsets a, b ⊂ X are polar when their intersection is at
most a singleton. In notations

a |∼ b ⇔ ](a ∩ b) ≤ 1 (2)

We define the polar ∼A of a set A ⊂ ℘(X) of subsets of X by :

b ∈ ∼A ⇔ ∀a ∈ A a |∼ b (3)

A coherent space with carrier X is a subset X ⊂ ℘(X) equal to its bipolar.
Equivalently, a coherent space is the polar of some subset ; moreover the
map X  ∼X is an involution of coherent spaces with carrier X, the (linear)
negation.
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The fact that we make a heavy use of Hilbert spaces prompts us to adapt
the terminology and notations of linear logic : orthogonality, ⊥ and A⊥ are
replaced with polarity, |∼ and ∼A.
Let X be a coherent space with carrier X :

(i) X contains the empty set and all singletons {x} (x ∈ X) ; in particular,
X is not empty.

(ii) If a′ ⊂ a ∈ X, then a′ ∈ X : this is because ](a′ ∩ b) ≤ ](a ∩ b).

(iii) If a ⊂ X and a 6∈ X, there are x, y ∈ X,x 6= y such that {x, y} 6∈ X :
if b ∈ ∼X is such that ](a ∩ b) ≥ 2, let x, y be two distinct elements
of a ∩ b.

(iv) If x, y ∈ X are distinct, then {x, y} 6∈ X iff {x, y} ∈ ∼X : obviously
{x, y} cannot belong to both, moreover, if {x, y} 6∈ ∼X, this means
that some a ∈ X contains two distinct points of {x, y}.

This suggests the following definition :

Definition 2
If X is a coherent space with carrier X, we define a binary relation on X,
coherence :

x _̂X y ⇔ {x, y} ∈ X (4)

By what precedes, coherence w.r.t. ∼X, _̂ ∼X , is identical to incoherence
w.r.t. X :

x _̂X y ⇔ x = y ∨ x 6_̂X y (5)

The following proposition establishes the equivalence between definition 1
and definition 2, the original definition of coherent spaces.

Proposition 1
Let X be a coherent space with carrier X, and let a ⊂ X. Then a ∈ X iff a
is a clique w.r.t. the coherence of X, namely, if ∀x, y ∈ a x _̂X y.

Proof : Immediate. �

2.2 Perfection vs. imperfection

Logic can be interpreted in coherent spaces : a formula become a coherent
spaces and its proofs become elements (cliques) in it, see, e.g., [7]. Origi-
nally, coherent spaces were intended as an explanation of intuitionistic logic.
The main achievement was to interpret intuitionistic (imperfect, see below)
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implication X ⇒ Y in two equivalent ways : either by means of functions
from X to Y or by means of a coherent space X ⇒ Y . X ⇒ Y turned out
to be a compound operation, made out of two primitives, −◦ and ! :

X ⇒ Y = !X −◦ Y (6)

The linear implication −◦ is causal, in the sense that, in a linear implication,
the premise cannot be reused : X −◦ Y , enables one, given (a clique in) X,
to get (a clique in) Y , but the premise is destroyed. If one wants to reuse
the premise, one has to say something like “forever X”, which involves the
construction of the exponential !X.
The main achievement of linear logic was not quite to change logical connec-
tives and rules, but to distinguish a primal linear layer, in which things are
performed once for all, that one should therefore called perfect, in analogy
with linguistics : perfect tenses are used to denote a punctual, well-defined
action ; in French, English, this is limited to the past, in Russian, this
is more systematic. Perfect connectives come as dual pairs, ⊕/&, ⊗/ �

;
duality means that each pair is swapped by linear (perfect) negation, e.g.,
∼(X⊗Y ) = ∼X � ∼Y . The most important connective is not part of this
official list : linear (perfect) implication X −◦ Y is indeed ∼X �

Y .
Imperfection corresponds to general statements, e.g., mathematical theo-
rems, or to repetitive actions. James Bond movies often have imperfect
titles “Diamonds are forever”, “You only live twice” (compare to perfect ti-
tles like “Gunfight at the OK Corral” !). Imperfect implication ⇒ does not
correspond to linear maps, but rather to analytical maps, see [8]4. Mathe-
matically speaking, imperfection deals with infinity, whereas perfection can
reasonably live in a small (finite) world. This has a consequence for this
paper : quantum coherent spaces make a heavy use of the trace which (ba-
sically) lives in finite-dimensional spaces. This means that we shall forget
the imperfect connectives !/? which would involve infinite dimension and
concentrate on the perfect ⊕/&, ⊗/ �

/−◦. Since this paper is basically
concerned with the relation logic/quantum, this is not a major restriction :
perfection is rather “quantum” whereas imperfection is more “classical”.

2.3 Perfect connectives

The basic perfect connectives are divided into additives and multiplicatives ;
additives make use of disjoint unions (later : direct sums), multiplicatives
make use of cartesian products (later : tensor products).
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2.3.1 Additives

Assume that the respective carriers X, Y of X,Y are disjoint (if not, do the
obvious thing !). Then we define X ⊕ Y , “Plus”, and X & Y , “With”, both
with carrier X ∪ Y :

Definition 3
⊕ and & are defined by the dual definitions :

X ⊕ Y = X ∪ Y (7)

X & Y = {a ∪ b ; a ∈ X, b ∈ Y } (8)

Proposition 2
X ⊕ Y and X & Y are coherent spaces ; their respective negations are
∼ X& ∼Y and ∼X⊕ ∼Y .

Proof : Everything eventually amounts at showing that the spaces X ⊕ Y
and ∼X& ∼Y are swapped by negation. Any c ⊂ X ∪ Y can uniquely be
written c = a ∪ b, with a ⊂ X, b ⊂ Y. c = a ∪ b ∈ ∼ (X ⊕ Y ) iff c |∼ a′ and

c |∼ b′ for all a′ ∈ X, all b′ ∈ Y , i.e., iff c ∈ ∼X& ∼ Y , which shows that
∼(X ⊕ Y ) = ∼X& ∼Y .
From this we deduce that X ⊕ Y ⊂ ∼ ∼ (X ⊕ Y ) = ∼ ( ∼ X& ∼ Y ).
But if c = a ∪ b ∈ ∼ ( ∼ X& ∼ Y ), one of a, b must be empty : if

x ∈ a ⊂ X, y ∈ b ⊂ Y, then {x, y} ∈ ∼ ( ∼X& ∼ Y ), and ¬(c |∼ {x, y}).
Let us say that c = b ; then c meets any a′ ∪ b′ (a′ ∈ ∼X, b′ ∈ ∼ Y ) on

at most one point, which means that b |∼ b′, and that c ∈ Y . From this,
X ⊕ Y = ∼( ∼X& ∼Y ). �

The coherence relations related to additives work as follows : if x, x′ ∈ X,
then x _̂ x′ w.r.t. X⊕Y or X&Y iff they were coherent w.r.t. X, similarly
for y, y′ ∈ Y. The connectives differ as to the coherence between x ∈ X and
y ∈ Y :

X ⊕ Y : incoherent, x _̂ y.

X & Y : coherent, x _̂ y.

2.3.2 Multiplicatives

Assume that the respective carriers of X and Y are X and Y. Then we define
X⊗Y , “Times”, and X

�
Y , “Par”, both with carrier X×Y ; we start with

the essentialist version (via coherence), and later discuss the possibility of
an existentialist version. The following abbreviations are useful : x _ y for
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x _̂ y ∧ x 6= y, x ^ y for x _̂ y ∧ x 6= y (equivalently, x _ y ⇔ x 6_̂ y,
x ^ y ⇔ x 6_̂ y).

Definition 4
The respective coherences of “Times” and “Par” are as follows :
in X ⊗ Y , (x, y) _̂ (x′, y′) iff x _̂ x′ and y _̂ y′.
in X

�
Y , (x, y) _ (x′, y′) iff x _ x′ or y _ y′.

The two definitions are clearly dual ; “Par” is an artificial creation, the dual
of “Times”. Indeed “Par” is a contrived way to speak of linear implication,
X −◦ Y = ∼ X �

Y , and X
�
Y is better understood as ∼ X −◦ Y or

∼Y −◦X. The coherence on X −◦ Y is obviously given by :
(x, y) _ (x′, y′) iff x _̂ x′ ⇒ y _ y′.

Definition 5
A function ϕ from (cliques of) X to (cliques of) Y is linear when it preserves
all disjoint unions : if ai are disjoint cliques in X whose union is still a clique,
then

ϕ(
⋃

i

ai) =
⋃

i

ϕ(ai)

The following result is elementary, but essential :

Theorem 1
If A is a clique in X −◦ Y and a is a clique in X, define

[A]a := {y ∈ Y;∃x ∈ a (x, y) ∈ A} (9)

Then [A]a is a clique in Y and the map a [A]a is linear.
Moreover, any linear function ϕ from X to Y is of the form [A]·, with a
unique A given by :

A = {(x, y); y ∈ ϕ({x})} (10)

Proof : See the literature, e.g., [7]. The crucial point in the proof is the fact
that in (9), the x such that (x, y) ∈ A is indeed unique. �

Example 1
Since linearity is a preservation property, the identity map is surely linear.
The clique in X −◦X associated to it is the set ∆X = {(x, x) ;x ∈ X}. This
set is not the graph {(a, a) ; a ∈ X} of the function, it is much smaller, and
depends only on the carrier X.
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The theorem establishes a link between the cliques of the coherent space
X −◦ Y and the linear functions from X to Y ; we could as well take linear
functions ψ from ∼Y to ∼X, using b b[A] :

b[A] := {x ∈ X ; ∃y ∈ b (x, y) ∈ A} (11)

and
A = {(x, y) ; x ∈ ψ({y})} (12)

Let us now try an Augustinian definition of multiplicatives. There is no
problem as long as ⊗ is concerned :

Proposition 3
X ⊗ Y = {c ; ∃a ∈ X ∃b ∈ y c ⊂ a× b}.

Proof : If a ∈ X, b ∈ Y , then a× b ∈ X ⊗ Y , and if c ⊂ a× b, we still have
c ∈ X ⊗ Y . Conversely, if c ∈ X ⊗ Y , let a, b be the respective projections
of c on X and Y ; then c ⊂ a× b and a ∈ X, b ∈ Y . �

But there is nothing of the like for the connective “Par”, or equivalently,
linear implication. However the following is true :

Proposition 4
X −◦ Y = {A ; ∀a ∈ X [A]a ∈ Y }.

Proof : Trivial reformulation of theorem 1. �

Moreover, [A]a is characterised as the unique subset of Y such that :

]([A]a ∩ b) = ](A ∩ a× b) (13)

for any b ∈ ∼ Y , so what is the problem ? Following the existentialist
pattern, existence (here : objects, functions) must be anterior to essence
(here : logical declarations). This means that we should be able to define
[A]a for any subsets A ⊂ X× Y, a ⊂ X, in such a way that (13) holds for
all b ⊂ Y. But this is clearly impossible : we have an explicit definition of
[A]a in (9), and it is plain that (13) is satisfied iff the x such that (x, y) ∈ A
is unique. Our construction is essentialist in the sense that [A]a is defined
only when A, a “obey the law”.
You may think that I am gilding the lily, asking for some fancy purity
criteria. . . And this is correct as long as we stay with usual (commutative)
spaces : everything can be handled in terms of a well-defined set of atoms
(the singletons {x}, x ∈ X). But imagine that the atoms are no longer well-
defined (no canonical base in a vector space), or, worse, that there are no
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atoms at all (e.g. in a von Neumann algebra of type distinct from I). By
the way, in what follows (PCS, QCS), there will be no direct, manageable,
account of the tensor product in the style of proposition 3, and our only
hope will be the linear implication.

2.4 Probabilistic coherent spaces

In proceeding towards quantum, we must replace qualitative features with
quantitative ones. Here it is the place to remark that my first glimpse of
linear logic came from quantitative domains, [5], see also [2], soon replaced
with qualitative domains and coherent spaces. Indeed there is something
quantitative in coherent spaces, namely the unicity of the x in (9), which is
behind (13).
The idea will therefore to replace ℘(X) —the subsets of the carrier X— with

the space <(X) of all functions X f→ R+. We have in mind that, instead of
saying whether or not x ∈ X belongs to a set, we rather give a probability,
which would mean 0 ≤ f ≤ 1 ; incoherence between two atoms x, y now
means that their mutual weights f(x), f(y) are such that f(x) + f(y) ≤ 1,
which amounts to a mutual exclusion, in case f is a characteristic function.
But this is only a basic intuition : once for all, forget about coherence, or
any limitation of the values to the interval [0, 1].

2.4.1 The bipolar theorem

Definition 6
Let X be a finite set ; two functions f, g : X→R+ are polar when :

∑

x∈X
f(x) · g(x) ≤ 1 (14)

We define the polar of a set of positive functions as in definition 1, and a
probabilistic coherent space (PCS) as a set of positive functions equal to its
bipolar.

(14) is obviously inspired from (2), since, when f, g are the characteristic
functions of the subsets a, b ⊂ X, then

∑
x∈X f(x) · g(x) = ](a ∩ b).

Theorem 2 (Bipolar theorem)
Let X be a PCS with carrier X ; then

(i) X is non-empty (in fact, 0X belongs to X).

(ii) X is closed and convex.
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(iii) X is downward closed.

Conversely every subset of <(X) enjoying (i)-(iii) is a PCS.

Proof : That every PCS enjoys (i)-(iii) is a trifle. Conversely, assume that
X enjoys (i)-(iii) and that f 6∈ X. <(X) is a closed convex subset of the
real Banach space RX. By Hahn-Banach, there is a linear form ϕ such that
ϕ(X) ≤ 1, ϕ(f) > 1. This linear form can be identified with an element
of RX, i.e., a real-valued function h : ϕ(g) =

∑
x∈X g(x) · h(x). Define

the positive h′ by h′(x) = sup(h(x), 0). Obviously
∑

x∈X h
′(x) · f(x) ≥∑

x∈X h(x) · f(x) > 1. If g ∈ X, then
∑

x∈X h
′(x) · g(x) =

∑
x∈X h(x) · g′(x)

with g′(x) = 0 if h′(x) = 0, g′(x) = g(x) otherwise ; g′ ≤ g ∈ X, hence
g′ ∈ X by (iii), and

∑
x∈X h

′(x) · g(x) ≤ 1. This shows that h′ ∈ ∼X, but

¬(h′ |∼ f), hence f 6∈ X. �

2.4.2 Additives

As before, additives are defined in case the carriers X and Y of X,Y are
disjoint, as a PCS with carrier X ∪ Y. If f ∈ <(X), g ∈ <(Y), I can define
f ∪ g ∈ <(X ∪ Y) in the obvious way. The set

X & Y := {f ∪ g ; f ∈ X, g ∈ Y } (15)

is the polar of ∼X ∪ ∼Y (modulo the obvious abuse which identifies
f ∈ <(X) with f ∪ 0Y ∈ <(X ∪ Y), so that ∼X ∪ ∼Y is indeed short for
{f ∪ g ; f ∈ ∼X, g ∈ ∼Y, f = 0 ∨ g = 0}). On the other hand X ∪ Y is not
a PCS ; X ⊕ Y must be defined as ∼∼(X ∪ Y ), with no hope of removing
the double negation. The bipolar theorem 2 yields :

Proposition 5

X ⊕ Y = {λf ∪ (1− λ)g ; f ∈ X, g ∈ Y, 0 ≤ λ ≤ 1} (16)

Proof : The right-hand side is the convex hull of X ∪Y . It obviously enjoys
conditions (i)-(iii). �

2.4.3 Multiplicatives

As before, multiplicatives are defined as PCS with carrier X × Y, where X
and Y are the respective carriers of X,Y . But, in contrast with section 2.3.2,
the definition is really Augustinian.
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Definition 7
If Φ ∈ <(X× Y), if f ∈ <(X), then one defines [Φ]f ∈ <(Y) by :

([Φ]f)(y) =
∑

x∈X
Φ(x, y) · f(x) (17)

This makes sense because X is finite.

Theorem 3
The map Φ  [Φ]· is a bijection from <(X × Y) onto the set of linear
maps from <(X) to <(Y). Φ can be retrieved from its associated linear map
ϕ = [Φ]· by means of :

Φ(x, y) = ϕ(δx)(y) (18)

Proof : A linear map satisfies ϕ(λf + µg) = λϕ(f) + µϕ(g), hence it is
determined by its values on the δx, this is the explanation of equation (18).
Everything is straightforward. �

In the basic case (subsets) this didn’t work : if Φ and f are characteristic
functions, [Φ]f need not be one (again the unicity of the x in (9)).

Definition 8
If X,Y are PCS with respective carriers X,Y, one defines the PCS X −◦ Y ,
with carrier X× Y, as the set of all Φ such that [Φ]· maps X to Y .

Example 2
The characteristic function ∆X of the diagonal belongs to X −◦X ; in fact
[∆X]f = f .

X −◦ Y is obviously the polar of {f × g ; f ∈ X, g ∈ ∼ Y }, this why it is
a PCS. It could as well be defined as the set of all Φ such that ·[Φ] (whose
definition is easy to figure out) sends ∼Y to ∼X.
From −◦, “Par” and “Times” follow, e.g., X ⊗ Y := ∼ (X−◦ ∼Y ), equiva-
lently, X⊗Y = ∼∼{f×g; f ∈ X, g ∈ Y }. The bipolar theorem characterises
this set as a closure under certain operations, but this is not very manage-
able. Should we try to prove associativity of “Times”, it is much simpler to
first establish it for the dual connective

�
.

Proposition 6
“Par” is commutative, associative, and distributes over “With”.
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Proof : Let us prove, for instance, that “Par” is associative. For this, we
pretend that cartesian product is really5 associative, so that we can write
X × Y × Z as the common carrier of X

�
(Y

�
Z) and (X

�
Y )

�
Z. We

use the possibility of expressing “Par” in two ways, by means of [·]· or ·[·].
We get X

�
(Y

�
Z) = {A ; ∀f ∈ ∼X ∀h ∈ ∼Z h[[A]f ] ∈ Y }, whereas

(X
�
Y )

�
Z = {A ; ∀h ∈ ∼ Z ∀f ∈ ∼ X [h[A]]f ∈ Y }. Everything

amounts at checking that h[[A]f ] = [h[A]]f , which is obvious.
Similarly, if we want to prove that “Par” distributes over “With”, by estab-
lishing an isomorphism between X

�
(Y & Z) and (X

�
Y ) & (X

�
Z), we

express “Par” in terms of [·]· (and not in terms of ·[·], which is suitable for
distribution on the left). �

3 Generalisations

3.1 Köthe spaces

The restriction to finite carriers ensures the convergence of (18). In the case
of infinite carriers, one can liberalise the definition so as to accept the value
+∞. One can also use Köthe spaces : the objects are functions from a
carrier I to R, and polarity is defined by :6

f |∼ g ⇔
∑

i∈I
|f(i) · g(i)| ≤ +∞ (19)

This is what Ehrhard did in [4] ; in that case, (18) does not always make
sense. However, everything works fine, as long as one does not try to “change
the basis”, i.e., as long as one “stays commutative”.

3.2 Continuous carriers : an interesting failure

There seems to be an alternative way to accommodate infinite carriers,
namely, to consider X as a measure space, typically the segment [0, 1] with
Lebesgue measure. It will turn out that this attempt fails, but sometimes a
wrong idea is far more interesting than a “correct” one. We only sketch the
definitions :

Carriers : measure spaces (X, µ), X for short.

Objects : functions X f→ R+ which are essentially bounded, i.e.,
f ∈ L∞(X,R+).

Polarity : f |∼ g ⇔
∫
X f · g dµ ≤ 1.
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Application : given Φ, f with respective carriers X×Y and X, define [Φ]f ,
with carrier Y, by ([Φ]f)(y) =

∫
XΦ(x, y) · f(x) dµ(x).

The map Φ  [Φ]· associates to each Φ with carrier X × Y a linear map
sending objects with carrier X to objects with carrier Y. Unfortunately, this
map is far from being surjective, the typical example being given by the
identity map (in case X = Y). The obvious candidate for this is still ∆, the
characteristic function of the diagonal, see example 2. But this function is
likely to be almost everywhere null. This is where we fail, and we shall meet
the same obstacle when dealing with QCS.
This failed attempt introduced an important novelty, namely that the basic
duality should be seen as an integral (remember that we started with an
intersection). Since, following Connes, the non-commutative integral is a
trace, this explains the role played by the trace in a QCS.

3.3 Banach spaces

In [8], I introduced coherent Banach spaces as an explanation for logic.
These spaces were complex because of the use of analytic functions in the
imperfect case ; they were also infinite dimensional, which forced one to be
careful with problems of reflexivity. Here we restrict our discussion to real,
finite dimensional, Banach spaces.

Norms Banach spaces are normed : X is a finite dimensional real Banach
space, and ∼X is its dual, with dual norm, so that the identification
X = ∼∼X makes sense. But what is this norm for ? The answer is that
the norm measures incoherence, what corresponds to cliques of a coherent
space, to objects of a PCS, is now translated as a vector of norm ≤ 1.

Additives The underlying space is a direct sum X ⊕ Y , only the norms
differ :

‖f ⊕ g‖X⊕Y = ‖f‖X + ‖g‖Y (20)

‖f ⊕ g‖X&Y = sup(‖f‖X , ‖g‖Y ) (21)

The two choices are dual.

Multiplicatives X−◦Y is the space of linear maps from X to Y , endowed
with the usual supremum norm. X⊗Y is the tensor product, endowed with
the usual tensor norm, defined as ‖a‖X⊗Y = inf{∑i ‖xi‖X · ‖yi‖Y }, the
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infimum being taken over all decompositions a =
∑

i xi · yi. Again the two
choices are dual.

Polarity Certain norms are defined via supremum, this is the case for &
and −◦ (i.e.,

�
), others in terms of sums (⊕,⊗). The choice of supremum

corresponds to coherence, the choice of sum to incoherence. This distinction
is a major divide of logic, known as polarity, see the introduction : supremum
is negative (observation-like), sum is positive (object-like).

Semi-norms There is a priori no room for semi-norms in this picture. In
usual mathematics, a semi-norm behaves like a norm on a quotient space.
However this is wrong in the case of logic, especially if we want to accommo-
date Augustinian features such as subtyping. The subtyping X ⊂ Y means
that, on the same underlying vector space E, we can have more “coherent”
objects, i.e., that the unit ball increases. In other terms, ‖ · ‖Y ≤ ‖·‖X : the
norm decreases. It can decrease up to 0 on certain vectors, and this explains
why semi-norms naturally occur.

Positivity PCS were made of positive functions, hence they were an or-
dered structure. The same is true of real Köthe spaces, which are spaces of
sequences. With Banach spaces, things are different, since there is a priori
no distinguished basis. However, observe the following property :

Proposition 7
f ∈ RX belongs to <(X) iff for all g ∈ <(X) the “scalar product”∑

x∈X f(x) · g(x) is positive.

Proof : Immediate. �

This means that positivity itself can be defined in Augustinian style. We
shall make a heavy use of this when dealing with QCS. . . although QCS are
spaces of hermitian operators, which come with a natural ordering (positive
hermitians), we shall not content ourselves with the “standard” notion of
positivity. This can be very easily understood : if ‖a‖ = 0 and a 6= 0, then
it is reasonable to assume that a can be identified with 0, which means that
0 ≤ a and 0 ≤ −a. The a and −a cannot both be positive hermitians.

3.4 The bipolar theorem, revisited

We shall complete our preliminary works with an alternative version of the
bipolar theorem 2 which requires some care. The setting is as follows : E is
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a finite-dimensional Euclidian space, equipped with the bilinear form 〈· | ·〉.
Polarity is defined by means of :

x |∼ y ⇔ 0 ≤ 〈x | y〉 ≤ 1 (22)

The question is to determine bipolars.

Theorem 4 (Bipolar theorem)
A subset C ⊂ E is its own bipolar iff the following hold :

(i) 0 ∈ C.

(ii) C is closed and convex.

(iii) If nx ∈ C for all n ∈ N, then −x ∈ C.

(iv) If x, y ∈ C if λ, µ ≥ 0 and λx+ µy ∈ C, then λx ∈ C.

Proof : (i) and (ii) are immediate. (iii) : if nx ∈ C for n ∈ N, and z ∈ ∼C,
then 〈x | z〉 ∈ [0, 1/n] for n ∈ N, hence 〈−x | z〉 = 〈x | z〉 = 0 ∈ [0, 1].
(iv) : if z ∈ ∼C, then 0 ≤ 〈λx+µy | z〉 ≤ 1, 0 ≤ 〈λx | z〉, 0 ≤ 〈µy | z〉, hence
0 ≤ 〈λx | z〉 ≤ 1. By the way observe that (iv) yields a sort of converse to
(iii) : if x,−x ∈ C, then nx+ n(−x) = 0 ∈ C, hence nx ∈ C.
We now prove the converse, and assume that C enjoys (i)-(iv) ; let C+ be
the cone

⋃
n∈N n · C (=

⋃
λ∈R+ λ · C). Then we can reformulate (iv) as :

C = C+ ∩ (C − C+) (23)

Assume that b 6∈ C, then, by (23), we have to consider two cases :

b 6∈ C+ : using Hahn-Banach, one can find a vector d ∈ E such that
〈b | d〉 < 0 ≤ 〈c | d〉 for all c ∈ C. By condition (ii) the subset
I = {c ; ∀n ∈ N nc ∈ C} is a vector space, moreover, 〈· | d〉 vanishes
on I, so that we can write C = I⊕C ′, with C ′ = I⊥∩C. C ′ is compact :
if we embed E in the projective space, C ′ has a compact closure, and
its boundary corresponds to the lines R · a which are included in C ′.
But there is no such line (all of them have been gathered in I) : the
boundary is empty, and C ′ is compact. From this, 〈· | d〉 is bounded
on C ′, hence on C, so 〈b | d〉 < 0 ≤ 〈c | d〉 ≤ λ. By rescaling d we can
assume that λ = 1, in which case d ∈ ∼C, and b 6∈ ∼∼C.

b 6∈ C − C+ : the same Hahn-Banach yields a vector d ∈ E such that
〈p | d〉 ≤ 1 < 〈b | d〉, for all p ∈ C − C+. Assume that 〈c | d〉 < 0 for
some c ∈ C ; then −nc ∈ C − C+ for n ∈ N and the values 〈−nc | d〉
cannot be bounded by 1. From this we deduce that 0 ≤ 〈c | d〉 ≤ 1 <
〈b | d〉 for all c ∈ C. As above, d ∈ ∼C, and b 6∈ ∼∼C.
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3.5 Norm and order

With the notations of theorem 4, in particular, D = ∼C,C+ =
⋃
n∈N n ·C :

Definition 9
The domain FinC of C is the vector space C+ − C+ generated by C.

Proposition 8
FinC = (D ∩ (−D))⊥.

Proof : If c ∈ C, d ∈ D ∩ (−D), then 〈c | d〉 = 0, and the same remains
true for c ∈ FinC , the linear span of C, so that FinC ⊂ (D ∩ (−D))⊥.
Conversely, if c 6∈ FinC there is a vector d ∈ (FinC)⊥ such that 〈c | d〉 6= 0.
But (FinC)⊥ = C⊥ ⊂ D ∩ (−D), hence c 6∈ (D ∩ (−D))⊥. �

In other terms, the domain of C is the orthogonal of the null space of ∼C.

Definition 10
The domain FinC is naturally equipped with a semi-norm ‖ · ‖C and a
preorder 4C :

‖x‖C = sup{|〈x | d〉| ; d ∈ D}
x 4C y ⇔ ∀d ∈ D 〈x | d〉 ≤ 〈y | d〉

Let ∼=C be the equivalence associated with 4C .

Proposition 9
The zero space 0C of ‖ · ‖C is identical to the zero class modulo ∼=C .

Proof : Obvious. �

In particular, FinC/0C is a partially ordered Banach space.

Proposition 10
(i) C+ is the set of positive elements modulo 4C .

(ii) 0C = C+ ∩ (−C+) = C ∩ (−C).

(iii) The unit ball w.r.t. ‖ · ‖C is (C − C+) ∩ (C+ − C).

Proof : (i) and (iii) come respectively from the cases “b 6∈ C+” and
“b 6∈ C − C+” in the proof of theorem 4. (ii) is immediate. �
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The next properties are more or less reformulations of what we already
established.

(i) The partial order 4C is continuous w.r.t. ‖.‖C : if xn 4C yn and
(xn), (yn) are Cauchy sequences w.r.t. ‖ · ‖C with limits x, y, then
x 4C y.

(ii) If 0 4C x 4C y, then ‖x‖C ≤ ‖y‖C .

(iii) If x ∈ FinC , then there exists y, z <C 0 such that x = y − z and
‖y‖ ≤ ‖x‖.

Now what is the relation between norm and order w.r.t. C and norm and
order w.r.t. ∼ C ? The question is not to establish any new result, ev-
erything has been said, but to look for symmetries C/ ∼ C. We consider
successively : equivalence, positivity, semi-norm.

Equivalence

x ∼=C y ⇔ ∀x′, y′(x′ ∼=∼C y′ ⇒ 〈x | y〉 = 〈x′ | y′〉) (24)

The introduction of the domain FinC , i.e., the fact of considering a partial
(non-reflexive) equivalence relation (PER) is responsible for this symmetrical
formulation.

Positivity

x ∈ C+ ⇔ ∀y(y ∈ (∼C)+ ⇒ 〈x | y〉 ≥ 0) (25)

The relation 4C is a preorder on the domain FinC . I don’t know how to
call a transitive relation enjoying weak reflexivity :

x 4 y ⇒ x 4 x ∧ y 4 y (26)

“partial preorder” conflicts with the use of “partial” in “partial order”. I
therefore propose to call it a “POR” (like we say “a PER”).
The next result generalises the familiar decomposition of a hermitian as a
difference u = u+− u− of two positive hermitians, see the default choices in
section 3.6.

Theorem 5
Given x ∈ E there are unique x+ ∈ C+ and x− ∈ (∼ C)+ such that
x = x+ − x− and 〈x+ | x−〉 = 0.
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Proof : Let x+ be the projection of x on the convex set C, and let x− := x−
x+. It is well-known that x− is the unique y such that 〈y | x−y〉 ≥ 〈y | z〉 for
all z ∈ C. This last condition is easily shown to be equivalent to y ∈ (∼C)+

and 〈y | x− y〉 = 0. �

Semi-norm

‖x‖C = inf{λ ; ∀y ∈ (∼C)+ |〈x | y〉| ≤ λ‖y‖∼C} (27)

It is not the case that |〈x | y〉| ≤ ‖x‖C · ‖y‖∼C for all x ∈ FinC , y ∈ Fin∼C .
I am not sure that one should spend too much time on this, since the choice
of the norm makes sense for us only for positive elements, as a way of defin-
ing coherence.

Proposition 11
If C ⊂ D, then :

FinC ⊂ FinD

4C ⊂ 4D
∼=C ⊂ ∼=D

‖ · ‖C ≥ ‖ · ‖D

The last inequality can be understood by extending ‖·‖C into a total function
with values in [0,+∞].

3.6 Quantum coherent spaces

Let X be a finite-dimensional (complex) Hilbert space ; let E = H(X) be
the set of hermitian (self-adjoint) operators on X. E is a real vector space
(whose dimension is the square of the dimension of X) naturally endowed
with the scalar product

〈u | v〉 := tr(uv) (28)

which makes it an Euclidian space : tr(uv) = tr(vu) = tr(uv), tr(u2) > 0
for u 6= 0. Two hermitians are said to be polar when 0 ≤ 〈u | v〉 ≤ 1.

Definition 11
A quantum coherent space (QCS) with carrier X is a subset of X ⊂ H(X)
equal to its bipolar.

Theorem 4 yields a characterisation of QCS. Some default choices are given
by :
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Example 3
Negative default : N consists of all positive hermitians of norm ≤ 1. N+

therefore consists in all positive hermitians ; on N+, ‖ · ‖N coincides
with the usual (supremum) norm ‖ · ‖∞.

Positive default : P consists of all positive hermitians of trace ≤ 1 . P+

therefore consists in all positive hermitians ; on P+, ‖ · ‖P coincides
with the usual trace norm ‖u‖1 = tr(

√
uu∗).

Hilbert-Schmidt default : H consists of all positive hermitians of Hilbert-
Schmidt norm less than 1. H+ therefore consists in all positive hermi-
tians ; on H+, ‖ · ‖H coincides with the usual Hilbert-Schmidt norm√

tr(uu∗). This choice is self-dual : ∼H = H.
In fact, P = ∼N ; one basically uses |tr(uv)| ≤ ‖u‖∞ · ‖v‖1, and, for

u, v ≥ 0, tr(uv) = tr(
√
uv
√
u) ≥ 0 and tr(uxx∗) = 〈u(x) | x〉.

4 Additives

4.1 Basics of quantum physics

Let us recall a few basics of quantum mechanics ; we stay in finite dimension
to avoid technical problems.

(i) The state of a system is represented by a vawe function, i.e., a vector
x of norm 1 in some Hilbert space X.

(ii) A measurement is a hermitian operator Φ on X. To say that the value
of x w.r.t. Φ is λ is the same as saying that Φ(x) = λx. This means
that, under normal conditions, there is no value at all. Moreover, if
Φ,Ψ do not commute, they are likely to have no common eigenvector,
so x cannot have a value w.r.t. both of them, as in the famous un-
certainty principle. For instance the Pauli matrices (see infra) which
measure the spin along the axes ~X, ~Y , ~Z, do not commute : if the spin
is +1/2 along the axis ~Z, then it is completely undetermined along ~X.

(iii) The process of measurement is a Procustus’s bed, it forces the system
to “have a value”. This means, that, after a measurement, the wave
function x is replaced with an eigenvector x′ of Φ. This process is non-
deterministic : in fact, if X is split as the direct sum of the eigenspaces
of Φ : X =

⊕
λXλ, so that x =

⊕
λ xλ, then x′ is one of the compo-

nents xλ, up to renormalisation (multiplication by 1/‖xλ‖), and the
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probability of the transition x  xλ/‖xλ‖ is ‖xλ‖2. This process is
known as the reduction of the wave packet, reduction for short.

(iv) In this pattern, wave functions make sense up to multiplication by any
element of the unit circle. Typically, when we deal with the spin of
an electron, which is nothing but the quantum analogue of a boolean,
a rotation of 2π will replace x with −x, without any significant con-
sequence.

(v) Density matrices have been introduced by von Neumann ; they take
care of the scalar indetermination of wave functions, they also take
care of the probabilistic aspect of measurement. A density operator
is a positive hermitian of trace 1. Density matrices form a compact
convex set, whose extremal points are operators of the form xx∗, where
x is a vector of norm 1, i.e., a wave function, uniquely determined up
to multiplication by a scalar of modulus 1. When one performs a
measurement, xx∗ is replaced with

∑
λ xλxλ

∗ : this density operator
is a “mixture”, a convex combination of extremal points xλxλ

∗/‖xλ‖2,
with coefficients ‖xλ‖2 which correspond to the respective probabilities
of each transition.

(vi) One can iterate measurements, this means, apply this process to an
arbitrary density operator, not necessarily extremal. Concretely, this
means that we write our density matrix u as a “matrix” (uλµ) w.r.t.
the decomposition X =

⊕
λXλ (uλµ ∈ L(Xµ,Xλ)), then the reduction

of the wave packet consists in annihilating the non-diagonal “coef-
ficients” uλµ : after the measurement, the density matrix becomes
v = (uλµ), with vλλ = uλλ, vλµ = 0 for λ 6= µ.

(vii) The measurement process is irreversible : if u  v through measure-
ment, then tr(v2) ≤ tr(u2), i.e., the Hilbert-Schmidt norm decreases7.
If X is of dimension n, then the HS norm can vary between 1 (ex-
tremal point xx∗) and 1/

√
n, which corresponds to 1/n · I, the “tepid

mixture”, which conveys no information at all.

4.2 Quantum booleans

4.2.1 Commutative booleans

With start with 2× 2 matrices. As long as traditional logic is concerned,
there is little to say :
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(i) The booleans true,false are naturally represented by

[
1 0
0 0

]
,

[
0 0
0 1

]
.

(ii) It is natural to think that a diagonal matrix

[
λ 0
0 µ

]
, with λ+ µ = 1,

λ, µ ≥ 0 represents a probabilistic boolean.

But, as soon as one “forgets the diagonal”, i.e., when one considers “booleans
of arbitrary basis”, then the three —nay the four— dimensions of space come
into the picture.

4.2.2 Space-time

Any hermitian can be written h = 1/2

[
t+ z x− iy
x+ iy t− z

]
, i.e.,

t.s0 +x.s1 + y.s2 + z.s3, where t, x, y, z are real and the si are the Pauli ma-

trices 1/2

[
1 0
0 1

]
1/2

[
0 1
1 0

]
1/2

[
0 −i
i 0

]
1/2

[
1 0
0 −1

]
. Observe that

time t is nothing but the trace, t = tr(h). As to the determinant, we get
4det(h) = (t2−(x2+y2+z2)), the square of the pseudo-metrics. Remark that
tr((t.s0 +x.s1 +y.s2 +z.s3)(t′.s0 +x′.s1 +y′.s2 +z′.s3)) = tt′+xx′+yy′+zz′.
For 1 ≤ i 6= j ≤ 3, we have the anti-commutations si.sj + sj .si = 0.
In order to characterise positive hermitians, remember that, modulo a uni-

tary transformation, uhu∗ =

[
λ 0
0 µ

]
, with λ, µ ∈ R, so that h is positive

iff λ, µ ≥ 0. In other terms, the condition det(h) ≥ 0 (vectors in position
“time”) characterises hermitiens which are either positive or negative. Pos-
itive hermitians correspond to the further requirement tr(h) ≥ 0, i.e., to the
“cone of future”.
The most general transformation preserving positive hermitians is of the
form h uhu∗, with det(u) = 1, i.e., u ∈ SL(2) : such transformations cor-
respond to the familiar positive Lorenz group, which is the group of linear
transformations preserving the pseudo-metrics and the future. By the way,
observe that the inverse of* u ∈ SL(2) is given by :

(
a b
c d

)−1

=

(
d −b
−c a

)
(29)

Therefore, inversion can be extended into an involutive anti-automorphism
of the C∗-algebra M2(C) of 2 × 2 matrices. This anti-automorphism acts
on space-time by negating the spacial coordinates.
The positive Lorenz admits as a subgroup the group SO(3) of rotations,
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which modify only space : they correspond to trace-preserving transforma-
tions, those who are induced by unitaries. In other terms, SO(3) admits a
double covering by SU(2), the group of unitary transformations of determi-

nant 1, whose general form is

(
a b
−b̄ ā

)
, with aā+ bb̄ = 1. The rotations of

axes ~X, ~Y , ~Z and angle θ are induced by the unitaries eiθsk , i.e.,[
cos θ/2 i sin θ/2
i sin θ/2 cos θ/2

] [
cos θ/2 sin θ/2
− sin θ/2 cos θ/2

] [
eiθ/2 0

0 e−iθ/2

]
respectively. Re-

mark the “heresy” consisting in dividing an angle by 2, an operation with
two solutions. . . This is why one speaks of a double covering ; this is also why
a rotation of angle 2π acts on a spin (seen as a wave function) by multiplying
by −1.

4.2.3 Quantum booleans

“Classical” booleans correspond to projections on two 1-dimensional sub-
spaces which are distinguished by the matricial representation. A quantum
boolean will therefore be a subspace of dimension 1. By the way, remark
that this definition refuses any differentiation between true and false : if
the space E is a quantum boolean, its negation is E⊥, period. By the way,
remark that, due to problems of commutation, it will be impossible to con-
struct convincing binary connectives. It remains to determine the subspaces
of dimension 1, i.e., the matrices of orthogonal projections of rank 1. Those
are the hermitian matrices of trace 1 and determinant 0, i.e., the points of
space-time t.s0 + x.s1 + y.s2 + z.s3, with t = 1, x2 + y2 + z2 = 1, which
are therefore in 1 − 1 correspondence with the sphere S2. What we just
explained is the natural way to speak of a quantum boolean, which also
known to physicists as the spin of an electron.

4.2.4 Probabilistic quantum booleans

Probabilistic quantum booleans (PQB) are just convex combinations of
quantum booleans, i.e., “density matrices”, positive hermitians of trace 1.
Any PQB can be diagonalised in an orthonormal basis. In which respect is
this unique ?

(i) The PQB

[
1/2 0
0 1/2

]
is diagonal in all bases. This is the extreme

form of non-unicity.

(ii) Apart from this case, our boolean can be written λb+(1−λ)c, where b, c
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are quantum booleans and 0 ≤ λ ≤ 1. λ, b, c are uniquely determined
if we require 0 ≤ λ < 1/2.

The reduction of the wave packet occurs when we want to measure a boolean,
this corresponds to the measurement of a spin in physics. First we must
specify an orthonormal basis, and write operators as matrices w.r.t. this

base. Say that our PQB corresponds to the matrix

(
a b
b̄ c

)
, then, after

measurement, it becomes

(
a 0
0 c

)
, i.e., true with probability a, false with

probability c = 1− a.

4.2.5 Negation

Specifying an orthonormal basis consists in chosing two orthogonal sub-
spaces of dimension 1, i.e., two quantum booleans π and 1− π, whose four-
dimensional coordinates are therefore (1, x, y, z) and (1,−x,−y,−z). The
two vectors ~A = (x, y, z) and − ~A correspond to two opposite directions
on the same three-dimensional axis (spin up, spin down). The symmetry

w.r.t. origin comes from the anti-automorphism

(
a b
c d

)
 
(
d −b
−c a

)
of

the C∗-algebra M2(C) of 2× 2 matrices. This transformation corresponds
to negation. It must be observed that, since symmetry w.r.t. the origin is
of determinant −1, it is not in S0(3), and therefore it is not induced by an
element of SU(2).

4.2.6 Binary boolean connectives

Whereas negation does not need reduction, binary boolean connectives will
badly need it ; there are two reasons for that.

(i) We cannot combine non-commuting 1-dimensional projections in a way
that will produce another projection.

(ii) Common sense tells us that, if we cannot distinguish between true and
false, then we cannot distinguish between conjunction and disjunction.

Hence binary connectives will be probabilistic : they yield a PQB even
when the inputs are “pure” quantum booleans. Moreover, they depend
on the choice of a basis, and an order of evaluation ; I give an example :[
a b
b̄ c

]
∨
[
a′ b′

b̄′ c

]
:=

[
a+ ca′ cb′

cb̄ cc′

]
. The first argument is “reduced” in
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the canonical base : true with probility a, in which case the answer is[
1 0
0 0

]
, false with probility c, in which case the answer is

[
a′ b′

b̄′ c

]
. There

is a symmetrical choice which reduces the second argument. But only a
real Jivaro will choose the third possibility, which reduces both arguments,

yielding

[
a+ ca′ 0

0 cc′

]
, which is in fact symmetrical, since a+ca′ = a′+ca =

a+ a′ − aa′.

4.3 Quantum and additives

4.3.1 Basics

Definition 12
If X,Y are QCS with respective carriers X,Y, one defines the additive com-
binations X ⊕ Y and X & Y , as QCS of carrier X⊕ Y.

X ⊕ Y = {λu⊕ (1− λ)v ; u ∈ X, v ∈ Y, 0 ≤ λ ≤ 1}
X & Y = {w ; XwX ∈ X,YwY ∈ Y }

As usual, we have identified the subspaces X and Y with the associated
orthogonal projections.

Proposition 12
⊕ and & are swapped by negation.

Proof : Essentially because 〈u⊕ v | u′ ⊕ v′〉 = 〈u | u′〉+ 〈v | v′〉. �

Observe that ‖ · ‖X⊕Y and ‖ · ‖X&Y are not norms. This is because this
definition mistreats all hermitians which are not of the form u ⊕ v. W.r.t.
an obvious matricial notation, every hermitian on X⊕ Y can be written(
u w
w∗ v

)
, with, u, v hermitian. If w 6= 0, then this operator has infinite

norm in X ⊕ Y . A contrario, its norm w.r.t. X & Y does not depend on w :

the null space 0X&Y contains all

(
0 w
w∗ 0

)
.

4.3.2 Dimension 2

If X is of dimension 1, then H(X) is of dimension 1 (isomorphic to R) and
the three defaults of example 3 coincide, and yield the same QCS, noted
1, which corresponds to the segment [0, 1] of R. The ordering is the usual
ordering, and the norm the usual absolute value.
In dimension 2, H(X) has dimension 4, and there are many choices.
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Spin : the positive default. The elements of Spin are positive hermitians
of trace at most 1. They are not quite PCB, since a PCB is of trace 1,
they are sort of “partial PCB”. Concretely, if we measure an element(
a b
b̄ c

)
, it will yield “true” with probability a, “false” with probabil-

ity c, and nothing with probability 1−a−c. This “nothing” is natural
from the computational viewpoint : if we assume that the measure-
ment is done through a computing device, then we are likely to wait
before getting our probabilistic answer “true” or “false”. “Nothing”
corresponds to the case of a computing loop, i.e., when we wait too
long.

∼Spin : the negative default. The elements of ∼ Spin are positive her-
mitians of (usual) norm at most 1. They should be understood as
“anti”-booleans.

Bool : the “Plus” of two copies of 1. The space 1⊕1 consists of all diagonal

matrices

(
a 0
0 c

)
such that 0 ≤ a, c ≤ a+c ≤ 1. This QCS is a subset,

a “subtype” of Spin. It has a well-defined notion of truth and falsity.

∼Bool : the negation of the former, i.e., 1 & 1. It consists in all matrices(
a b
b̄ c

)
such that 0 ≤ a, c ≤ 1.

Now observe that our construction of Bool depends on the choice of a 1-
dimensional subspace (corresponding to “true”). This means that, given
any vector ~A ∈ S2, there is a QCS made of “booleans of axis ~A”, noted
Bool ~A.

Proposition 13
Spin =

⋃
~A∈S2 Bool ~A.

Proof : Obviously Bool ~A ⊂ Spin. Conversely, if h ∈ Spin, it can be put in

diagonal form

(
a 0
0 c

)
, with 0 ≤ a, c ≤ a+ c ≤ 1, w.r.t. a certain basis e, f .

If ~A is the point of S2 corresponding to e, then h ∈ Bool ~A. �

Corollary 13.1
∼Spin =

⋂
~A∈S2 ∼Bool ~A.
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4.3.3 Reduction : a discussion

In the next section, we shall deal with multiplicatives and linear implica-
tion. In particular, we shall be able to transform a boolean h ∈ Spin into
something else by using an element of the QCS Spin−◦ . . ., then transform
the result by means of another implication. . . Some of these transforma-
tions will behave like negation (wave-like) others will use reduction. We
try now to understand to which extent reduction is subjective. For this,
we make an impossible thing, we assume that the process of transforma-
tion is over, i.e., that in this sequence of successive implications, we have
succeeded in “closing the system”. This means that there is an ultimate
implication with values in 1. If I compose all my implications, I eventually
discover that a sequence of transformation, eventually “closing the system”
is exactly an anti-boolean k ∈ ∼Spin. The resulting output is objective :
〈h | k〉 = tr(hk). But the choice of k (the transformations, observations
made on h) is highly subjective, we are biased, we are “on the side of k).
If we are on the side of k, then put k in diagonal form w.r.t. a basis e, f .

Then h =

(
a b
b̄ c

)
, k =

(
α 0
0 γ

)
, so that 〈h | k〉 = aα+ cγ. If h′ =

(
a 0
0 c

)
,

then 〈h | k〉 = 〈h′ | k〉, i.e., it is as if h had been reduced.
It may be the case that we know that f is a boolean in a certain base (e.g.,
if f is the result of a measurement). Then we can select this base, in which

case h =

(
a′ 0
0 c′

)
, k =

(
α′ β′

β̄′ γ′

)
, and we can write 〈h | k〉 = a′α′ + c′γ′.

In that case, we can “reduce” the observer k into k′ =

(
α′ 0
0 γ′

)
so that

〈h | k〉 = 〈h | k′〉. This shows the extreme subjectivity of reduction.

5 Multiplicatives

5.1 Linear functionals

Theorem 6
Let X,Y be finite dimensional Hilbert space. Then L(L(X),L(Y)) ' L(X⊗ Y).

Proof : The complex vector space L(X) is generated by rank 1 endomor-
phisms xw∗ : xw∗(y) = 〈y | z〉x. If ϕ ∈ L(L(X),L(Y), define Φ ∈ L(X⊗ Y )
by

〈Φ(x⊗ y) | w ⊗ z〉 = 〈ϕ(xw∗)(y) | z〉 (30)

Conversely, given Φ ∈ L(X⊗ Y ), if f ∈ L(X), then one defines [Φ]f ∈ L(Y)
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by :
〈([Φ]f)(y) | z〉 = tr(Φ · (f ⊗ yz∗)) (31)

so that [Φ]· ∈ L(L(X),L(Y)). �

Corollary 13.2
If Φ ∈ H(X ⊗ Y ), if f ∈ H(X), then [Φ]f ∈ H(Y). The map Φ  [Φ]· is a
bijection from H(X× Y) onto the set of linear maps from H(X) to H(Y).

Proof : An easy computation shows that [Φ∗]f∗ = ([Φ]f)∗, hence a hermi-
tian Φ sends hermitians to hermitians. Conversely, if ϕ is a linear map from
H(X) to H(Y), then ϕ can be uniquely extended into a C-linear map from
L(X) to L(Y ) : ϕ(u) = 1/2(φ(u + u∗) + iφ(iu∗ − iu)). Now the C-linear
maps obtained in this way are hermitian, i.e., ϕ(f ∗) = ϕ(f)∗, and they are
in 1-1 correspondence with hermitians of H(X⊗ Y ). �

The essential property of [φ]· is summarised by the equation

tr(([Φ]f) · g) = tr(Φ · (f ⊗ g)) (32)

Example 4
If σX ∈ H(X⊗ X) is such that σ(x⊗ y) = y ⊗ x (the “flip”), then
〈[σ](xw∗)(y) | z〉 = 〈σx⊗ y | w ⊗ z〉 = 〈y ⊗ x | w ⊗ z〉 = 〈y | w〉〈x | z〉 =
〈(xw∗)(y) | z〉. Hence [σ]xw∗ = xw∗ and by linearity [σ]f = f .

Example 5
More generally, let u be any map from X to Y. Then u ⊗ u∗ maps X ⊗ Y
into Y⊗ X, and if σXY is the “flip” from Y⊗ X to X⊗ Y, then
U = σ · u⊗ u∗ ∈ H(X⊗ Y). It is immediate that [U ]f = ufu∗.

Example 6
Let 1X = E + F be a decomposition of the identity as a sum of orthogonal
projections (subspaces). Then R = σ(E ⊗ E + F ⊗ F ) acts as follows :
[R]f = EfE + FfF . R is a typical reduction operation, it chops off the
“non-diagonal” portions EfF and FfE of f .

One can wonder what is the status of the identity map of X ⊗ Y. An easy
computation shows that [1X⊗Y](u) = tr(u) · 1Y. Not very exciting. . . But
thisquelque part will help us with our last example :

Example 7
If X is of dimension 2, then [1X⊗X − σX]

(
a b
b̄ c

)
=

(
c −b
−b̄ a

)
, i.e., acts

like negation. Observe that 1X⊗X − σX = 2π, where π is the orthogonal
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projection corresponding to the antisymmetric (one-dimensional) subspace
of X⊗ X, i.e., the space of vectors x⊗ y − y ⊗ x.

5.2 Connectives

Definition 13
Let X,Y be QCS with respective carriers X,Y. We define the QCS X −◦Y ,
with carrier X⊗ Y, as the set of all Φ sending X to Y :

X −◦ Y = {Φ ; ∀f ∈ X [Φ]f ∈ Y } (33)

X −◦ Y could as well be defined by

X −◦ Y = {Φ ; ∀g ∈ ∼Y g[Φ] ∈ ∼X} (34)

and also as ∼ {f ⊗ g; f ∈ X, g ∈ ∼ Y }. This last expression shows that
X −◦ Y is a QCM. From this we can define X

�
Y = ∼ X −◦ Y and

X⊗Y = ∼∼{f⊗g; f ∈ X, g ∈ Y }. As usual,
�

is commutative, associative,
and distributive over & (all this up to isomorphism).
As usual, “Times” is more difficult to access than “Par”. By equation (25)
(and Hahn-Banach) one can characterise the “positive” cone of a “Times”,
as the closure of the set of finite sums

∑
i fi⊗gi, fi, gi ≥ 08. In the same way,

(27) can be used to determine the semi-norm associated with a “Times”.

Remark 1
It is important to observe that multiplicatives force a departure from the
standard ordering of hermitians. For instance, assume that X,Y have been
equipped with the positive defaults, e.g., X = Y = Spin. Then X −◦ Y
will declare as positive any hermitian sending positive hermitians to positive
hermitians. The most typical example is the flip σ which behaves like the
identity map. But σ is a proper symmetry, not a positive hermitian. So
X −◦ Y is more liberal as to positivity than expected. This means that,
dually, X ⊗ Y is more restrictive. In fact, the positive cone of X ⊗ Y is
the closure of the set of finite sums

∑
i fi ⊗ gi, fi, gi ≥ 0. Most positive

hermitians on X⊗ Y cannot be obtained in this way : take any orthogonal
projection zz∗, where z is not a pure tensor !

5.3 η-expansion and reduction

The question “is a function a graph ?” is traditional in logic, and quite
scholastic. It is such a long time that people exchange the same arguments ;
do they actually believe in what they say ? There is peculiar form of this
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question, known as “η-conversion, and limited to the sole identity function.
Given a logically compound formula F , then the identity function admits
two alternative descriptions, as a proof of C −◦ C :

Generic : since C is identical to C, the identity axiom maps C into C.

η-expanded : decompose C into components, A,B, . . ., and recompose the
identity functions of A,B, . . ., in order to produce an identity function
of C.

The two processes are identified by all honest interpretations, i.e., interpre-
tations which are not contrived to make a difference between them. This is
why, in my own ludics, [9], everything was “η-expanded”, i.e., the identity
was not primitive.
We shall show that η-expansion is wrong, by differentiating the identity
from its η-expansion in the case C = A⊕B9. For simplicity, let us assume
that A,B have both carriers of dimension 1. Our two identities respectively
correspond to :

The flip : the generic identity map of a space X of dimension 2. This map

writes as σ =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 in any base e⊗ e, e⊗ f , f ⊗ e, f ⊗ e of

X⊗ X.

The η-expanded flip : it corresponds to putting together two identities.
W.r.t. a specific base (corresponding to the decomposition of C as a

direct sum), it writes ι =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


.

These two maps are clearly distinct : [σ]

(
a b
b̄ c

)
=

(
a b
b̄ c

)
, it is the real

identity. On the other hand, [ι]

(
a b
b̄ c

)
=

(
a 0
0 c

)
is a Procustus’s identity.

It behaves as the identity w.r.t. matrices which already have the right log-

ical form

(
a 0
0 c

)
, and those who don’t follow the logical rule, it chops off

their anti-diagonal coefficients. Of course, if we remember our basics, ι is
quite the reduction of the wave packet, corresponding to the measurement
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of spin along the vertical axis ~Z.
In logic, only the identity can be η-expanded, but this is an accident. For in-

stance the negation ν =




0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0


 which is such that [ν]

(
a b
b̄ c

)
=

(
c −b
−b̄ a

)
w.r.t. a given base can be η-expanded into ν ′ =




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 ;

obviously [ν ′]
(
a b
b̄ c

)
=

(
c 0
0 a

)
: ν′ corresponds to a measurement of the

spin along the axis ~Z and a subsequent inversion.
To come back to the original question about functions and graphs. In the
“commutative” world, every function is bound to be a graph. This is be-
cause everything is diagonal in a fixed basis. When the distinguished basis
disappear, the “atoms” disappear as well. η-expansion corresponds to the
choice of a set of atoms (a basis), the decomposition of a function along
this basis, and its recomposition. This process is violently incorrect in a
non-commutative setting.

5.4 Still to be done

The main challenge is the extension to infinite dimension :

(i) First, the approach is not fully Augustinian, since the carriers X,Y are
“taken from a hat”. It would be nicer to fix once for all a separable
Hilbert space.

(ii) Second, the imperfect (infinite) part of logic needs to be studied too. It
is to be remarked that the exponential !A “forever A” is much bosonic
in spirit. In general the question of a possible logical status for the two
types of quantum symmetry (fermionic, bosonic) is much exciting.

However, this stumbles on serious problems.

(i) Köthe spaces, as used by Ehrhard, see section 3.1, are perfect as an
infinite commutative Augustinian explanation of logic. One can fix
once for all a denumerable index set I and define polarity by :

f |∼ g ⇔ |
∑

i∈I
f(i) · g(i)| ≤ 1 (35)
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But this approach does not allow significant changes of basis, and is
inappropriate for quantum.

(ii) Finite-dimensional Hilbert spaces give rise to type In factors, i.e., “con-
nected” von Neumann algebras. The most trivial generalisation is a
type I∞ factor, i.e., the space B(H) of bounded operators on an infinite-
dimensional Hilbert space. The main problem is that such an algebra
is semi-finite, i.e., trace makes sense, as an element of [0,+∞], only for
positive operators. But we badly need equations like [σX⊗X]σX = σX,
which has strictly no meaning from this viewpoint.

(iii) Another direction would be type II1 factors, typically the famous ma-
tricial factor, which harbours a (unique) finite trace. But tr(σ · 1⊗ 1) =
tr(σ) = 0 6= tr(1 · 1) = 1. The reason for this vanishing of σ is the
same as the reason of the vanishing of ∆ in section 3.2.

What is most likely to happen is the use of a matricial factor of type II1

together with the replacement of trace with determinant, det(1−uv), instead
of tr(uv). But this involves geometry of interaction, see [6], and this is quite
another story.

5.5 Relation to quantum computing

Although it is not my primary interest, the relation to quantum computing
should be considered. It would be interesting to revisit Selinger’s language
for quantum computation [11] in the spirit of QCS. However, the use of
loops in the style of geometry of interaction may suggest that determinant
might be more appropriate. Perhaps more appropriate (because explicitely
based on linear logic) is the “quantum lambda-calculus” recently proposed
by van Tonder [12].

non si non la

Notes
1Augustine proposed to define Good end Evil, not as absolute manicheist essences, but

through their interaction.
2Witness the failure of all attempts at axiomatising subtyping. Such a thing shouldn’t

even be tried, since an axiomatisation keeps a distance between object and subject, hence
treats objects up to isomorphism and cannot make sense of an inclusion.

3The question of an Augustinian approach to related notions such as hypercoherences,
[3], is still open.

4And !X is a sort of symmetric (co)-algebra, much bosonic in spirit. . . but this is
beyond the scope of this paper.

34



5Cartesian product, like “Par”, is associative only up to isomorphism.
6The formula defines in fact what I call FinC , see definition 9.
7The reduced hermitian is not smaller : the difference has null trace, and can hardly

be positive.
8This is obviously related to separable mixed states, see, e.g., [10].
9But η stays correct in the case of a “Times”.
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