Jean-Yves Girard
1-FOREWORD

- Up to 2000: Locus Solum: A pure waste of paper, I believed that foundations were dead.
1-FOREWORD

► Up to 2000: *Locus Solum: A pure waste of paper*, I believed that foundations were dead.
► The sole dead are the fundamentalists, the *Jurassic Park*.
1-FOREWORD

- Up to 2000: Locus Solum: A pure waste of paper, I believed that foundations were dead.
- The sole dead are the fundamentalists, the Jurassic Park.
- Quantum coherent spaces (2003) helped me to reposition the dichotomy subject/object.
1-FOREWORD

- Up to 2000: *Locus Solum: A pure waste of paper*, I believed that foundations were dead.
- The sole dead are the fundamentalists, the *Jurassic Park*.
- *Quantum coherent spaces* (2003) helped me to reposition the dichotomy subject/object.
- Moving to von Neumann algebra induced a divine surprise.
1-FOREWORD

- Up to 2000: *Locus Solum: A pure waste of paper*, I believed that foundations were dead.
- The sole dead are the fundamentalists, the Jurassic Park.
- Quantum coherent spaces (2003) helped me to reposition the dichotomy subject/object.
- Moving to von Neumann algebra induced a divine surprise.
 - For instance many isomorphic (standard !) versions of \mathbb{N}.
1-Foreword

- Up to 2000: Locus Solum: A pure waste of paper, I believed that foundations were dead.
- The sole dead are the fundamentalists, the Jurassic Park.
- Quantum coherent spaces (2003) helped me to reposition the dichotomy subject/object.
- Moving to von Neumann algebra induced a divine surprise.
 - For instance many isomorphic (standard !) versions of \(\mathbb{N} \).
 - Non internally isomorphic.
1-Foreword

- Up to 2000: *Locus Solum: A pure waste of paper*, I believed that foundations were dead.
- The sole dead are the fundamentalists, the Jurassic Park.
- Quantum coherent spaces (2003) helped me to reposition the dichotomy subject/object.
- Moving to von Neumann algebra induced a divine surprise.
 - For instance many isomorphic (standard!) versions of \mathbb{N}.
 - Non internally isomorphic.
 - Possibility of subjective truth.
1-FOREWORD

- Up to 2000: *Locus Solum: A pure waste of paper*, I believed that *foundations* were dead.
- The sole dead are the *fundamentalists*, the *Jurassic Park*.
- Quantum coherent spaces (2003) helped me to reposition the dichotomy subject/object.
- Moving to von Neumann algebra induced a *divine surprise*.
 - For instance many isomorphic (standard !) versions of \mathbb{N}.
 - Non internally isomorphic.
 - Possibility of *subjective* truth.
- Got beyond the essential(ist) circularity of logic, the *blind spot*.
I - THE BLIND SPOT
2-Existence vs. Essence

- Jurassic foundations speak of Platonism.
2-EXISTENCE VS. ESSENCE

- Jurassic foundations speak of Platonism.
 - But there are things beyond our experience.
2-Existence vs. Essence

- Jurassic foundations speak of **Platonism**.
 - But there are things beyond our experience.
 - Real question is that of **morphology** : laws etc.
2-Existence vs. Essence

- Jurassic foundations speak of Platonism.
 - But there are things beyond our experience.
 - Real question is that of morphology: laws etc.
 - 2001: intelligence preexists to its support. Religious …
2-Existence vs. essence

- Jurassic foundations speak of Platonism.
 - But there are things beyond our experience.
 - Real question is that of morphology: laws etc.
 - 2001: intelligence preexists to its support. Religious ...
- The real reference is Thomas Aquinas (Aristotle), not Platon.
2-Existence vs. Essence

- Jurassic foundations speak of Platonism.
 - But there are things beyond our experience.
 - Real question is that of morphology: laws etc.
 - 2001: intelligence preexists to its support. Religious . . .
- The real reference is Thomas Aquinas (Aristotle), not Platon.
 - God is perfect in its perfect perfection.
2- Existence vs. Essence

- Jurassic foundations speak of Platonism.
 - But there are things beyond our experience.
 - Real question is that of morphology: laws etc.
 - 2001: intelligence preexists to its support. Religious …

- The real reference is Thomas Aquinas (Aristotle), not Platon.
 - God is perfect in its perfect perfection.
 - The universe is infinite in its infinite infinity.
2-EXISTENCE VS. ESSENCE

- Jurassic foundations speak of Platonism.
 - But there are things beyond our experience.
 - Real question is that of morphology: laws etc.
 - 2001: intelligence preexists to its support. Religious . . .
- The real reference is Thomas Aquinas (Aristotle), not Platon.
 - God is perfect in its perfect perfection.
 - The universe is infinite in its infinite infinity.
- To go against that is to go against set-theory, category-theory (morphisms), one century of foundations, . . .
2-Existence vs. Essence

- Jurassic foundations speak of Platonism.
 - But there are things beyond our experience.
 - Real question is that of morphology: laws etc.
 - 2001: intelligence preexists to its support. Religious...
- The real reference is Thomas Aquinas (Aristotle), not Platon.
 - God is perfect in its perfect perfection.
 - The universe is infinite in its infinite infinity.
- To go against that is to go against set-theory, category-theory (morphisms), one century of foundations, ...
- The eternal golden braid: infinity, modalities, integers.
 Everything is true or false, including meaningless formulas.
2-Existence vs. Essence

- Jurassic foundations speak of Platonism.
 - But there are things beyond our experience.
 - Real question is that of morphology: laws etc.
 - 2001: intelligence preexists to its support. Religious ...
- The real reference is Thomas Aquinas (Aristotle), not Platon.
 - God is perfect in its perfect perfection.
 - The universe is infinite in its infinite infinity.
- To go against that is to go against set-theory, category-theory (morphisms), one century of foundations, ...
- The eternal golden braid: infinity, modalities, integers.
 Everything is true or false, including meaningless formulas.
- « God created integers, everything else is the deed of man ».
3-PERFECT VS. IMPERFECT

- Linear logic split connectives into:
3-PERFECT VS. IMPERFECT

- Linear logic split connectives into:

 Perfect: ⊗, ⊤, ⊕, &, ∀, ∃.
3-PERFECT VS. IMPERFECT

- Linear logic split connectives into:
 - Perfect: \otimes, \otimes, \oplus, $\&, \\forall$, \exists.
 - Imperfect: $!, ?,$ the exponentials.
3-PERFECT VS. IMPERFECT

- Linear logic split connectives into:
 - Perfect: \(\otimes, \&\otimes, \oplus, \&, \forall, \exists\).
 - Imperfect: !, ?, the exponentials.

- The perfect part is not essentialist: no «meta-intelligence».
3-PERFECT VS. IMPERFECT

- Linear logic split connectives into:
 - **Perfect**: \(\otimes, \mathcal{R}, \oplus, \& , \forall, \exists \).
 - **Imperfect**: !, ?, the exponentials.
- The perfect part is not essentialist: no « meta-intelligence ».
 - Satisfactory explanations, e.g., ludics.
3-Perfect vs. Imperfect

- Linear logic split connectives into:
 - Perfect: $\otimes, \otimes, \oplus, \& \land, \forall, \exists$.
 - Imperfect: $!, ?, \text{the exponentials}$.

- The perfect part is not essentialist: no "meta-intelligence".
 - Satisfactory explanations, e.g., ludics.

- The imperfect part is the finger of Thomism.
3-PERFECT VS. IMPERFECT

- Linear logic split connectives into:
 - Perfect: \otimes, \otimes, \oplus, $\&$, \forall, \exists.
 - Imperfect: $!$, $?$, the exponentials.

- The perfect part is not essentialist: no « meta-intelligence ».
 - Satisfactory explanations, e.g., ludics.

- The imperfect part is the finger of Thomism.
 - Put enough exponentials to perennialise.
3-PERFECT VS. IMPERFECT

- Linear logic split connectives into:
 - **Perfect**: \(\otimes, \Box, \oplus, &\), \(\forall, \exists\).
 - **Imperfect**: !, ?, the **exponentials**.

- The perfect part is not essentialist: no « meta-intelligence ».
 - Satisfactory explanations, e.g., ludics.

- The imperfect part is the finger of Thomism.
 - Put enough exponentials to **perennialise**.
 - Long ago: double negations (Gödel).
3-PERFECT VS. IMPERFECT

- Linear logic split connectives into:
 - Perfect: \otimes, \otimes, \oplus, $\&$, \forall, \exists.
 - Imperfect: $!, ?,$ the exponentials.

- The perfect part is not essentialist: no « meta-intelligence ».
 - Satisfactory explanations, e.g., ludics.

- The imperfect part is the finger of Thomism.
 - Put enough exponentials to perennialise.
 - Long ago: double negations (Gödel).

- Schizophrenia between:
3-Perfect vs. Imperfect

- Linear logic split connectives into:
 - **Perfect**: \otimes, \otimes, \oplus, $\&$, \forall, \exists.
 - **Imperfect**: $!, ?, \text{the exponentials}$.
- The perfect part is not essentialist: no « meta-intelligence ».
 - Satisfactory explanations, e.g., ludics.
- The imperfect part is the finger of Thomism.
 - Put enough exponentials to perennialise.
 - Long ago: double negations (Gödel).
- Schizophrenia between:
 - Perfect world unsufficiently expressive.
3-Perfect vs. Imperfect

- Linear logic split connectives into:
 - **Perfect**: \(\otimes, \otimes', \oplus, \&, \forall, \exists. \)
 - **Imperfect**: !, ?, the exponentials.

- The perfect part is not essentialist: no «meta-intelligence».
 - Satisfactory explanations, e.g., ludics.

- The imperfect part is the finger of Thomism.
 - Put enough exponentials to perennialise.
 - Long ago: double negations (Gödel).

- Schizophrenia between:
 - **Perfect** world unsufficiently expressive.
 - **Imperfect** world allowing towers of exponentials.
4-JURASSIC PARK

- The peak of scientism, 1900.
4-JURASSIC PARK

▶ The peak of scientism, 1900.
 ● Various final solutions: societal, musical, logical...
4-JURASSIC PARK

- The peak of scientism, 1900.
- Various final solutions: societal, musical, logical...
- None of them very... subtle.
4-JURASSIC PARK

- The peak of scientism, 1900.
 - Various final solutions: societal, musical, logical...
 - None of them very... subtle.
- What remains of foundations is set theory.
4-JURASSIC PARK

► The peak of scientism, 1900.
 ● Various final solutions: societal, musical, logical…
 ● None of them very… subtle.
► What remains of foundations is set theory.
 ● Not taken seriously, i.e., for itself.
The peak of scientism, 1900.
- Various final solutions: societal, musical, logical...
- None of them very... subtle.

What remains of foundations is set theory.
- Not taken seriously, i.e., for itself.
- But very convenient, «hygienic».
4-Jurassic Park

- The peak of scientism, 1900.
 - Various final solutions: societal, musical, logical...
 - None of them very... subtle.
- What remains of foundations is set theory.
 - Not taken seriously, i.e., for itself.
 - But very convenient, «hygienic».
- To be compared with equal temperament: $2^{N/12}$.
4-JURASSIC PARK

► The peak of scientism, 1900.
 ● Various final solutions: societal, musical, logical...
 ● None of them very... subtle.
► What remains of foundations is set theory.
 ● Not taken seriously, i.e., for itself.
 ● But very convenient, « hygienic ».
► To be compared with equal temperament: $2^{N/12}$.
 ● Very convenient, compare with natural scale:
4-JURASSIC PARK

- The peak of scientism, 1900.
 - Various final solutions: societal, musical, logical...
 - None of them very... subtle.
- What remains of foundations is set theory.
 - Not taken seriously, i.e., for itself.
 - But very convenient, «hygienic».
- To be compared with equal temperament: $2^{N/12}$.
 - Very convenient, compare with natural scale:
 9/8, 10/9, 16/15, 9/8, 10/9, 9/8, 16/15.
4-JURASSIC PARK

- The peak of scientism, 1900.
 - Various final solutions: societal, musical, logical…
 - None of them very… subtle.
- What remains of foundations is set theory.
 - Not taken seriously, i.e., for itself.
 - But very convenient, «hygienic».
- To be compared with equal temperament: $2^{N/12}$.
 - Very convenient, compare with natural scale:
 - 9/8, 10/9, 16/15, 9/8, 10/9, 9/8, 16/15.
 - But slightly out of tune.
4-Jurassic Park

- The peak of scientism, 1900.
 - Various final solutions: societal, musical, logical...
 - None of them very... subtle.
- What remains of foundations is set theory.
 - Not taken seriously, i.e., for itself.
 - But very convenient, « hygienic ».
- To be compared with equal temperament: $2^{N/12}$.
 - Very convenient, compare with natural scale:
 9/8, 10/9, 16/15, 9/8, 10/9, 9/8, 16/15.
 - But slightly out of tune.
 - Problematic when pushed to extremities (dodecaphonism).
4-JURASSIC PARK

► The peak of scientism, 1900.
 ● Various final solutions: societal, musical, logical...
 ● None of them very... subtle.
► What remains of foundations is set theory.
 ● Not taken seriously, i.e., for itself.
 ● But very convenient, «hygienic».
► To be compared with equal temperament: \(2^{N/12}\).
 ● Very convenient, compare with natural scale:
 \[9/8, 10/9, 16/15, 9/8, 10/9, 9/8, 16/15\].
 ● But slightly out of tune.
 ● Problematic when pushed to extremities (dodecaphonism).
► Set theory problematic in extreme situations (foundations).
5-ICONOCLASM

- Destruction of (mental) images.
5-ICONOCLASM

- Destruction of (mental) images.
- Another finitist paradigm.
5-ICONOCLASM

- Destruction of (mental) images.
- Another finitist paradigm.
 - Gödel’s theorem: finitism is not finitistic.
5-ICONOCLASM

► Destruction of (mental) images.
► Another finitist paradigm.
 ● Gödel’s theorem: finitism is not finitistic.
 ● Complexity: mathematical (logical) functions too fast.
5-ICONOCLASM

- Destruction of (mental) images.
- Another finitist paradigm.
 - Gödel’s theorem: finitism is not finitistic.
 - Complexity: mathematical (logical) functions too fast.
 * For no real reason, but logical maintenance.
5-ICONOCLASM

► Destruction of (mental) images.
► Another finitist paradigm.
 ● Gödel’s theorem: finitism is not finitistic.
 ● Complexity: mathematical (logical) functions too fast.
 ∗ For no real reason, but logical maintenance.
► Foundations internalise everything.
5-ICONOCLASM

► Destruction of (mental) images.
► Another finitist paradigm.
 ● Gödel’s theorem: finitism is not finitistic.
 ● Complexity: mathematical (logical) functions too fast.
 * For no real reason, but logical maintenance.
► Foundations internalise everything.
 ● But eventually ends with transfinite metaturtles.
5-ICONOCLASM

- Destruction of (mental) images.
- Another finitist paradigm.
 - Gödel’s theorem: finitism is not finitistic.
 - Complexity: mathematical (logical) functions too fast.
 * For no real reason, but logical maintenance.
- Foundations internalise everything.
 - But eventually ends with transfinite metaturtles.
- The meta is the impossibility of internalising everything.
5-ICONOCLASM

- Destruction of (mental) images.
- Another finitist paradigm.
 - Gödel’s theorem: finitism is not finitistic.
 - Complexity: mathematical (logical) functions too fast.
 - For no real reason, but logical maintenance.
- Foundations internalise everything.
 - But eventually ends with transfinite metaturtles.
- The meta is the impossibility of internalising everything.
 - But too late; happens at meaningless stages.
5-ICONOCLASM

- Destruction of (mental) images.
- Another finitist paradigm.
 - Gödel’s theorem: finitism is not finitistic.
 - Complexity: mathematical (logical) functions too fast.
 * For no real reason, but logical maintenance.
- Foundations internalise everything.
 - But eventually ends with transfinite metaturtles.
- The meta is the impossibility of internalising everything.
 - But too late; happens at meaningless stages.
- Since systematic internalisation is eventually wrong, it must be refused from the start.
5-ICONOCLASM

► Destruction of (mental) images.
► Another finitist paradigm.
 ● Gödel’s theorem: finitism is not finitistic.
 ● Complexity: mathematical (logical) functions too fast.
 * For no real reason, but logical maintenance.
► Foundations internalise everything.
 ● But eventually ends with transfinite metaturtles.
► The meta is the impossibility of internalising everything.
 ● But too late; happens at meaningless stages.
► Since systematic internalisation is eventually wrong, it must be refused from the start.
► Accept foundations with most of operations external.
6-THE ICONOCLAST PROGRAMME

▸ Finite from inside, infinite from outside.
6-THE ICONOCLAST PROGRAMME

► Finite from inside, infinite from outside.
► Accept infinity, but not infinite infinity.
6-THE ICONOCLAST PROGRAMME

- Finite from inside, infinite from outside.
- Accept infinity, but not infinite infinity.
 - Impossibility to create fresh objects forever.
6-THE ICONOCLAST PROGRAMME

- Finite from inside, infinite from outside.
- Accept infinity, but not infinite infinity.
 - Impossibility to create fresh objects forever.
- Reduces to search for light exponentials (BLL, LLL, ELL, ...).
6-THE ICONOCLAST PROGRAMME

- Finite from inside, infinite from outside.
- Accept infinity, but not infinite infinity.
 - Impossibility to create fresh objects forever.
- Reduces to search for light exponentials (BLL, LLL, ELL, ...).
 - Alternative definition producing complexity effects.
6-THE ICONOCLAST PROGRAMME

- Finite from inside, infinite from outside.
- Accept infinity, but not infinite infinity.
 - Impossibility to create fresh objects forever.
- Reduces to search for light exponentials (BLL, LLL, ELL, ...).
 - Alternative definition producing complexity effects.
 - Cannot be semantically grounded: the blind spot.
6-THE ICONOCLAST PROGRAMME

- Finite from inside, infinite from outside.
- Accept infinity, but not infinite infinity.
 - Impossibility to create fresh objects forever.
- Reduces to search for light exponentials (BLL, LLL, ELL, ...).
 - Alternative definition producing complexity effects.
 - Cannot be semantically grounded: the blind spot.
- The Murray-von Neumann factor \(\mathcal{R} \).
6-THE ICONOCLAST PROGRAMME

- Finite from inside, infinite from outside.
- Accept infinity, but not infinite infinity.
 - Impossibility to create fresh objects forever.
- Reduces to search for light exponentials (BLL, LLL, ELL, ...).
 - Alternative definition producing complexity effects.
 - Cannot be semantically grounded: the blind spot.
- The Murray-von Neumann factor \mathcal{R}.
 - Finite and hyperfinite, both notions of finiteness having noting to do with Hilbertian finitism.
6- THE ICONOCLAST PROGRAMME

- Finite from inside, infinite from outside.
- Accept infinity, but not infinite infinity.
 - Impossibility to create fresh objects forever.
- Reduces to search for light exponentials (BLL, LLL, ELL, ...).
 - Alternative definition producing complexity effects.
 - Cannot be semantically grounded: the blind spot.
- The Murray-von Neumann factor R.
 - Finite and hyperfinite, both notions of finiteness having nothing to do with Hilbertian finitism.
- Forget the idea of creation in 7 days, from simple to complicated (sets, algebra, reals, function spaces) since it does not work anyway (Incompleteness theorem).
II-The CATEGORICAL LAYER
7-The three layers

- Foundations can be operated at three *layers* (undergrounds) :
7 - The three layers

- Foundations can be operated at three layers (undergrounds):
7-The three layers

- Foundations can be operated at three layers (undergrounds):
 - 2: Functions: categories, formulas as objects, proofs as morphisms.
7- THE THREE LAYERS

- Foundations can be operated at three layers (undergrounds):
 -2: Functions: categories, formulas as objects, proofs as morphisms.
 - Scott domains.
7-The Three Layers

- Foundations can be operated at three layers (undergrounds):
 -1: **Truth**: consistency, models: bleak.
 -2: **Functions**: categories, formulas as objects, proofs as morphisms.
 - Scott domains.
 - Coherent spaces.
7-The three layers

- Foundations can be operated at three layers (undergrounds):
 - 2: Functions: categories, formulas as objects, proofs as morphisms.
 - Scott domains.
 - Coherent spaces.
 - Quantum coherent spaces.
7- THE THREE LAYERS

- Foundations can be operated at three layers (undergrounds):
 -1: **Truth**: consistency, models: bleak.
 -2: **Functions**: categories, formulas as objects, proofs as morphisms.
 - Scott domains.
 - Coherent spaces.
 - Quantum coherent spaces.
 -3: **Actions**: Geometry of interaction, but also ludics, games...
7-The three layers

- Foundations can be operated at three layers (undergrounds):
 -2: Functions: categories, formulas as objects, proofs as morphisms.
 - Scott domains.
 - Coherent spaces.
 - Quantum coherent spaces.
 -3: Actions: Geometry of interaction, but also ludics, games...
- Level -2 not fit to go beyond the blind spot.
8-SCOTT DOMAINS

- A Scott domain X is a set $\lvert X \rvert$ equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta$, $\Gamma, \Delta \subset \lvert X \rvert$.

Keio 16/17 Mars 2006
8-Scott Domains

- A Scott domain X is a set $|X|$ equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta$, $\Gamma, \Delta \subset |X|$.
- Saturated subsets of X are the consistent extensions of X.
8-SCOTT DOMAINS

- A Scott domain X is a set $|X|$ equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta$, $\Gamma, \Delta \subseteq |X|$.
- Saturated subsets of X are the consistent extensions of X.
- Can be made into a topological space; but weird topology (never Hausdorff).
A Scott domain X is a set $|X|$ equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta$, $\Gamma, \Delta \subset |X|$. Saturated subsets of X are the consistent extensions of X. Can be made into a topological space; but weird topology (never Hausdorff).

Continuity: preservation of directed sups.

$$F(\uparrow \bigcup_i a_i) = \uparrow \bigcup_i F(a_i)$$
8-Scott Domains

- A **Scott domain** X is a set $|X|$ equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta$, $\Gamma, \Delta \subset |X|$.
- **Saturated** subsets of X are the consistent extensions of X.
- Can be made into a topological space; but weird topology (never Hausdorff).
- Continuity: preservation of directed sups.

$$F(\uparrow \bigcup_i a_i) = \uparrow \bigcup_i F(a_i) \quad (1)$$

- Category theoretic analogue:
8-Scott Domains

- A **Scott domain** \(X \) is a set \(|X|\) equipped with a consistent system of intuitionistic sequents \(\Gamma \vdash \Delta \), \(\Gamma, \Delta \subset |X| \).
- **Saturated** subsets of \(X \) are the consistent extensions of \(X \).
- Can be made into a topological space; but weird topology (never Hausdorff).
- Continuity: preservation of directed sups.
 \[
 F(\uparrow \bigcup_i a_i) = \uparrow \bigcup_i F(a_i)
 \]
 (1)
- Category theoretic analogue:
 Objects: Saturated sets.
8-SCOTT DOMAINS

- A **Scott domain** X is a set $|X|$ equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta$, $\Gamma, \Delta \subset |X|$.
- **Saturated** subsets of X are the consistent extensions of X.
- Can be made into a topological space; but weird topology (never Hausdorff).
- Continuity: preservation of directed sups.

$$F(\uparrow \bigcup_{i} a_i) = \uparrow \bigcup_{i} F(a_i)$$ \hspace{1cm} (1)

- Category theoretic analogue:
 - **Objects**: Saturated sets.
 - **Morphisms**: Inclusion maps (hence: degenerated category).
8-SCOTT DOMAINS

- A **Scott domain** X is a set $|X|$ equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta$, $\Gamma, \Delta \subset |X|$.
- **Saturated** subsets of X are the consistent extensions of X.
- Can be made into a topological space; but weird topology (never Hausdorff).
- Continuity: preservation of directed sups.

$$F(\uparrow \bigcup_{i} a_{i}) = \uparrow \bigcup_{i} F(a_{i}) \quad (1)$$

- Category theoretic analogue:
 - **Objects**: Saturated sets.
 - **Morphisms**: Inclusion maps (hence: degenerated category).
 - **Directed unions**: Direct limits.
8-SCOTT DOMAINS

- A **Scott domain** X is a set $|X|$ equipped with a consistent system of intuitionistic sequents $\Gamma \vdash \Delta$, $\Gamma, \Delta \subset |X|$.
- **Saturated** subsets of X are the consistent extensions of X.
- Can be made into a topological space; but weird topology (never Hausdorff).
- Continuity: preservation of directed sups.
 \[F(\biguparrow \bigcup_i a_i) = \biguparrow \bigcup_i F(a_i) \] \hspace{1cm} (1)
- Category theoretic analogue:
 - **Objects**: Saturated sets.
 - **Morphisms**: Inclusion maps (hence: degenerated category).
 - **Directed unions**: Direct limits.
 - **Continuous map**: Functor preserving direct limits.
9-STABILITY

- Pull-backs are the natural companion of direct limits.
9-STABILITY

- **Pull-backs** are the natural companion of direct limits.
- Correspond to $a \cap b$ provided $a \cup b$ is consistent.
9-Stability

- **Pull-backs** are the natural companion of direct limits.
- Correspond to $a \cap b$ provided $a \cup b$ is consistent.
- Preservation of pull-backs a.k.a. **stability** (Berry):

\[F(a \cap b) = F(a) \cap F(b) \quad (a \cup b \text{ consistent}) \quad (2) \]
9-Stability

- **Pull-backs** are the natural companion of direct limits.
- Correspond to $a \cap b$ provided $a \cup b$ is consistent.
- Preservation of pull-backs a.k.a. **stability** (Berry):
 \[F(a \cap b) = F(a) \cap F(b) \quad (a \cup b \text{ consistent}) \quad (2) \]
- Induce simplification: reduce to axiomatics made of sequents $x, y \vdash \leftarrow\leftarrow x, y \ \text{incoherent}$, notation $x \leadsto y$.
9-Stability

- **Pull-backs** are the natural companion of direct limits.
- Correspond to $a \cap b$ provided $a \cup b$ is consistent.
- Preservation of pull-backs a.k.a. **stability** (Berry):
 \[F(a \cap b) = F(a) \cap F(b) \quad (a \cup b \text{ consistent}) \]
 \[(2) \]
- Induce simplification: reduce to axiomatics made of sequents $x, y \vdash \ll x, y \text{ incoherent } \gg$, notation $x \dashv y$.
- No saturation, only consistency.
9-Stability

- **Pull-backs** are the natural companion of direct limits.
- Correspond to $a \cap b$ provided $a \cup b$ is consistent.
- Preservation of pull-backs a.k.a. **stability** (Berry):

$$F(a \cap b) = F(a) \cap F(b) \quad (a \cup b \text{ consistent})$$

(2)

- Induce simplification: reduce to axiomatics made of sequents $x, y \vdash \ll x, y \text{ incoherent } “$, notation $x \dashv y$.
- No saturation, only consistency.
- Coherent space: $(|X|, \bowtie X)$, web, coherence; $\bowtie = \bowtie^c$.
9-Stability

- Pull-backs are the natural companion of direct limits.
- Correspond to $a \cap b$ provided $a \cup b$ is consistent.
- Preservation of pull-backs a.k.a. stability (Berry):
 \[
 F(a \cap b) = F(a) \cap F(b) \quad (a \cup b \text{ consistent})
 \] (2)
- Induce simplification: reduce to axiomatics made of sequents $x, y \vdash \leftarrow x, y \text{ incoherent }$, notation $x \dashv y$.
- No saturation, only consistency.
- Coherent space: $(|X|, \bowtie X)$, web, coherence; $\bowtie = \bowtie^c$.
- Clique $a \sqsubseteq X$: $x, y \in a \Rightarrow x \bowtie y$.
9-Stability

- Pull-backs are the natural companion of direct limits.
- Correspond to $a \cap b$ provided $a \cup b$ is consistent.
- Preservation of pull-backs a.k.a. stability (Berry):
 \[F(a \cap b) = F(a) \cap F(b) \quad (a \cup b \text{ consistent}) \]
 \[(2) \]
- Induce simplification: reduce to axiomatics made of sequents $x, y \vdash \prec x, y \text{ incoherent }$, notation $x \prec y$.
- No saturation, only consistency.
- Coherent space: $(|X|, \bowtie X)$, web, coherence; $\bowtie = \bowtie^c$.
- Clique $a \sqsubseteq X: x, y \in a \Rightarrow x \bowtie y$.
- Stable map: F from X to Y monotonous, preserves directed sups and compatible meets.
9-STABILITY

- **Pull-backs** are the natural companion of direct limits.
- Correspond to \(a \cap b \) provided \(a \cup b \) is consistent.
- Preservation of pull-backs a.k.a. **stability** (Berry):
 \[
 F(a \cap b) = F(a) \cap F(b) \quad (a \cup b \text{ consistent})
 \]
- Induce simplification: reduce to axiomatics made of sequents \(x, y \vdash \ll x, y \text{ incoherent} \), notation \(x \dashv y \).
- No saturation, only consistency.
- Coherent space: \((|X|, \ominus X), \text{ web, coherence} ; \ominus = \ominus^c \).
- Clique \(a \sqsubset X : x, y \in a \Rightarrow x \ominus y \).
- Stable map: \(F \) from \(X \) to \(Y \) monotonous, preserves directed supers and compatible meets.
- Form a **CCC**.
10-Linearity

- Additional requirement:
10-Linearity

- Additional requirement:

\[F(a \cup b) = F(a) \cup F(b) \quad F(\emptyset) = \emptyset \] (3)
10-Linearity

- Additional requirement:
 \[F(a \cup b) = F(a) \cup F(b) \quad F(\emptyset) = \emptyset \] (3)

- The basis of perfect linear logic.
10-Linearity

- Additional requirement:
 \[F(a \cup b) = F(a) \cup F(b) \quad F(\emptyset) = \emptyset \]

- The basis of **perfect** linear logic.

- Skeleton of a linear map:
10-Linearity

- Additional requirement:
 \[F(a \cup b) = F(a) \cup F(b) \quad F(\emptyset) = \emptyset \] (3)

- The basis of perfect linear logic.

- Skeleton of a linear map:
 \[\text{Sq}(F) := \{ x, y; x \in |X|, y \in |Y| \text{ and } y \in F(\{x\} \} \] (4)
10-Lineararity

- Additional requirement:
 \[F(a \cup b) = F(a) \cup F(b) \quad F(\emptyset) = \emptyset \]

- The basis of perfect linear logic.

- Skeleton of a linear map:
 \[\text{Sq}(F) := \{ x, y; x \in |X|, y \in |Y| \text{ and } y \in F(\{x\}) \} \]

- \(F \) can be recovered from its skeleton:
10-**LINEARITY**

- **Additional requirement:**

 \[F(a \cup b) = F(a) \cup F(b) \quad F(\emptyset) = \emptyset \]
 \[(3) \]

- **The basis of perfect linear logic.**

- **Skeleton of a linear map:**

 \[\text{Sq}(F) := \{ x, y ; x \in |X|, y \in |Y| \text{ and } y \in F(\{x\}) \} \]
 \[(4) \]

- **\(F \)** can be recovered from its skeleton:

 \[F(a) = \{ y ; \exists x \in a \ (x, y) \in \text{Sq}(F) \} \]
 \[(5) \]
11-DESESSENTIALISATION

- Remove the laws.
11-Deesentialisation

- Remove the laws.
- Linear negation \(\sim X := (|X|, \prec) \).
11-Desesentialisation

- Remove the laws.
- Linear negation $\sim X := (|X|, \subseteq)$.
- Cliques of X, $\sim X$ related by duality between subsets of $|X|$.
11-DESESSENTIALISATION

- Remove the laws.
- Linear negation $\sim X := (|X|, \subsetneq)$.
- Cliques of $X, \sim X$ related by duality between subsets of $|X|$:
 $$\#(a \cap b) \leq 1$$
 (6)
11-DESESSENTIALISATION

- Remove the laws.
- Linear negation $\sim X := (|X|, \preceq)$.
- Cliques of $X, \sim X$ related by duality between subsets of $|X|$: $\#(a \cap b) \leq 1$ (6)
- Alternative definition: a coherent space is a subset of $\wp(|X|)$ equal to its bipolar w.r.t. (6).
11-Desessentialisation

- Remove the laws.
- Linear negation $\sim X := (|X|, \preceq)$.
- Cliques of $X, \sim X$ related by duality between subsets of $|X|$:
 $$\#(a \cap b) \leq 1$$ \hspace{1cm} (6)
- Alternative definition: a coherent space is a subset of $\wp(|X|)$ equal to its bipolar w.r.t. (6).
- Functions defined through adjunction:
11-DESESSENTIALISATION

- Remove the laws.
- Linear negation $\sim X := (|X|, \subset)$.
- Cliques of $X, \sim X$ related by duality between subsets of $|X|$:
 $$\#(a \cap b) \leq 1$$ \hspace{1cm} (6)
- Alternative definition: a coherent space is a subset of $\wp(|X|)$ equal to its bipolar w.r.t. (6).
- Functions defined through adjunction:
 $$\#(F(a) \cap b) = \#(F \cap a \times b) \quad (a \sqsubseteq X, b \sqsubseteq \sim Y)$$ \hspace{1cm} (7)
11-Desessentialisation

- Remove the laws.
- Linear negation $\sim X := (|X|, \preceq)$.
- Cliques of $X, \sim X$ related by duality between subsets of $|X|$:
 \[\#(a \cap b) \leq 1\] (6)
- Alternative definition: a coherent space is a subset of $\wp(|X|)$ equal to its bipolar w.r.t. (6).
- Functions defined through adjunction:
 \[\#(F(a) \cap b) = \#(F \cap a \times b) \quad (a \sqsubseteq X, b \sqsubseteq \sim Y)\] (7)
- This definition can be generalised to various vector spaces:
11-DESSESENTIALISATION

- Remove the laws.
- Linear negation $\sim X := (|X|, \supseteq)$.
- Cliques of $X, \sim X$ related by duality between subsets of $|X|$
 $$\#(a \cap b) \leq 1$$ (6)
- Alternative definition: a coherent space is a subset of $\wp(|X|)$
equal to its bipolar w.r.t. (6).
- Functions defined through adjunction:
 $$\#(F(a) \cap b) = \#(F \cap a \times b) \quad (a \sqsubseteq X, b \sqsubseteq \sim Y)$$ (7)
- This definition can be generalised to various vector spaces:
 Stability: handles negative coeffs: $F(a + b) = F(a) + F(b)$.
11-DESESSENTIALISATION

- Remove the laws.
- Linear negation $\sim X := (|X|, \supseteq)$.
- Cliques of $X, \sim X$ related by duality between subsets of $|X|$:
 $$\#(a \cap b) \leq 1$$ (6)
- Alternative definition: a coherent space is a subset of $\wp(|X|)$ equal to its bipolar w.r.t. (6).
- Functions defined through adjunction:
 $$\#(F(a) \cap b) = \#(F \cap a \times b) \quad (a \sqsubseteq X, b \sqsubseteq \sim Y)$$ (7)
- This definition can be generalised to various vector spaces:
 Stability: handles negative coeffs: $F(a + b) = F(a) + F(b)$.
 Multiplicities: Takes care of cardinal when greater than 1.
11-DESESSENTIALISATION

- Remove the laws.
- Linear negation $\sim X := (|X|, \preceq)$.
- Cliques of $X, \sim X$ related by duality between subsets of $|X|$: $\#(a \cap b) \leq 1$ (6)
- Alternative definition: a coherent space is a subset of $\wp(|X|)$ equal to its bipolar w.r.t. (6).
- Functions defined through adjunction:
 $$\#(F(a) \cap b) = \#(F \cap a \times b) \quad (a \sqsubseteq X, b \sqsubseteq \sim Y)$$ (7)
- This definition can be generalised to various vector spaces:
 Stability: handles negative coeffs: $F(a + b) = F(a) + F(b)$.
 Multiplicities: Takes care of cardinal when greater than 1.
 Cardinal: Replaced by bilinear form, or better, trace.
12-Finite dimensional Hermitian geometry

- Hilbert space \mathbb{C}^n equipped with sesquilinear form:
12-Finite Dimensional Hermitian Geometry

- Hilbert space \mathbb{C}^n equipped with sesquilinear form:

$$\langle (x_i) \mid (y_i) \rangle := \sum_i x_i \cdot \overline{y_i}$$ \hspace{1cm} (8)
12-Finite Dimensional Hermitian Geometry

- Hilbert space \mathbb{C}^n equipped with sesquilinear form:
 \[
 \langle (x_i) \mid (y_i) \rangle := \sum_{i} x_i \cdot \overline{y_i} \quad (8)
 \]

- Operators on \mathbb{C}^n (matrices in $\mathcal{M}_n(\mathbb{C})$) equipped with adjunction:
12-Finite Dimensional Hermitian Geometry

- Hilbert space \mathbb{C}^n equipped with sesquilinear form:
 \[
 \langle (x_i) | (y_i) \rangle := \sum_{i} x_i \cdot \overline{y_i} \quad (8)
 \]

- Operators on \mathbb{C}^n (matrices in $\mathcal{M}_n(\mathbb{C})$) equipped with adjunction:
 \[
 \langle u^*(\vec{x}) | \vec{y} \rangle := \langle \vec{x} | u(\vec{y}) \rangle \quad (9)
 \]
12-Finite Dimensional Hermitian Geometry

- Hilbert space \mathbb{C}^n equipped with sesquilinear form :
 \[\langle (x_i) \mid (y_i) \rangle := \sum_{i} x_i \cdot \overline{y_i} \] (8)

- Operators on \mathbb{C}^n (matrices in $\mathcal{M}_n(\mathbb{C})$) equipped with adjunction :
 \[\langle u^*(\overline{x}) \mid \overline{y} \rangle := \langle \overline{x} \mid u(\overline{y}) \rangle \] (9)

- Adjunction corresponds to transconjugation of matrices.
12-Finite Dimensional Hermitian Geometry

- Hilbert space \mathbb{C}^n equipped with sesquilinear form:
 $$\langle (x_i) | (y_i) \rangle := \sum_{i} x_i \cdot \bar{y}_i$$ (8)

- Operators on \mathbb{C}^n (matrices in $\mathcal{M}_n(\mathbb{C})$) equipped with adjunction:
 $$\langle u^*(\vec{x}) | \vec{y} \rangle := \langle \vec{x} | u(\vec{y}) \rangle$$ (9)

- Adjunction corresponds to transconjugation of matrices.

- Hermitians are self adjoint operators (matrices).
12-Finite Dimensional Hermitian Geometry

- Hilbert space \mathbb{C}^n equipped with sesquilinear form:
 \[
 \langle (x_i) | (y_i) \rangle := \sum_{i} x_i \cdot \overline{y_i} \tag{8}
 \]

- Operators on \mathbb{C}^n (matrices in $\mathcal{M}_n(\mathbb{C})$) equipped with adjunction:
 \[
 \langle u^*(\vec{x}) | \vec{y} \rangle := \langle \vec{x} | u(\vec{y}) \rangle \tag{9}
 \]

- Adjunction corresponds to transconjugation of matrices.
- Hermitians are self adjoint operators (matrices).
- The trace $tr(u)$ defined as the sum of diagonal coefficients:
12-Finite Dimensional Hermitian Geometry

- Hilbert space \mathbb{C}^n equipped with sesquilinear form:
 \[
 \langle (x_i) \mid (y_i) \rangle := \sum_i x_i \cdot \overline{y_i}
 \] (8)

- Operators on \mathbb{C}^n (matrices in $\mathcal{M}_n(\mathbb{C})$) equipped with adjunction:
 \[
 \langle u^*(x) \mid y \rangle := \langle x \mid u(y) \rangle
 \] (9)

- Adjunction corresponds to transconjugation of matrices.
- Hermitians are self adjoint operators (matrices).
- The trace $tr(u)$ defined as the sum of diagonal coefficients:
 \[
 tr(u) = \sum_i \langle u(e_i) \mid e_i \rangle
 \] (10)
12-Finite Dimensional Hermitian Geometry

- Hilbert space \mathbb{C}^n equipped with sesquilinear form:
 \[
 \langle (x_i) | (y_i) \rangle := \sum_i x_i \cdot \overline{y_i}
 \] \hspace{1cm} (8)

- Operators on \mathbb{C}^n (matrices in $\mathcal{M}_n(\mathbb{C})$) equipped with adjunction:
 \[
 \langle u^*(\vec{x}) | \vec{y} \rangle := \langle \vec{x} | u(\vec{y}) \rangle
 \] \hspace{1cm} (9)

 Adjunction corresponds to transconjugation of matrices.

- Hermitians are self-adjoint operators (matrices).

- The trace $\text{tr}(u)$ defined as the sum of diagonal coefficients:
 \[
 \text{tr}(u) = \sum_i \langle u(e_i) | e_i \rangle
 \] \hspace{1cm} (10)

 Cyclicity:
 \[
 \text{tr}(u \cdot v) = \text{tr}(v \cdot u)
 \] \hspace{1cm} (11)
12-Finite dimensional Hermitian geometry

- Hilbert space \mathbb{C}^n equipped with sesquilinear form:
 \[\langle (x_i) \mid (y_i) \rangle := \sum_i x_i \cdot \overline{y_i} \]
 (8)

- Operators on \mathbb{C}^n (matrices in $\mathcal{M}_n(\mathbb{C})$) equipped with adjunction:
 \[\langle u^*(\vec{x}) \mid \vec{y} \rangle := \langle \vec{x} \mid u(\vec{y}) \rangle \]
 (9)

- Adjunction corresponds to transconjugation of matrices.

- Hermitians are self adjoint operators (matrices).

- The trace $\text{tr}(u)$ defined as the sum of diagonal coefficients:
 \[\text{tr}(u) = \sum_i \langle u(e_i) \mid e_i \rangle \]
 (10)

- Cyclicity:
 \[\text{tr}(u \cdot v) = \text{tr}(v \cdot u) \]
 (11)

- If h, k hermitian, then $\text{tr}(h \cdot k) \in \mathbb{R}$.
The desessentialised version adapts *mutatis mutandis*:
13-QUANTUM COHERENT SPACES

- The desessentialised version adapts *mutatis mutandis*:

 Web: Finite dimensional Hilbert space \mathbb{X}.
13-Quantum Coherent Spaces

The desessentialised version adapts mutatis mutandis:
- **Web**: Finite dimensional Hilbert space X.
- **Subsets**: Hermitians operating on X.
The desessentialised version adapts \textit{mutatis mutandis}:

\textbf{Web} : Finite dimensional Hilbert space X.
\textbf{Subsets} : Hermitians operating on X.
\textbf{Duality} : $0 \leq \text{tr}(h \cdot k) \leq 1$.
13-QUANTUM COHERENT SPACES

▶ The desessentialised version adapts mutatis mutandis:

- **Web**: Finite dimensional Hilbert space \mathbb{X}.
- **Subsets**: Hermitians operating on \mathbb{X}.
- **Duality**: $0 \leq \text{tr}(h \cdot k) \leq 1$.

▶ Coherent spaces:
The desessentialised version adapts *mutatis mutandis*:

- **Web**: Finite dimensional Hilbert space \mathbf{X}.
- **Subsets**: Hermitians operating on \mathbf{X}.
- **Duality**: $0 \leq \text{tr}(h \cdot k) \leq 1$.

Coherent spaces:

- **Web**: Space $\mathcal{C}|\mathbf{X}|$.
13-QUANTUM COHERENT SPACES

- The desessentialised version adapts *mutatis mutandis*:
 - **Web**: Finite dimensional Hilbert space X.
 - **Subsets**: Hermitians operating on X.
 - **Duality**: $0 \leq \text{tr}(h \cdot k) \leq 1$.

- Coherent spaces:
 - **Web**: Space $\mathbb{C}|X|$.
 - **Subsets**: Subspace C^a; induces projection π_a.
13-QUANTUM COHERENT SPACES

► The desessentialised version adapts mutatis mutandis:

Web: Finite dimensional Hilbert space X.
Subsets: Hermitians operating on X.
Duality: $0 \leq \text{tr}(h \cdot k) \leq 1$.

► Coherent spaces:

Web: Space $\mathbb{C}|X|$.
Subsets: Subspace \mathbb{C}^a; induces projection π_a.
Duality: If h, k are commuting projections $\text{tr}(h \cdot k)$ is the dimension of the intersection, i.e., a cardinal:
13-QUANTUM COHERENT SPACES

- The desessentialised version adapts mutatis mutandis:
 - **Web**: Finite dimensional Hilbert space X.
 - **Subsets**: Hermitians operating on X.
 - **Duality**: $0 \leq tr(h \cdot k) \leq 1$.

- **Coherent spaces**:
 - **Web**: Space $\mathbb{C}|X|$.
 - **Subsets**: Subspace \mathbb{C}^a; induces projection π_a.
 - **Duality**: If h, k are commuting projections $tr(h \cdot k)$ is the dimension of the intersection, i.e., a cardinal:
 \[
 tr(\pi_a \cdot \pi_b) = \#(a \cap b)
 \]
 \[(12)\]
The desessentialised version adapts *mutatis mutandis*:

Web: Finite dimensional Hilbert space X.

Subsets: Hermitians operating on X.

Duality: $0 \leq \text{tr}(h \cdot k) \leq 1$.

Coherent spaces:

Web: Space $\mathbb{C}|X|$.

Subsets: Subspace \mathbb{C}^a; induces projection π_a.

Duality: If h, k are commuting projections $\text{tr}(h \cdot k)$ is the dimension of the intersection, i.e., a cardinal:

$$\text{tr}(\pi_a \cdot \pi_b) = \#(a \cap b) \tag{12}$$

Functional application (involves $X \otimes Y$):
13-QUANTUM COHERENT SPACES

- The desessentialised version adapts *mutatis mutandis*:
 - **Web**: Finite dimensional Hilbert space \(X \).
 - **Subsets**: Hermitians operating on \(X \).
 - **Duality**: \(0 \leq \text{tr}(h \cdot k) \leq 1 \).

- **Coherent spaces**:
 - **Web**: Space \(\mathbb{C} | X | \).
 - **Subsets**: Subspace \(\mathbb{C}^a \); induces projection \(\pi_a \).
 - **Duality**: If \(h, k \) are commuting projections \(\text{tr}(h \cdot k) \) is the dimension of the intersection, i.e., a cardinal:
 \[
 \text{tr}(\pi_a \cdot \pi_b) = \#(a \cap b) \tag{12}
 \]

- **Functional application (involves \(X \otimes Y \))**:
 \[
 \text{tr}(F(a) \cdot b)) = \text{tr}(\text{Sq}(F) \cdot (a \otimes b)) \tag{13}
 \]
14-SUBJECT AND OBJECT

- Hidden assumption: commutativity (diagonal).
14-SUBJECT AND OBJECT

- Hidden assumption: **commutativity** (diagonal).
- The points of the diagonal correspond to atoms.
14-SUBJECT AND OBJECT

- Hidden assumption: **commutativity** (diagonal).
- The points of the diagonal correspond to atoms.
- But this is indeed **base-dependent**.
14-Subject and Object

- Hidden assumption: *commutativity* (diagonal).
- The points of the diagonal correspond to atoms.
- But this is indeed *base-dependent*.
- Tilt the *gyroscopes* and everything looks different.
14-Subject and Object

- Hidden assumption: commutativity (diagonal).
- The points of the diagonal correspond to atoms.
- But this is indeed base-dependent.
- Tilt the gyroscopes and everything looks different.
- Base = Subject = Commutativity
14-SUBJECT AND OBJECT

- Hidden assumption: **commutativity** (diagonal).
- The points of the diagonal correspond to atoms.
- But this is indeed **base-dependent**.
- Tilt the **gyroscopes** and everything looks different.
- **Base = Subject = Commutativity**
- Subject becomes part of the theory.
14-Subject and Object

- Hidden assumption: commutativity (diagonal).
- The points of the diagonal correspond to atoms.
- But this is indeed base-dependent.
- Tilt the gyroscopes and everything looks different.
- Base = Subject = Commutativity
- Subject becomes part of the theory.
- Difference between twist (identity) and its etaspansion:
14-Subject and Object

- Hidden assumption: commutativity (diagonal).
- The points of the diagonal correspond to atoms.
- But this is indeed base-dependent.
- Tilt the gyroscopes and everything looks different.
- Base = Subject = Commutativity
- Subject becomes part of the theory.
- Difference between twist (identity) and its etaspansion:

\[\sigma := \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \eta := \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \] (14)
15-QUANTUM BOOLEANS

- Spin, a two-state system, represented by 2×2 matrices:
15-QUANTUM BOOLEANS

- Spin, a two-state system, represented by 2×2 matrices:

$$\text{true} := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{false} := \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

(15)
15-QUANTUMBOOLEANS

Spin, a two-state system, represented by 2×2 matrices:

\[
\begin{align*}
\text{true} & := \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} & \text{false} & := \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}
\end{align*}
\]

Tilting the gyros: quantum booleans:
15-Quantum Booleans

- **Spin**, a two-state system, represented by 2×2 matrices:

 $\text{true} := \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
 $\text{false} := \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

- Tilting the gyros: quantum booleans:

 $1/(1 + z\bar{z}) \begin{bmatrix} 1 & \bar{z} \\ z & \bar{z}\bar{z} \end{bmatrix}$
 $z \in \mathbb{C} \cup \{+\infty\}$
15-QUANTUM BOOLEANs

- **Spin**, a two-state system, represented by 2×2 matrices:

$$
\text{true} := \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{false} := \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}
$$

(15)

- **Tilting the gyros**: quantum booleans:

$$
\frac{1}{1 + z\overline{z}} \begin{bmatrix} 1 & z \\ z & z\overline{z} \end{bmatrix} \quad z \in \mathbb{C} \cup \{+\infty\}
$$

(16)

- **Measurement** is operated by η-expansion:
15-QUANTUM BOOLEANS

- **Spin**, a two-state system, represented by 2×2 matrices:

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{true}$$

$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{false}$$ \hspace{1cm} (15)

- Tilting the gyros: quantum booleans:

$$\frac{1}{1 + zz} \begin{bmatrix} 1 & z \\ z & zz \end{bmatrix} \quad z \in \mathbb{C} \cup \{+\infty\}$$ \hspace{1cm} (16)

- Measurement is operated by η-expansion:

$$\eta(\begin{bmatrix} a & \bar{b} \\ b & c \end{bmatrix}) = \begin{bmatrix} a & 0 \\ 0 & c \end{bmatrix}$$ \hspace{1cm} (17)
15-QUANTUM BOOLEANS

- **Spin**, a two-state system, represented by 2×2 matrices:

 \[
 \text{true} := \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{false} := \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \tag{15}
 \]

- Tilting the gyros: quantum booleans:

 \[
 \frac{1}{1 + z\bar{z}} \begin{bmatrix} 1 & \bar{z} \\ z & z\bar{z} \end{bmatrix} \quad z \in \mathbb{C} \cup \{+\infty\} \tag{16}
 \]

- Measurement is operated by η-expansion:

 \[
 \eta(\begin{bmatrix} a & \bar{b} \\ b & c \end{bmatrix}) = \begin{bmatrix} a & 0 \\ 0 & c \end{bmatrix} \tag{17}
 \]

- Chops off the antidiagonal coefficients; yields probabilistic boolean: $\lambda \cdot \text{true} + (1 - \lambda) \cdot \text{false}$, with $\lambda := \frac{1}{1 + z\bar{z}}$.
III-Passage to infinity
16-THE UNFINISHED

- Infinite = perennial = duplicable = imperfect (unfinished).
16-The unfinished

- Infinite = perennial = duplicable = imperfect (unfinished).
- Dedekind integers (system F version) :

16-THE UNFINISHED

- Infinite = perennial = duplicable = imperfect (unfinished).
- Dedekind integers (system F version):

 \[\text{nat} := \forall X (\neg (X \rightarrow X) \rightarrow (X \rightarrow X)) \]

(18)
16- The unfinished

- Infinite = perennial = duplicable = imperfect (unfinished).
- Dedekind integers (system F version):
 \[\text{nat} := \forall X (! (X \rightarrow X) \rightarrow (X \rightarrow X)) \]
 \[(18) \]
- Heavily rely on exponentials. Four laws:

```
16 - THE UNFINISHED

- Infinite = perennial = duplicable = **imperfect** (unfinished).
- Dedekind integers (system F version):
  \[
  \text{nat} := \forall X (\neg (X \rightarrow X) \rightarrow (X \rightarrow X))
  \]
  (18)
- Heavily rely on **exponentials**. Four laws:
  **Weakening:** $\forall A \vdash 1$. 

Keio 16/17 Mars 2006
16- THE UNFINISHED

- Infinite = perennial = duplicable = imperfect (unfinished).
- Dedekind integers (system F version):
  \[ \text{nat} := \forall X \left( \! (X \rightarrow X) \rightarrow (X \rightarrow X) \right) \]

- Heavily rely on exponentials. Four laws:
  - Weakening: \( \! A \vdash 1 \).
  - Contraction: \( \! A \vdash \! A \otimes \! A \).
16-THE UNFINISHED

- Infinite = perennial = duplicable = imperfect (unfinished).
- Dedekind integers (system \( F \) version):
  \[
  \text{nat} := \forall X (\neg \neg X \rightarrow X) \rightarrow (X \rightarrow X)
  \]
  (18)
- Heavily rely on exponentials. Four laws:
  - Weakening: \( \top \vdash \neg \neg 1 \).
  - Contraction: \( \top \vdash \neg \neg (\top \otimes \top) \).
  - Dereliction: \( \top \vdash \top \).

16-The unfinished

- Infinite = perennial = duplicable = imperfect (unfinished).

- Dedekind integers (system F version):

\[
\text{nat} := \forall X ( !(X \rightarrow X) \rightarrow (X \rightarrow X))
\]  

- Heavily rely on exponentials. Four laws:

  - Weakening : !A\vdash 1.
  - Contraction : !A\vdash !A \otimes !A.
  - Dereliction : !A\vdash A.
  - Promotion : From !\Gamma\vdash A, get !\Gamma\vdash !A.
16- THE UNFINISHED

► Infinite = perennial = duplicable = imperfect (unfinished).

► Dedekind integers (system $F$ version):

$$\text{nat} := \forall X (! (X \to \circ X) \to \circ (X \to \circ X)) \quad (18)$$

► Heavily rely on exponentials. Four laws:

- **Weakening**: $!A \vdash 1$.
- **Contraction**: $!A \vdash !A \otimes !A$.
- **Dereliction**: $!A \vdash A$.
- **Promotion**: From $!\Gamma \vdash A$, get $!\Gamma \vdash !A$.

► These rules express our vision of infinity. Strongly influenced by Western theology (Thomas Aquinus).
16-THE UNFINISHED

- Infinite = perennial = duplicable = imperfect (unfinished).
- Dedekind integers (system F version):
  \[
  \text{nat} := \forall X (\neg (X \rightarrow X) \rightarrow (X \rightarrow X))
  \]  
  (18)
- Heavily rely on exponentials. Four laws:
  - **Weakening**: \( !A \vdash 1 \).
  - **Contraction**: \( !A \vdash !A \otimes !A \).
  - **Dereliction**: \( !A \vdash A \).
  - **Promotion**: From \( \Gamma \vdash A \), get \( \Gamma \vdash !A \).
- These rules express our vision of infinity. Strongly influenced by Western theology (Thomas Aquinus).
- Just as opaque as integers. At least this is logic.
16-THE UNFINISHED

- Infinite = perennial = duplicable = imperfect (unfinished).
- Dedekind integers (system $F$ version):
  \[
  \text{nat} := \forall X (\neg (X \to X) \to (X \to X))
  \] (18)
- Heavily rely on exponentials. Four laws:
  - Weakening: $!A \vdash 1$.
  - Contraction: $!A \vdash !A \otimes !A$.
  - Dereliction: $!A \vdash A$.
  - Promotion: From $!\Gamma \vdash A$, get $!\Gamma \vdash !A$.
- These rules express our vision of infinity. Strongly influenced by Western theology (Thomas Aquinus).
- Just as opaque as integers. At least this is logic.
- Light logics ($LLL$, $ELL$...) ; not grounded. But some hope!
17-Quantum Coherent Spaces

- Can we use infinite dimensional Hilbert spaces?
17-QUANTUM COHERENT SPACES

- Can we use infinite dimensional Hilbert spaces?
- Typical example: space $\ell^2$ of square-summable sequences:
17-QUANTUM COHERENT SPACES

- Can we use infinite dimensional Hilbert spaces?
- Typical example: space $\ell^2$ of square-summable sequences:

$$\langle (x_n) \mid (y_n) \rangle := \sum_n x_n \cdot \overline{y_n}$$ (19)
17-Quantum Coherent Spaces

- Can we use infinite dimensional Hilbert spaces?
- Typical example: space $\ell^2$ of square-summable sequences:
  \[ \langle (x_n) \mid (y_n) \rangle := \sum_n x_n \cdot \overline{y_n} \]  
  (19)
- Trace defined for positive hermitians (value in $\mathbb{R} \cup \{+\infty\}$):
17-Quantum coherent spaces

- Can we use infinite dimensional Hilbert spaces?
- Typical example: space $\ell^2$ of square-summable sequences:

$$\langle (x_n) | (y_n) \rangle := \sum_{n} x_n \cdot \overline{y_n}$$  \hspace{1cm} (19)

- Trace defined for positive hermitians (value in $\mathbb{R} \cup \{+\infty\}$):

$$\text{tr}(uu^*) = \text{tr}(u^*u)$$ \hspace{1cm} (20)
Can we use infinite dimensional Hilbert spaces?

Typical example: space $\ell^2$ of square-summable sequences:

$$\langle (x_n) | (y_n) \rangle := \sum_n x_n \cdot \overline{y_n} \quad (19)$$

Trace defined for positive hermitians (value in $\mathbb{R} \cup \{+\infty\}$):

$$\text{tr}(uu^*) = \text{tr}(u^*u) \quad (20)$$

More generally, for trace-class operators (value in $\mathbb{C}$):
17-QUANTUM COHERENT SPACES

- Can we use infinite dimensional Hilbert spaces?
- Typical example: space $\ell^2$ of square-summable sequences:
  \[ \langle (x_n) \mid (y_n) \rangle := \sum_{n} x_n \cdot \overline{y_n} \]  
  (19)

- Trace defined for positive hermitians (value in $\mathbb{R} \cup \{+\infty\}$):
  \[ \text{tr}(uu^*) = \text{tr}(u^*u) \]  
  (20)

- More generally, for trace-class operators (value in $\mathbb{C}$):
  \[ \text{tr}(\sqrt{uu^*}) < +\infty \]  
  (21)
17-QUANTUM COHERENT SPACES

► Can we use infinite dimensional Hilbert spaces?

► Typical example: space $\ell^2$ of square-summable sequences:

$$\langle (x_n) \mid (y_n) \rangle := \sum_n x_n \cdot \overline{y_n}$$

(19)

► Trace defined for positive hermitians (value in $\mathbb{R} \cup \{+\infty\}$):

$$\text{tr}(uu^*) = \text{tr}(u^*u)$$

(20)

► More generally, for trace-class operators (value in $\mathbb{C}$):

$$\text{tr}(\sqrt{uu^*}) < +\infty$$

(21)

► Not suited for logic: the twist is not trace-class.
17-Quantum Coherent Spaces

- Can we use infinite dimensional Hilbert spaces?
- Typical example: space $\ell^2$ of square-summable sequences:
  \[ \langle (x_n) \mid (y_n) \rangle := \sum_n x_n \cdot \overline{y_n} \quad (19) \]
- Trace defined for positive hermitians (value in $\mathbb{R} \cup \{+\infty\}$):
  \[ \text{tr}(uu^*) = \text{tr}(u^*u) \quad (20) \]
- More generally, for trace-class operators (value in $\mathbb{C}$):
  \[ \text{tr}(\sqrt{uu^*}) < +\infty \quad (21) \]
- Not suited for logic: the twist is not trace-class.
- This generalisation corresponds to type I algebras.
17-Quantum Coherent Spaces

- Can we use infinite dimensional Hilbert spaces?
- Typical example: space $\ell^2$ of square-summable sequences:
  \[
  \langle (x_n) | (y_n) \rangle := \sum_n x_n \cdot \overline{y_n}
  \] (19)
- Trace defined for **positive** hermitians (value in $\mathbb{R} \cup \{+\infty\}$):
  \[
  \text{tr}(uu^*) = \text{tr}(u^*u)
  \] (20)
- More generally, for **trace-class** operators (value in $\mathbb{C}$):
  \[
  \text{tr}(\sqrt{uu^*}) < +\infty
  \] (21)
- Not suited for logic: the twist is not trace-class.
- This generalisation corresponds to type I algebras.
- Type $\text{II}_1$ algebras have a trace. But the twist gets a null trace.
17-Quantum Coherent Spaces

- Can we use infinite dimensional Hilbert spaces?
- Typical example: space $\ell^2$ of square-summable sequences:
  \[ \langle (x_n) | (y_n) \rangle := \sum_n x_n \cdot \overline{y_n} \]  
  (19)

- Trace defined for positive hermitians (value in $\mathbb{R} \cup \{+\infty\}$):
  \[ \text{tr}(uu^*) = \text{tr}(u^*u) \]  
  (20)

- More generally, for trace-class operators (value in $\mathbb{C}$):
  \[ \text{tr}(\sqrt{uu^*}) < +\infty \]  
  (21)

- Not suited for logic: the twist is not trace-class.
- This generalisation corresponds to type I algebras.
- Type $\text{II}_1$ algebras have a trace. But the twist gets a null trace.
- Something wrong with the methodology.
18-IMMANENT JUSTICE

- When God created the universe, he first defined the actual, then the potential.
18-IMMANENT JUSTICE

- When God created the universe, he first defined the actual, then the potential.
- Reflected in Kripke models: parallel universes like butterflies.
When God created the universe, he first defined the actual, then the potential.
Reflected in Kripke models: parallel universes like butterflies.
Obviously, the potential should remain potential.
18-IMMANENT JUSTICE

- When God created the universe, he first defined the actual, then the potential.
- Reflected in Kripke models: parallel universes like butterflies.
- Obviously, the potential should remain potential.
- The same is true of categories: composition costs nothing.
18-IMMANENT JUSTICE

- When God created the universe, he first defined the actual, then the potential.
- Reflected in Kripke models: parallel universes like butterflies.
- Obviously, the potential should remain potential.
- The same is true of categories: composition costs nothing.
- Because operations have been performed in advance.
18-IMMANENT JUSTICE

- When God created the universe, he first defined the actual, then the potential.
- Reflected in Kripke models: parallel universes like butterflies.
- Obviously, the potential should remain potential.
- The same is true of categories: composition costs nothing.
- Because operations have been performed in advance.
- This actualisation of potentialities is possible in finite dimension; in infinite dimension, it diverges, yielding useless values, zero or infinite.
18-Immanent Justice

- When God created the universe, he first defined the actual, then the **potential**.
- Reflected in **Kripke models** : parallel universes like butterflies.
- Obviously, the potential should remain potential.
- The same is true of categories : composition **costs nothing**.
- Because operations have been performed **in advance**.
- This actualisation of potentialities is possible in finite dimension ; in infinite dimension, it **diverges**, yielding useless values, zero or infinite.
- **GoI** : a potential interpretation which remains potential.
19- THE DETERMINANT

- Other invariant (after $\#(a \cap b)$ and $\text{tr}(h \cdot k)$):
19-The determinant

- Other invariant (after ♯(a ∩ b) and tr(h · k)):
  - The determinant det(I − h · k).
19 - THE DETERMINANT

- Other invariant (after \( ♯(a \cap b) \) and \( \text{tr}(h \cdot k) \)):
  - The determinant \( \det(I - h \cdot k) \).
- The invariant of Geometry of Interaction.
19-The determinant

- Other invariant (after $(a \cap b)$ and $\text{tr}(h \cdot k)$):
  - The determinant $\det(I - h \cdot k)$.
- The invariant of Geometry of Interaction.
  - Equalities, up to scalars.
19-THE DETERMINANT

- Other invariant (after $\#(a \cap b)$ and $\text{tr}(h \cdot k)$):
  - The determinant $\det(I - h \cdot k)$.
- The invariant of Geometry of Interaction.
  - Equalities, up to scalars.
  - Reflects the introspection.
19-**THE DETERMINANT**

- Other invariant (after \#(a \cap b) and tr(h \cdot k)):
  - The determinant \(\det(I - h \cdot k)\).
- The invariant of **Geometry of Interaction**.
  - Equalities, up to **scalars**.
  - Reflects the **introspection**.
  - Memory of computation, usually obtained by cheating.
19- The determinant

- Other invariant (after $\#(a \cap b)$ and $\text{tr}(h \cdot k)$):
  - The determinant $\det(I - h \cdot k)$.
- The invariant of Geometry of Interaction.
  - Equalities, up to scalars.
  - Reflects the introspection.
  - Memory of computation, usually obtained by cheating.
- In finite dimension, use exterior algebra (Fock space), and observe that:
19- THE DETERMINANT

- Other invariant (after $\sharp(a \cap b)$ and $\text{tr}(h \cdot k)$):
  - The determinant $\det(I - h \cdot k)$.
- The invariant of Geometry of Interaction.
  - Equalities, up to scalars.
  - Reflects the introspection.
  - Memory of computation, usually obtained by cheating.
- In finite dimension, use exterior algebra (Fock space), and observe that:
  \[
  \det(I + u) = \text{tr}(\Lambda u) \quad (22)
  \]
19- THE DETERMINANT

- Other invariant (after \( \#(a \cap b) \) and \( \text{tr}(h \cdot k) \)):
  - The determinant \( \det(I - h \cdot k) \).
- The invariant of Geometry of Interaction.
  - Equalities, up to scalars.
  - Reflects the introspection.
  - Memory of computation, usually obtained by cheating.
- In finite dimension, use exterior algebra (Fock space), and observe that:
  \[
  \det(I + u) = \text{tr}(\Lambda u) \quad (22)
  \]
- Actualisation is the functor \( \Lambda i h \) : it lists all cycles, all possibilities :
19-THE DETERMINANT

- Other invariant (after $\sharp(a \cap b)$ and $\text{tr}(h \cdot k)$):
  - The determinant $\det(I - h \cdot k)$.
- The invariant of Geometry of Interaction.
  - Equalities, up to scalars.
  - Reflects the introspection.
  - Memory of computation, usually obtained by cheating.
- In finite dimension, use exterior algebra (Fock space), and observe that:
  \[
  \det(I + u) = \text{tr}(\Lambda u) \tag{22}
  \]
- Actualisation is the functor $\Lambda i h$ : it lists all cycles, all possibilities:
  \[
  \det(I - h k) = \text{tr}((\Lambda i h)(\Lambda i k)) \tag{23}
  \]
19-THE DETERMINANT

- Other invariant (after $\#(a \cap b)$ and $\text{tr}(h \cdot k)$):
  - The determinant $\det(I - h \cdot k)$.
- The invariant of Geometry of Interaction.
  - Equalities, up to scalars.
  - Reflects the introspection.
  - Memory of computation, usually obtained by cheating.
- In finite dimension, use exterior algebra (Fock space), and observe that:
  \[ \det(I + u) = \text{tr}(\Lambda u) \] (22)
- Actualisation is the functor $\Lambda_i h$ : it lists all cycles, all possibilities:
  \[ \det(I - h k) = \text{tr}((\Lambda_i h)(\Lambda_i k)) \] (23)
- Equation (22) does not pass infinite limits. Remains the determinant, i.e., GoI. One should remain potential.
20 - The Flush

- Infinity is based upon the idea of flushing.
20-THE FLUSH

- Infinity is based upon the idea of flushing.
- The hypothesis about the word of ideas is that the ideal space is unlimited, and that one can always make room by flushing.
20-The Flush

- Infinity is based upon the idea of flushing.
- The hypothesis about the word of ideas is that the ideal space is unlimited, and that one can always make room by flushing.
- Ecology: we cannot flush things forever. Is the word of ideas free of ecological problems?
20- THE FLUSH

- Infinity is based upon the idea of flushing.
- The hypothesis about the word of ideas is that the ideal space is unlimited, and that one can always make room by flushing.
- Ecology: we cannot flush things forever. Is the word of ideas free of ecological problems?
- The traditional flush is the Hilbert hotel: make new rooms. In GoI it is expressed by the equations:
20-The Flush

- Infinity is based upon the idea of flushing.
- The hypothesis about the word of ideas is that the ideal space is unlimited, and that one can always make room by flushing.
- Ecology: we cannot flush things forever. Is the word of ideas free of ecological problems?
- The traditional flush is the Hilbert hotel: make new rooms. In GoI it is expressed by the equations:

\[ p^* \cdot p = q^* \cdot q = p \cdot p^* + q \cdot q^* = I \]

(24)
20-**THE FLUSH**

- Infinity is based upon the idea of **flushing**.
- The hypothesis about the word of ideas is that the ideal space is **unlimited**, and that one can always make room by flushing.
- **Ecology**: we cannot flush things forever. Is the word of ideas free of ecological problems?
- The traditional flush is the **Hilbert hotel**: make new rooms. In GoI it is expressed by the equations:
  \[ p^* \cdot p = q^* \cdot q = p \cdot p^* + q \cdot q^* = I \quad (24) \]
- Wrong in finite (e.g., $\mathbb{II}_1$) algebras.
20-The Flush

- Infinity is based upon the idea of flushing.
- The hypothesis about the word of ideas is that the ideal space is unlimited, and that one can always make room by flushing.
- **Ecology**: we cannot flush things forever. Is the word of ideas free of ecological problems?
- The traditional flush is the **Hilbert hotel**: make new rooms. In GoI it is expressed by the equations:
  \[ p^* \cdot p = q^* \cdot q = p \cdot p^* + q \cdot q^* = I \]  (24)
- Wrong in finite (e.g., $\mathbb{II}_1$) algebras.
  \[ \text{tr}(p^* \cdot p) = 1 \neq \text{tr}(p \cdot p^*) \]  (25)
Infinity is based upon the idea of **flushing**.

The hypothesis about the word of ideas is that the ideal space is **unlimited**, and that one can always make room by flushing.

**Ecology**: we cannot flush things forever. Is the word of ideas free of ecological problems?

The traditional flush is the **Hilbert hotel**: make new rooms. In GoI it is expressed by the equations:

\[
p^* \cdot p = q^* \cdot q = p \cdot p^* + q \cdot q^* = I\]

Wrong in finite (e.g., II\(_1\)) algebras.

\[
\text{tr}(p^* \cdot p) = 1 \neq \text{tr}(p \cdot p^*)
\]

No Hilbert Hotel, since rooms have a **size** (trace, dimension).
20-The Flush

- Infinity is based upon the idea of flushing.
- The hypothesis about the word of ideas is that the ideal space is unlimited, and that one can always make room by flushing.
- **Ecology**: we cannot flush things forever. Is the word of ideas free of ecological problems?
- The traditional flush is the Hilbert hotel: make new rooms. In GoI it is expressed by the equations:
  \[ p^* \cdot p = q^* \cdot q = p \cdot p^* + q \cdot q^* = I \]

- Wrong in finite (e.g., $\mathbb{II}_1$) algebras.
  \[ \text{tr}(p^* \cdot p) = 1 \neq \text{tr}(p \cdot p^*) \]

- No Hilbert Hotel, since rooms have a size (trace, dimension).
- Responsible for dereliction.
Another flush: fresh variables.
Another flush: fresh variables.
Has something to do with renaming of bound variables, which form the private dialect.
Another flush: fresh variables.

Has something to do with renaming of bound variables, which form the private dialect.

Typical flush obtained by internalising the isometry:
21- THE FLUSH (CONTINUED)

- Another flush: fresh variables.
- Has something to do with renaming of bound variables, which form the private dialect.
- Typical flush obtained by internalising the isometry:

\[
\mathbf{X} \otimes (\mathbf{X} \otimes \mathbf{X}) \sim (\mathbf{X} \otimes \mathbf{X}) \otimes \mathbf{X}
\]  

(26)
21-The flush (continued)

- Another flush: fresh variables.
- Has something to do with renaming of bound variables, which form the private dialect.
- Typical flush obtained by internalising the isometry:
  \[ X \otimes (X \otimes X) \sim (X \otimes X) \otimes X \]  
  (26)
- Starting with \( u \otimes I = u \otimes (I \otimes I) \), one gets \( (u \otimes I) \otimes I \).
21-The flush (continued)

- Another flush: fresh variables.
- Has something to do with renaming of bound variables, which form the private dialect.
- Typical flush obtained by internalising the isometry:
  \[
  X \otimes (X \otimes X) \sim (X \otimes X) \otimes X \tag{26}
  \]
- Starting with \( u \otimes I = u \otimes (I \otimes I) \), one gets \( (u \otimes I) \otimes I \).
- \( u \) has been flushed to the left.
21-THE FLUSH (CONTINUED)

- Another flush: fresh variables.
- Has something to do with renaming of bound variables, which form the private dialect.
- Typical flush obtained by internalising the isometry:
  \[ X \otimes (X \otimes X) \sim (X \otimes X) \otimes X \]  
  (26)
- Starting with \( u \otimes I = u \otimes (I \otimes I) \), one gets \( (u \otimes I) \otimes I \).
- \( u \) has been flushed to the left.
- Not possible in the hyperfinite factor.
21- The flush (continued)

- Another flush: fresh variables.
- Has something to do with renaming of bound variables, which form the private dialect.
- Typical flush obtained by internalising the isometry:
  \[
  X \otimes (X \otimes X) \sim (X \otimes X) \otimes X
  \]  
  (26)
- Starting with \( u \otimes I = u \otimes (I \otimes I) \), one gets \( (u \otimes I) \otimes I \).
- \( u \) has been flushed to the left.
- Not possible in the hyperfinite factor.
- The Murray-von Neumann factor (finite and hyperfinite) seems the appropriate space for true finitism.
IV-\textbf{C}*-\textbf{-ALGEBRAS}
22-Definition and Examples

- Complex involutive Banach algebra such that:
22-DEFINITION AND EXAMPLES

- Complex involutive Banach algebra such that:
  \[ \|uu^*\| = \|u\|^2 \]  (27)
22-Definition and Examples

- Complex involutive Banach algebra such that:
  \[ \| uu^* \| = \| u \|^2 \]  (27)
- Space \( \mathbb{C}(X) \) of complex continuous functions on compact \( X \).
22-Definition and Examples

- Complex involutive Banach algebra such that:
  \[ \| uu^* \| = \| u \|^2 \] (27)
- Space \( \mathbb{C}(X) \) of complex continuous functions on compact \( X \).
  - Indeed the generic commutative example.
22-Definition and Examples

- Complex involutive Banach algebra such that:
  \[ \|uu^*\| = \|u\|^2 \]  

- Space \( \mathbb{C}(X) \) of complex continuous functions on compact \( X \).
  - Indeed the generic commutative example.
  - If \( C \) commutative, take for \( X \) the space of characters.
22-Definition and Examples

- Complex involutive Banach algebra such that:
  \[ \| uu^* \| = \| u \|^2 \]  \hspace{1cm} (27)

- Space \( \mathbb{C}(X) \) of complex continuous functions on compact \( X \).
  - Indeed the generic commutative example.
  - If \( C \) commutative, take for \( X \) the space of characters.
  - B.t.w., character = pure (extremal) state.
22-Definition and Examples

- Complex involutive Banach algebra such that:
  \[ ||uu^*|| = ||u||^2 \]  (27)

- Space \( \mathbb{C}(X) \) of complex continuous functions on compact \( X \).
  - Indeed the generic **commutative** example.
  - If \( C \) commutative, take for \( X \) the space of **characters**.
  - B.t.w., character = pure (extremal) **state**.
  - State: linear form \( \rho \) such that \( \rho(uu^*) \geq 0 \), \( \rho(I) = 1 \).
22-DEFINITION AND EXAMPLES

Complex involutive Banach algebra such that:
\[ \| uu^* \| = \| u \|^2 \] (27)

Space \( \mathbb{C}(X) \) of complex continuous functions on compact \( X \).
- Indeed the generic **commutative** example.
- If \( C \) commutative, take for \( X \) the space of **characters**.
- B.t.w., character = pure (extremal) **state**.
- **State**: linear form \( \rho \) such that \( \rho(uu^*) \geq 0, \rho(I) = 1 \).
- States of \( \mathbb{C}(X) \) = probability measures on \( X \).
22-Definition and examples

- Complex involutive Banach algebra such that:
  \[ \| uu^* \| = \| u \|^2 \]  \hspace{1cm} (27)

- Space \( \mathbb{C}(X) \) of complex continuous functions on compact \( X \).
  - Indeed the generic **commutative** example.
  - If \( \mathbb{C} \) commutative, take for \( X \) the space of **characters**.
  - B.t.w., character = pure (extremal) **state**.
  - State: linear form \( \rho \) such that \( \rho(uu^*) \geq 0 \), \( \rho(I) = 1 \).
  - States of \( \mathbb{C}(X) \) = probability measures on \( X \).

- Space \( \mathcal{B}(\mathbb{H}) \) of bounded operators on Hilbert space \( \mathbb{H} \).
22-Definition and Examples

- Complex involutive Banach algebra such that:
  \[ \|uu^*\| = \|u\|^2 \]  \[ (27) \]
- Space \( \mathbb{C}(X) \) of complex continuous functions on compact \( X \).
  - Indeed the generic commutative example.
  - If \( C \) commutative, take for \( X \) the space of characters.
  - B.t.w., character = pure (extremal) state.
  - State: linear form \( \rho \) such that \( \rho(uu^*) \geq 0, \rho(I) = 1 \).
  - States of \( \mathbb{C}(X) \) = probability measures on \( X \).
- Space \( \mathcal{B}(\mathbb{H}) \) of bounded operators on Hilbert space \( \mathbb{H} \).
  - Involution defined by \( \langle u^*(x) \mid y \rangle := \langle x \mid u(y) \rangle \).
22-Definition and examples

- Complex involutive Banach algebra such that:
  \[ \| uu^* \| = \| u \|^2 \]  (27)
- Space \( \mathbb{C}(X) \) of complex continuous functions on compact \( X \).
  - Indeed the generic commutative example.
  - If \( C \) commutative, take for \( X \) the space of characters.
  - B.t.w., character = pure (extremal) state.
  - State: linear form \( \rho \) such that \( \rho(uu^*) \geq 0, \rho(I) = 1 \).
  - States of \( \mathbb{C}(X) \) = probability measures on \( X \).
- Space \( \mathcal{B}(H) \) of bounded operators on Hilbert space \( H \).
  - Involution defined by \( \langle u^*(x) \mid y \rangle := \langle x \mid u(y) \rangle \).
  - Subalgebras of \( \mathcal{B}(H) \) are generic C*-algebras.
22-DEFINITION AND EXAMPLES

- Complex involutive Banach algebra such that:
  \[ \| uu^* \| = \| u \|^2 \] (27)

- Space \( \mathbb{C}(X) \) of complex continuous functions on compact \( X \).
  - Indeed the generic commutative example.
  - If \( C \) commutative, take for \( X \) the space of characters.
  - B.t.w., character = pure (extremal) state.
  - State: linear form \( \rho \) such that \( \rho(uu^*) \geq 0, \rho(I) = 1 \).
  - States of \( \mathbb{C}(X) \) = probability measures on \( X \).

- Space \( \mathcal{B}(\mathbb{H}) \) of bounded operators on Hilbert space \( \mathbb{H} \).
  - Involution defined by \( \langle u^*(x) \mid y \rangle := \langle x \mid u(y) \rangle \).
  - Subalgebras of \( \mathcal{B}(\mathbb{H}) \) are generic C*-algebras.
  - Non equivalent faithful representations on \( \mathbb{H} \).
23-SIMPLICITY

Morphisms of $C^*$-algebras defined algebraically.
23-SIMPLICITY

► Morphisms of C*-algebras defined algebraically.
► Indeed bounded, \( \| \varphi(u) \| \leq \| u \| : \)
23-Simplicity

- Morphisms of C*-algebras defined algebraically.
- Indeed bounded, $\|\varphi(u)\| \leq \|u\|$
  - Use $\|uu^*\| = \|u\|^2$ to reduce to positive hermitians $uu^*$. 
23-SIMPPLICITY

- Morphisms of C*-algebras defined algebraically.
- Indeed bounded, $||\varphi(u)|| \leq ||u||$:
  - Use $||uu^*|| = ||u||^2$ to reduce to positive hermitians $uu^*$.
  - Use $||uu^*|| = r(\text{Sp}(uu^*))$ to define the norm algebraically.
23-SIMPLICITY

- Morphisms of $C^*$-algebras defined algebraically.
- Indeed bounded, $\|\varphi(u)\| \leq \|u\|$
  - Use $\|uu^*\| = \|u\|^2$ to reduce to positive hermitians $uu^*$.
  - Use $\|uu^*\| = r(\text{Sp}(uu^*))$ to define the norm algebraically:
    \[ \|uu^*\| = \sup \{ \lambda ; uu^* - \lambda I \text{ not invertible} \} \] (28)
23-SIMPLICITY

- Morphisms of C*-algebras defined algebraically.
- Indeed bounded, \(\|\varphi(u)\| \leq \|u\|\):
  - Use \(\|uu^*\| = \|u\|^2\) to reduce to positive hermitians \(uu^*\).
  - Use \(\|uu^*\| = r(\text{Sp}(uu^*))\) to define the norm algebraically:
    \[
    \|uu^*\| = \sup \{\lambda; uu^* - \lambda I \text{ not invertible}\} 
    \] (28)
- Injective morphisms are isometric, \(\|\varphi(u)\| = \|u\|\):
23-Simplicity

- Morphisms of C*-algebras defined algebraically.
- Indeed bounded, $\|\varphi(u)\| \leq \|u\|$:
  - Use $\|uu^*\| = \|u\|^2$ to reduce to positive hermitians $uu^*$.
  - Use $\|uu^*\| = r(\text{Sp}(uu^*))$ to define the norm algebraically:
    \[
    \|uu^*\| = \sup \{\lambda; uu^* - \lambda I \text{ not invertible}\}
    \]
  \]
- Injective morphisms are isometric, $\|\varphi(u)\| = \|u\|$:
  - Norm shrinks $\Rightarrow$ spectrum shrinks.
23-SIMPPLICITY

- Morphisms of C*-algebras defined algebraically.
- Indeed bounded, $\|\varphi(u)\| \leq \|u\| :$
  - Use $\|uu^*\| = \|u\|^2$ to reduce to positive hermitians $uu^*$.
  - Use $\|uu^*\| = r(\text{Sp}(uu^*))$ to define the norm algebraically:
    $$\|uu^*\| = \sup \{\lambda; uu^* - \lambda I \text{ not invertible}\} \quad (28)$$
- Injective morphisms are isometric, $\|\varphi(u)\| = \|u\| :$
  - Norm shrinks $\Rightarrow$ spectrum shrinks.
  - Norm shrinks $\Rightarrow \varphi$ not injective.
23-Simplicity

- Morphisms of C*-algebras defined algebraically.
- Indeed bounded, $\|\varphi(u)\| \leq \|u\|:
  - Use $\|uu^*\| = \|u\|^2$ to reduce to positive hermitians $uu^*$.
  - Use $\|uu^*\| = r(\text{Sp}(uu^*))$ to define the norm algebraically:
    \begin{equation}
    \|uu^*\| = \sup \{\lambda; uu^* - \lambda I \text{ not invertible}\}
    \end{equation}
- Injective morphisms are isometric, $\|\varphi(u)\| = \|u\|:
  - Norm shrinks $\Rightarrow$ spectrum shrinks.
  - Norm shrinks $\Rightarrow \varphi$ not injective.
- A simple algebra (= no closed two-sided ideal) admits only one $\ll C^\ast$-semi-norm $\rr$ (i.e., s.t. (27)); all states faithful.
23-SIMPPLICITY

- Morphisms of C*-algebras defined algebraically.
- Indeed bounded, $\|\varphi(u)\| \leq \|u\|:
  - Use $\|uu^*\| = \|u\|^2$ to reduce to positive hermitians $uu^*$.
  - Use $\|uu^*\| = r(\text{Sp}(uu^*))$ to define the norm algebraically:
    \[
    \|uu^*\| = \sup \{\lambda; uu^* - \lambda I \text{ not invertible}\}
    \] (28)
- Injective morphisms are isometric, $\|\varphi(u)\| = \|u\|:
  - Norm shrinks $\Rightarrow$ spectrum shrinks.
  - Norm shrinks $\Rightarrow \varphi$ not injective.
- A simple algebra (= no closed two-sided ideal) admits only one $\text{C*-semi-norm}$ (i.e., s.t. (27)) ; all states faithful.
- Typical example : matrix algebras $\mathcal{M}_n(\mathbb{C})$. 
23-Simplicity

- Morphisms of C*-algebras defined algebraically.
- Indeed bounded, $\| \varphi(u) \| \leq \| u \| :$
  - Use $\| uu^* \| = \| u \|^2$ to reduce to positive hermitians $uu^*$.
  - Use $\| uu^* \| = r(\text{Sp}(uu^*))$ to define the norm algebraically:
    $\| uu^* \| = \sup \{ \lambda ; uu^* - \lambda I \text{ not invertible} \}$ (28)
- Injective morphisms are isometric, $\| \varphi(u) \| = \| u \| :$
  - Norm shrinks $\Rightarrow$ spectrum shrinks.
  - Norm shrinks $\Rightarrow \varphi$ not injective.
- A simple algebra (= no closed two-sided ideal) admits only one « C*-semi-norm » (i.e., s.t. (27)) ; all states faithful.
- Typical example: matrix algebras $\mathcal{M}_n(\mathbb{C})$.
- $\mathcal{B}(\mathbb{H})$ not simple (infinite dimension) : compact operators.
24-The CAR Algebra

 Canonical anticommutation relations, between creators $\kappa(a)$ and their adjoints, the annihilators $\zeta(b)$:
24-The CAR Algebra

- Canonical anticommutation relations, between creators $\kappa(a)$ and their adjoints, the annihilators $\zeta(b)$:

$$\kappa(a)\zeta(b) + \kappa(b)\zeta(a) = \delta_{ab} \cdot I$$

(29)
24-**The CAR Algebra**

- Canonical anticommutation relations, between *creators* $\kappa(a)$ and their adjoints, the *annihilators* $\zeta(b)$:

$$\kappa(a)\zeta(b) + \kappa(b)\zeta(a) = \delta_{ab} \cdot I \quad (29)$$

$$\kappa(a)\kappa(b) + \kappa(b)\kappa(a) = 0 \quad (30)$$
24-The CAR algebra

- Canonical anticommutation relations, between creators $\kappa(a)$ and their adjoints, the annihilators $\zeta(b)$:
  \[
  \kappa(a)\zeta(b) + \kappa(b)\zeta(a) = \delta_{ab} \cdot I \quad (29)
  \]
  \[
  \kappa(a)\kappa(b) + \kappa(b)\kappa(a) = 0 \quad (30)
  \]

- $a, b$ range over a set $A$ (or a Hilbert space $\delta_{ab} \mapsto \langle a \mid b \rangle$).
24-The CAR Algebra

- Canonical anticommutation relations, between creators \( \kappa(a) \) and their adjoints, the annihilators \( \zeta(b) \):
  \[
  \kappa(a)\zeta(b) + \kappa(b)\zeta(a) = \delta_{ab} \cdot I \tag{29}
  \]
  \[
  \kappa(a)\kappa(b) + \kappa(b)\kappa(a) = 0 \tag{30}
  \]
- \( a, b \) range over a set \( A \) (or a Hilbert space \( \delta_{ab} \rightleftharpoons \langle a | b \rangle \)).
  - If \( A \) is finite, \( \text{Car}(A) \) algebraically isomorphic to matrices \( n \times n \), with \( n := 2^{\#(A)} \).
24-The CAR algebra

- Canonical anticommutation relations, between creators $\kappa(a)$ and their adjoints, the annihilators $\zeta(b)$:

$$\kappa(a)\zeta(b) + \kappa(b)\zeta(a) = \delta_{ab} \cdot I$$  \hspace{1cm} (29)

$$\kappa(a)\kappa(b) + \kappa(b)\kappa(a) = 0$$  \hspace{1cm} (30)

- $a, b$ range over a set $A$ (or a Hilbert space $\delta_{ab} \sim \langle a | b \rangle$).
  - If $A$ is finite, $\text{Car}(A)$ algebraically isomorphic to matrices $n \times n$, with $n := 2^\#(A)$.
  - By simplicity, unique C*-norm on $\text{Car}(A)$ for $A$ finite.
24-The CAR Algebra

- Canonical anticommutation relations, between creators $\kappa(a)$ and their adjoints, the annihilators $\zeta(b)$:

$$\begin{align*}
\kappa(a)\zeta(b) + \kappa(b)\zeta(a) &= \delta_{ab} \cdot I \quad (29) \\
\kappa(a)\kappa(b) + \kappa(b)\kappa(a) &= 0 \quad (30)
\end{align*}$$

- $a, b$ range over a set $A$ (or a Hilbert space $\delta_{ab} \leadsto \langle a \mid b \rangle$).

  - If $A$ is finite, $\text{Car}(A)$ algebraically isomorphic to matrices $n \times n$, with $n := 2^\#(A)$.

  - By simplicity, unique C*-norm on $\text{Car}(A)$ for $A$ finite.

  - The same holds in general: use inductive limits.
24-The CAR Algebra

- Canonical anticommutation relations, between creators $\kappa(a)$ and their adjoints, the annihilators $\zeta(b)$:

$$\kappa(a)\zeta(b) + \kappa(b)\zeta(a) = \delta_{ab} \cdot I \quad (29)$$

$$\kappa(a)\kappa(b) + \kappa(b)\kappa(a) = 0 \quad (30)$$

- $a, b$ range over a set $A$ (or a Hilbert space $\delta_{ab} \mapsto \langle a | b \rangle$).
  - If $A$ is finite, $\text{Car}(A)$ algebraically isomorphic to matrices $n \times n$, with $n := 2^{\#(A)}$.
  - By simplicity, unique C*-norm on $\text{Car}(A)$ for $A$ finite.
  - The same holds in general: use inductive limits.

- Related topics:
24-The CAR Algebra

- Canonical anticommutation relations, between creators $\kappa(a)$ and their adjoints, the annihilators $\zeta(b)$:

  \[
  \kappa(a)\zeta(b) + \kappa(b)\zeta(a) = \delta_{ab} \cdot I
  \]  \hspace{1cm} (29)

  \[
  \kappa(a)\kappa(b) + \kappa(b)\kappa(a) = 0
  \]  \hspace{1cm} (30)

- $a, b$ range over a set $A$ (or a Hilbert space $\delta_{ab} \mapsto \langle a | b \rangle$).
  - If $A$ is finite, Car($A$) algebraically isomorphic to matrices $n \times n$, with $n := 2^\#(A)$.
  - By simplicity, unique $C^*$-norm on Car($A$) for $A$ finite.
  - The same holds in general : use inductive limits.

- Related topics :
  - The Clifford algebra : use $\kappa(a) + \zeta(a)$. 


24-The CAR algebra

- Canonical anticommutation relations, between creators $\kappa(a)$ and their adjoints, the annihilators $\zeta(b)$:

  \begin{align}
  \kappa(a)\zeta(b) + \kappa(b)\zeta(a) &= \delta_{ab} \cdot I \\
  \kappa(a)\kappa(b) + \kappa(b)\kappa(a) &= 0
  \end{align}

- $a, b$ range over a set $A$ (or a Hilbert space $\delta_{ab} \mapsto \langle a | b \rangle$).
  - If $A$ is finite, Car($A$) algebraically isomorphic to matrices $n \times n$, with $n := 2^{\#(A)}$.
  - By simplicity, unique C*-norm on Car($A$) for $A$ finite.
  - The same holds in general : use inductive limits.

- Related topics :
  - The Clifford algebra : use $\kappa(a) + \zeta(a)$.
  - The (exterior) Fock space : represent $\kappa(a)(x) := a \wedge x$. 
V-vN ALGEBRAS
25-THE DEFINITION

- Positive hermitians induce order: $\langle h(x) \mid x \rangle \leq \langle k(x) \mid x \rangle$. 
25-The Definition

- Positive hermitians induce order: $\langle h(x) | x \rangle \leq \langle k(x) | x \rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
25-The definition

- Positive hermitians induce order: $\langle h(x) \mid x \rangle \leq \langle k(x) \mid x \rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented C*-algebras:
25- THE DEFINITION

- Positive hermitians induce order: $\langle h(x) \mid x \rangle \leq \langle k(x) \mid x \rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented $C^*$-algebras:
  - No way to decide equality between suprema.
25 - THE DEFINITION

- **Positive** hermitians induce order: \( \langle h(x) | x \rangle \leq \langle k(x) | x \rangle \).
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented C*-algebras:
  - No way to decide equality between suprema.
  - Commutative case: no way to tell null sets.
25-The definition

- Positive hermitians induce order: \( \langle h(x) \mid x \rangle \leq \langle k(x) \mid x \rangle \).
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented C*-algebras:
  - No way to decide equality between suprema.
  - Commutative case: no way to tell null sets.
  - As C*-algebras, dual Banach spaces: e.g. \( \ell^\infty = (\ell^1)^\# \).
25-The definition

- Positive hermitians induce order: \( \langle h(x) \mid x \rangle \leq \langle k(x) \mid x \rangle \).
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented \( \mathbb{C}^* \)-algebras:
  - No way to decide equality between suprema.
  - Commutative case: no way to tell null sets.
  - As \( \mathbb{C}^* \)-algebras, dual Banach spaces: e.g. \( \ell^\infty = (\ell^1)^\# \).
    - Intrinsic approach (\( W^* \)-algebras) not quite successful.
25- THE DEFINITION

- Positive hermitians induce order: \( \langle h(x) \mid x \rangle \leq \langle k(x) \mid x \rangle \).
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented C*-algebras:
  - No way to decide equality between suprema.
  - Commutative case: no way to tell null sets.
  - As C*-algebras, dual Banach spaces: e.g. \( \ell^\infty = (\ell^1)^\# \).
  - Intrinsic approach (W*-algebras) not quite successful.
- Subalgebra of \( \mathcal{B}(\mathbb{H}) \) closed under:
25—The Definition

- Positive hermitians induce order: $\langle h(x) | x \rangle \leq \langle k(x) | x \rangle$.

- Require completeness w.r.t. bounded (directed) suprema.

- The solution works only for represented C*-algebras:
  - No way to decide equality between suprema.
  - Commutative case: no way to tell null sets.
  - As C*-algebras, dual Banach spaces: e.g. $\ell^\infty = (\ell^1)^\#$.
    - Intrinsic approach (W*-algebras) not quite successful.

- Subalgebra of $\mathcal{B}(\mathbb{H})$ closed under:
  - Strong limits: $u_i \to 0$ iff $\|u_i(x)\| \to 0$ ($x \in \mathbb{H}$).
25-The Definition

- Positive hermitians induce order: \( \langle h(x) \mid x \rangle \leq \langle k(x) \mid x \rangle \).
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented C*-algebras:
  - No way to decide equality between suprema.
  - Commutative case: no way to tell null sets.
  - As C*-algebras, dual Banach spaces: e.g. \( \ell^\infty = (\ell^1)^\# \).
    - Intrinsic approach (W*-algebras) not quite successful.
- Subalgebra of \( \mathcal{B}(\mathbb{H}) \) closed under:
  - **Strong limits**: \( u_i \to 0 \) iff \( \|u_i(x)\| \to 0 (x \in \mathbb{H}) \).
  - **Weak limits**: \( u_i \to 0 \) iff \( \langle u_i(x) \mid x \rangle \to 0 (x \in \mathbb{H}) \).
25-THE DEFINITION

- Positive hermitians induce order: $\langle h(x) \mid x \rangle \leq \langle k(x) \mid x \rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented C*-algebras:
  - No way to decide equality between suprema.
  - Commutative case: no way to tell null sets.
  - As C*-algebras, dual Banach spaces: e.g. $\ell^\infty = (\ell^1)^\#$.
    - Intrinsic approach ($W^*$-algebras) not quite successful.
- Subalgebra of $B(\mathbb{H})$ closed under:
  - Strong limits: $u_i \to 0$ iff $\|u_i(x)\| \to 0$ ($x \in \mathbb{H}$).
  - Weak limits: $u_i \to 0$ iff $\langle u_i(x) \mid x \rangle \to 0$ ($x \in \mathbb{H}$).
- Equivalently: subalgebra equal to its bicommutant.
25-The Definition

- Positive hermitians induce order: $\langle h(x) \mid x \rangle \leq \langle k(x) \mid x \rangle$.
- Require completeness w.r.t. bounded (directed) suprema.
- The solution works only for represented C*-algebras:
  - No way to decide equality between suprema.
  - Commutative case: no way to tell null sets.
  - As C*-algebras, dual Banach spaces: e.g. $\ell_\infty = (\ell_1)^\#$.
    * Intrinsic approach (W*-algebras) not quite successful.
- Subalgebra of $\mathcal{B}(\mathbb{H})$ closed under:
  - **Strong limits**: $u_i \to 0$ iff $\|u_i(x)\| \to 0$ ($x \in \mathbb{H}$).
  - **Weak limits**: $u_i \to 0$ iff $\langle u_i(x) \mid x \rangle \to 0$ ($x \in \mathbb{H}$).
- Equivalently: subalgebra equal to its bicommutant.
- Also: the commutant of a self-adjoint subset of $\mathcal{B}(\mathbb{H})$. 
26-COMMUTATIVE VN ALGEBRAS

- As a $C^*$-algebra, $\mathcal{A}$ is of the form $C(X)$. 
26-COMMUTATIVE VN ALGEBRAS

- As a C*-algebra, \( A \) is of the form \( C(X) \).
- \( X \) extremely disconnected:
26-Commutative VN Algebras

- As a C*-algebra, $\mathcal{A}$ is of the form $C(X)$.
- $X$ extremely disconnected:
  - The closure of an open set is still open.
26-Commutative VN Algebras

- As a C*-algebra, $\mathcal{A}$ is of the form $\mathbb{C}(X)$.
- $X$ extremely disconnected:
  - The closure of an open set is still open.
- Clopen sets form a $\sigma$-algebra:
  \[ \bigcup \mathcal{O}_i := \bigcup \mathcal{O}_i \]  
  (31)
26-Commutative vN algebras

- As a C*-algebra, $\mathcal{A}$ is of the form $\mathbb{C}(X)$.
- $X$ extremely disconnected:
  - The closure of an open set is still open.
- Clopen sets form a $\sigma$-algebra:
  \[ \bigcup \mathcal{O}_i := \bigcup \mathcal{O}_i \]  
  (31)
- Commutative vN : space $L^\infty(X, \mu)$. 
26-Commutative vN Algebras

- As a C*-algebra, $\mathcal{A}$ is of the form $\mathbb{C}(X)$.
- $X$ extremely disconnected:
  - The closure of an open set is still open.
- Clopen sets form a $\sigma$-algebra:
  $$\bigcup \mathcal{O}_i := \bigcup \mathcal{O}_i$$ (31)
- Commutative vN: space $L^\infty(X, \mu)$.
  - Measure $\mu$ is up to absolute continuity.
26-Commutative vN Algebras

As a $C^*$-algebra, $\mathcal{A}$ is of the form $C(X)$.

$X$ extremely disconnected:
- The closure of an open set is still open.

Clopen sets form a $\sigma$-algebra:
$$\bigcup O_i := \bigcup O_i$$ (31)

Commutative vN: space $L^\infty(X, \mu)$.
- Measure $\mu$ is up to absolute continuity.

$C([0, 1])$ extends into a vN modulo a diffuse measure on $[0, 1]$. 
26-COMMUTATIVE VN ALGEBRAS

- As a C*-algebra, \( \mathcal{A} \) is of the form \( \mathbb{C}(X) \).
- \( X \) extremely disconnected:
  - The closure of an open set is still open.
- Clopen sets form a \( \sigma \)-algebra:
  \[
  \bigcup \mathcal{O}_i := \bigcup \mathcal{O}_i
  \]  
  (31)
- Commutative vN: space \( L\infty(X, \mu) \).
  - Measure \( \mu \) is up to absolute continuity.
- \( \mathbb{C}([0, 1]) \) extends into a vN modulo a diffuse measure on \([0, 1]\).
- In general: C*-algebra + faithful state \( \rho \) (i.e., \( \rho(uu^*) = 0 \) implies \( u = 0 \).) yields a vN completion.
26-Commutative vN Algebras

- As a C*-algebra, $\mathcal{A}$ is of the form $C(X)$.
- $X$ extremely disconnected:
  - The closure of an open set is still open.
- Clopen sets form a $\sigma$-algebra:
  $$\bigcup \mathcal{O}_i := \bigcup \mathcal{O}_i$$  \hspace{1cm} (31)
- Commutative vN: space $L^\infty(X, \mu)$.
  - Measure $\mu$ is up to absolute continuity.
- $C([0,1])$ extends into a vN modulo a diffuse measure on $[0,1]$.
- In general: C*-algebra + faithful state $\rho$ (i.e., $\rho(uu^*) = 0$ implies $u = 0$.) yields a vN completion.
- The CAR-algebra admits completions of all types I, II, III.
27-The GNS Construction

- From a C*-algebra $C$ and a state $\rho$ construct a representation.
27-The GNS construction

- From a C*-algebra $C$ and a state $\rho$ construct a representation.
- Define $\langle u \mid v \rangle := \rho(v^*u)$; induces a pre-Hilbert space.
27-The GNS Construction

- From a C*-algebra $C$ and a state $\rho$ construct a representation.
- Define $\langle u \mid v \rangle := \rho(v^*u)$; induces a pre-Hilbert space.
- $C$ acts by left multiplication on the separation/completion of the latter.
27-The GNS Construction

- From a C*-algebra $C$ and a state $\rho$ construct a representation.
- Define $\langle u \mid v \rangle := \rho(v^*u)$; induces a pre-Hilbert space.
- $C$ acts by left multiplication on the separation/completion of the latter.
- In case $\rho$ is faithful, this representation is isometric.
27-The GNS Construction

- From a C*-algebra $C$ and a state $\rho$ construct a representation.
- Define $\langle u \mid v \rangle := \rho(v^*u)$; induces a pre-Hilbert space.
- $C$ acts by left multiplication on the separation/completion of the latter.
- In case $\rho$ is faithful, this representation is isometric.
- The double commutant of the representation is thus a vN completion of $C$. 
27-The GNS Construction

- From a C*-algebra $C$ and a state $\rho$ construct a representation.
- Define $\langle u \mid v \rangle := \rho(v^* u)$; induces a pre-Hilbert space.
- $C$ acts by left multiplication on the separation/completion of the latter.
- In case $\rho$ is faithful, this representation is isometric.
- The double commutant of the representation is thus a vN completion of $C$.
- Typical case: simple algebras.
28-**THE CAR ALGEBRA**

- Indeed inductive limit of matrices $2^n \times 2^n$. 
28-The CAR Algebra

- Indeed inductive limit of matrices $2^n \times 2^n$.
- Each of them equipped with normalised trace:
  \[ \text{tr}(u) := 2^{-n} \text{Tr}(u). \]
28-The CAR algebra

- Indeed inductive limit of matrices $2^n \times 2^n$.
- Each of them equipped with normalised trace:
  \[ \text{tr}(u) := 2^{-n} \text{Tr}(u). \]
- The trace on the inductive limit is a tracial state:
28-The CAR algebra

- Indeed inductive limit of matrices $2^n \times 2^n$.
- Each of them equipped with normalised trace:
  \[ \text{tr}(u) := 2^{-n} \text{Tr}(u). \]
- The trace on the inductive limit is a tracial state:
  \[ \rho(uv) = \rho(vu) \] (32)
28-The CAR algebra

- Indeed inductive limit of matrices $2^n \times 2^n$.
- Each of them equipped with **normalised** trace:
  \[ \text{tr}(u) := 2^{-n} \text{Tr}(u). \]
- The trace on the inductive limit is a **tracial** state:
  \[ \rho(uv) = \rho(vu) \] (32)
- The vN algebra thus obtained is:
  **Factor**: Trivial center.
28-**The CAR algebra**

- Indeed inductive limit of matrices $2^n \times 2^n$.
- Each of them equipped with normalised trace:
  $$\text{tr}(u) := 2^{-n}\text{Tr}(u).$$
- The trace on the inductive limit is a tracial state:
  $$\rho(uv) = \rho(vu)$$

- The vN algebra thus obtained is:
  - **Factor**: Trivial center.
  - **Finite**: It has a trace.
28-The CAR Algebra

- Indeed inductive limit of matrices $2^n \times 2^n$.
- Each of them equipped with normalised trace:
  \[ \text{tr}(u) := 2^{-n} \text{Tr}(u). \]
- The trace on the inductive limit is a tracial state:
  \[ \rho(uv) = \rho(vu) \] (32)
- The vN algebra thus obtained is:
  - **Factor**: Trivial center.
  - **Finite**: It has a trace.
  - **Hyperfinite**: Finite matrices are weakly dense.
Indeed inductive limit of matrices $2^n \times 2^n$.

Each of them equipped with normalised trace:

$$\text{tr}(u) := 2^{-n}\text{Tr}(u).$$

The trace on the inductive limit is a tracial state:

$$\rho(uv) = \rho(vu) \quad (32)$$

The vN algebra thus obtained is:

- **Factor**: Trivial center.
- **Finite**: It has a trace.
- **Hyperfinite**: Finite matrices are weakly dense.

Up to isomorphism, only one such vN algebra, the Murray-von Neumann factor $\mathcal{R}$. 
VI-The finite/hyperfinite factor
29-FACTORS

- Connected vN algebras.
29-FACTORS

- Connected vN algebras.
- $Z(\mathcal{A}) = (\mathcal{A} \cup \mathcal{A}')'$ is a vN algebra.
29-Factors

- Connected vN algebras.
- $Z(\mathcal{A}) = (\mathcal{A} \cup \mathcal{A}')'$ is a vN algebra.
- $\mathcal{A} = \int \mathcal{A}(x) d\mu(x)$. 
29-Factors

- Connected vN algebras.
- \( Z(\mathcal{A}) = (\mathcal{A} \cup \mathcal{A}')' \) is a vN algebra.
- \( \mathcal{A} = \int \mathcal{A}(x) d\mu(x) \).
- Each \( \mathcal{A}(x) \) is a factor, i.e., a vN algebra with trivial center.
Connected vN algebras.

\[ Z(\mathcal{A}) = (\mathcal{A} \cup \mathcal{A}')' \] is a vN algebra.

\[ \mathcal{A} = \int \mathcal{A}(x) d\mu(x). \]

Each \( \mathcal{A}(x) \) is a factor, i.e., a vN algebra with trivial center.

Classification of vN algebras thus reduces to classification of factors.
30-COMPARISON OF PROJECTIONS

- Equivalence of projections:

\[ \pi \simeq \pi' \iff \exists u \ (u^*u = \pi \ \text{and} \ \text{uu}^* = \pi') \] (33)
30-COMPARISON OF PROJECTIONS

- Equivalence of projections:
  \[ \pi \simeq \pi' \iff \exists u \ (u^*u = \pi \text{ and } uu^* = \pi') \]  
  (33)

- Ordering of projections (inclusion + equivalence):
  \[ \pi \preceq \pi' \iff \exists \pi'' \ (\pi = \pi \pi'' \text{ and } \pi'' \simeq \pi') \]  
  (34)


30-Comparison of Projections

- **Equivalence of projections**: 
  \[ \pi \simeq \pi' \iff \exists u \ (u^*u = \pi \text{ and } uu^* = \pi') \]  
  (33)

- **Ordering of projections (inclusion + equivalence)**: 
  \[ \pi \preceq \pi' \iff \exists \pi'' \ (\pi = \pi \pi'' \text{ and } \pi'' \simeq \pi') \]  
  (34)

- \( \mathcal{A} \) is finite when \( I \preceq I \) is wrong.
30-COMPARISON OF PROJECTIONS

- **Equivalence of projections:**
  \[ \pi \simeq \pi' \iff \exists u \ (u^*u = \pi \text{ and } uu^* = \pi') \]  
  (33)

- **Ordering of projections (inclusion + equivalence):**
  \[ \pi \preceq \pi' \iff \exists \pi'' \ (\pi = \pi\pi'' \text{ and } \pi'' \simeq \pi') \]  
  (34)

- \( \mathcal{A} \) is finite when \( I \preceq I \) is wrong.
  \[ uu^* = I \Rightarrow u^*u = I \]  
  (35)
30-COMPARISON OF PROJECTIONS

▶ Equivalence of projections:
\[ \pi \simeq \pi' \iff \exists u \ (u^*u = \pi \text{ and } uu^* = \pi') \] (33)

▶ Ordering of projections (inclusion + equivalence):
\[ \pi \preceq \pi' \iff \exists \pi'' \ (\pi = \pi\pi'' \text{ and } \pi'' \simeq \pi') \] (34)

▶ A is finite when \( I \nsubseteq I \) is wrong.

\[ uu^* = I \Rightarrow u^*u = I \] (35)

▶ For factors, \( \simeq \) is total:
30-COMPARISON OF PROJECTIONS

- Equivalence of projections:
  \[ \pi \simeq \pi' \iff \exists u \ (u^*u = \pi \text{ and } uu^* = \pi') \] (33)

- Ordering of projections (inclusion + equivalence):
  \[ \pi \preceq \pi' \iff \exists \pi'' \ (\pi = \pi \pi'' \text{ and } \pi'' \simeq \pi') \] (34)

- **A** is finite when \( I \preceq I \) is wrong.
  \[ uu^* = I \Rightarrow u^*u = I \] (35)

- For factors, \( \preceq \) is total:
  **Type I**: Order type \( \{0, \ldots, n\} \ (I_n) \) or \( \{0, \ldots, n, \ldots, \infty\} \ (I_\infty) \).
30-Comparison of Projections

- **Equivalence of projections:**
  \[ \pi \simeq \pi' \iff \exists u \ (u^*u = \pi \text{ and } uu^* = \pi') \]  
  (33)

- **Ordering of projections (inclusion + equivalence):**
  \[ \pi \preceq \pi' \iff \exists \pi'' \ (\pi = \pi\pi'' \text{ and } \pi'' \simeq \pi') \]  
  (34)

- **\( \mathcal{A} \) is finite when \( I \not\approx I \) is wrong.**
  \[ uu^* = I \Rightarrow u^*u = I \]  
  (35)

- **For factors, \( \preceq \) is total:**
  - **Type I:** Order type \( \{0, \ldots, n\} \) (\( I_n \)) or \( \{0, \ldots, n, \ldots, \infty\} \) (\( I_\infty \)).
  - **Type II:** Order type \([0, 1]\) (\( II_1 \)) or \([0, +\infty]\) (\( II_\infty \)).
30-COMPARISON OF PROJECTIONS

- **Equivalence of projections**: 
  \[ \pi \simeq \pi' \iff \exists u \ (u^*u = \pi \text{ and } uu^* = \pi') \]  
  (33)

- **Ordering of projections (inclusion + equivalence)**: 
  \[ \pi \preceq \pi' \iff \exists \pi'' \ (\pi = \pi\pi'' \text{ and } \pi'' \simeq \pi') \]  
  (34)

- **\( \mathcal{A} \) is finite** when \( I \not\preceq I \) is wrong.
  \[ uu^* = I \Rightarrow u^*u = I \]  
  (35)

- **For factors, \( \simeq \) is total**: 
  - **Type I**: Order type \( \{0, \ldots, n\} \) (I\(_n\)) or \( \{0, \ldots, n, \ldots, \infty\} \) (I\(_\infty\)).
  - **Type II**: Order type \( [0, 1] \) (II\(_1\)) or \( [0, +\infty] \) (II\(_\infty\)).
  - **Type III**: Order type \( \{0, +\infty\} \).
31-Traces

- Finiteness is the same as the existence of a normal (weakly continuous on the unit ball) trace.
31-TRACES

- Finiteness is the same as the existence of a normal (weakly continuous on the unit ball) trace.
- Can be seen as a dimension.
31-Traces

- Finiteness is the same as the existence of a normal (weakly continuous on the unit ball) trace.
- Can be seen as a dimension.
  - \( E, F \) have same dimension iff there is a partial isometry \( u \) s.t. \( \text{Dom}(u) = E, \text{Im}(u) = F \).
31-Traces

- Finiteness is the same as the existence of a normal (weakly continuous on the unit ball) trace.
- Can be seen as a dimension.
  - $E, F$ have same dimension iff there is a partial isometry $u$ s.t. $\text{Dom}(u) = E, \text{Im}(u) = F$.
  - $E$ has dimension $1/2$ when $\dim(E) = \dim(E^\perp)$. 
Finiteness is the same as the existence of a normal (weakly continuous on the unit ball) trace.

Can be seen as a dimension.

- $E, F$ have same dimension iff there is a partial isometry $u$ s.t. $\text{Dom}(u) = E, \text{Im}(u) = F$.
- $E$ has dimension $1/2$ when $\dim(E) = \dim(E^\perp)$.

The completion of the CAR-algebra is finite and infinite-dimensional:
31-Traces

- Finiteness is the same as the existence of a normal (weakly continuous on the unit ball) trace.
- Can be seen as a dimension.
  - $E, F$ have same dimension iff there is a partial isometry $u$ s.t. $\text{Dom}(u) = E, \text{Im}(u) = F$.
  - $E$ has dimension $1/2$ when $\dim(E) = \dim(E^\perp)$.
- The completion of the CAR-algebra is finite and infinite-dimensional:
  - Factor of type $\text{II}_1$. 
31-Traces

- Finiteness is the same as the existence of a normal (weakly continuous on the unit ball) trace.
- Can be seen as a dimension.
  - $E, F$ have same dimension iff there is a partial isometry $u$ such that $\text{Dom}(u) = E, \text{Im}(u) = F$.
  - $E$ has dimension $1/2$ when $\dim(E) = \dim(E^\perp)$.
- The completion of the CAR-algebra is finite and infinite-dimensional:
  - Factor of type $\text{II}_1$.
- On a finite factor, the trace is unique.
32-Discrete Groups

$G$ denumerable induces a convolution algebra, obtained by linearisation.
**32-Discrete Groups**

- $G$ denumerable induces a *convolution* algebra, obtained by linearisation.
- The convolution:

\[
(x_g) \ast (y_g) := \left( \sum_{g=g' \cdot g''} x_{g'} \cdot y_{g''} \right)
\]  

(36)
$G$ denumerable induces a convolution algebra, obtained by linearisation.

The convolution:

$$(x_g) * (y_g) := \left( \sum_{g = g' \cdot g''} x_{g'} \cdot y_{g''} \right)$$

is a bilinear map $\ell^2(G) \times \ell^2(G) \rightarrow \ell^\infty(G)$. 

(36)
32-DISCRETE GROUPS

- $G$ denumerable induces a convolution algebra, obtained by linearisation.
- The convolution:

\[(x_g) \ast (y_g) := \left( \sum_{g = g' \cdot g''} x_{g'} \cdot y_{g''} \right) \quad (36)\]

is a bilinear map $\ell^2(G) \times \ell^2(G) \leadsto \ell^\infty(G)$.

- Define $A(G) := \{(x_g); (x_g) \ast : \ell^2(G) \leadsto \ell^2(G)\}$. 
32-DISCRETE GROUPS

- $G$ denumerable induces a convolution algebra, obtained by linearisation.

- The convolution:

$$ (x_g) \ast (y_g) := \left( \sum_{g=g' \cdot g''} x_{g'} \cdot y_{g''} \right) $$

(36)

is a bilinear map $\ell^2(G) \times \ell^2(G) \hookrightarrow \ell^\infty(G)$.

- Define $\mathcal{A}(G) := \{(x_g); (x_g) \ast : \ell^2(G) \hookrightarrow \ell^2(G)\}$.

- $\mathcal{A}(G)$ is the commutant of the right convolutions $\ast (y_g)$.
**32-Discrete Groups**

- $G$ denumerable induces a **convolution** algebra, obtained by linearisation.
- The convolution:
  \[(x_g) \ast (y_g) := (\sum_{g=g' \cdot g''} x_{g'} \cdot y_{g''})\]  
  is a bilinear map $\mathcal{L}^2(G) \times \mathcal{L}^2(G) \hookrightarrow \mathcal{L}^\infty(G)$.
- Define $\mathcal{A}(G) := \{(x_g); (x_g) \ast : \mathcal{L}^2(G) \hookrightarrow \mathcal{L}^2(G)\}$.
- $\mathcal{A}(G)$ is the commutant of the **right** convolutions $\ast(y_g)$.
- If $G$ has infinite conjugacy classes (i.c.c.), then $\mathcal{A}(G)$ is a factor.
**32-DISCRETE GROUPS**

- $G$ denumerable induces a **convolution** algebra, obtained by linearisation.
- The convolution:
  \[
  (x_g) \ast (y_g) := \left( \sum_{g=g' \cdot g''} x_{g'} \cdot y_{g''} \right)
  \]  
  is a bilinear map $\ell^2(G) \times \ell^2(G) \rightarrow \ell^\infty(G)$.
- Define $\mathcal{A}(G) := \{(x_g); (x_g) \ast : \ell^2(G) \rightarrow \ell^2(G)\}$.
- $\mathcal{A}(G)$ is the commutant of the **right** convolutions $\ast(y_g)$.
- If $G$ has infinite conjugacy classes (i.c.c.), then $\mathcal{A}(G)$ is a factor.
- B.t.w., $\text{tr}((x_g)) = x_1$. 
33-HYPERFINITISM

- If $G \subset G'$, then $\mathcal{A}(G) \hookrightarrow \mathcal{A}(G')$. 
33-\textsc{Hyperfinitism}

- If $G \subset G'$, then $\mathcal{A}(G) \hookrightarrow \mathcal{A}(G')$.
- If $G$ is \textit{locally finite}, the union $\bigcup_n \mathcal{A}(G_n)$ is weakly dense.
33-HYPERFINITISM

- If $G \subset G'$, then $A(G) \hookrightarrow A(G')$.
- If $G$ is locally finite, the union $\bigcup_n A(G_n)$ is weakly dense.
  - Every finite subset of $G$ generates a finite subgroup.
33-HYPERFINITISM

- If $G \subset G'$, then $\mathcal{A}(G) \hookrightarrow \mathcal{A}(G')$.
- If $G$ is locally finite, the union $\bigcup_n \mathcal{A}(G_n)$ is weakly dense.
  - Every finite subset of $G$ generates a finite subgroup.
  - Any operator can be weakly approximated by matrices.
33-Hyperfinitism

- If $G \subset G'$, then $\mathcal{A}(G) \hookrightarrow \mathcal{A}(G')$.
- If $G$ is locally finite, the union $\bigcup_n \mathcal{A}(G_n)$ is weakly dense.
  - Every finite subset of $G$ generates a finite subgroup.
  - Any operator can be weakly approximated by matrices.
- Hyperfinite algebra: an increasing union $\bigcup_n \mathcal{A}_n$ of finite dimensional algebras is weakly dense in $\mathcal{A}$.
33-Hyperfinitism

- If $G \subset G'$, then $\mathcal{A}(G) \hookrightarrow \mathcal{A}(G')$.
- If $G$ is locally finite, the union $\bigcup_n \mathcal{A}(G_n)$ is weakly dense.
  - Every finite subset of $G$ generates a finite subgroup.
  - Any operator can be weakly approximated by matrices.
- Hyperfinite algebra: an increasing union $\bigcup_n A_n$ of finite dimensional algebras is weakly dense in $\mathcal{A}$.
- There are hyperfinite algebras of any type (close the CAR algebra w.r.t. appropriate state).
33-Hyperfinitism

- If $G \subset G'$, then $\mathcal{A}(G) \hookrightarrow \mathcal{A}(G')$.
- If $G$ is locally finite, the union $\bigcup_n \mathcal{A}(G_n)$ is weakly dense.
  - Every finite subset of $G$ generates a finite subgroup.
  - Any operator can be weakly approximated by matrices.
- Hyperfinite algebra: an increasing union $\bigcup_n \mathcal{A}_n$ of finite dimensional algebras is weakly dense in $\mathcal{A}$.
- There are hyperfinite algebras of any type (close the CAR algebra w.r.t. appropriate state).
- But only one hyperfinite factor of type $\text{II}_1$. Murray-von Neumann factor $\mathcal{R}$. 
34-The hyperfinite factor

- The factor $\mathcal{R}$ is remarkably stable:
34-The hyperfinite factor

The factor $\mathcal{R}$ is remarkably stable:
- Matrices with entries in $\mathcal{R}$: $\mathcal{M}_2(\mathcal{R}) \sim \mathcal{R}$. 
34-The hyperfinite factor

- The factor $\mathcal{R}$ is remarkably stable:
  - Matrices with entries in $\mathcal{R}$: $\mathcal{M}_2(\mathcal{R}) \sim \mathcal{R}$.
  - Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$. 
34 - THE HYPERFINITE FACTOR

- The factor $\mathcal{R}$ is remarkably stable:
  - Matrices with entries in $\mathcal{R}$: $M_2(\mathcal{R}) \sim \mathcal{R}$.
  - Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$.
  - Crossed product with a locally finite group of external automorphisms.
34-The hyperfinite factor

- The factor $\mathcal{R}$ is remarkably stable:
  - Matrices with entries in $\mathcal{R}$: $\mathcal{M}_2(\mathcal{R}) \sim \mathcal{R}$.
  - Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$.
  - Crossed product with a locally finite group of external automorphisms.
- Which means that it has many automorphisms.
34- The hyperfinite factor

- The factor $\mathcal{R}$ is remarkably stable:
  - Matrices with entries in $\mathcal{R}$: $\mathcal{M}_2(\mathcal{R}) \sim \mathcal{R}$.
  - Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$.
  - Crossed product with a locally finite group of external automorphisms.

- Which means that it has many automorphisms.
- Most of them are external.
34 - THE HYPERFINITE FACTOR

- The factor $\mathcal{R}$ is remarkably stable:
  - Matrices with entries in $\mathcal{R}$: $\mathcal{M}_2(\mathcal{R}) \sim \mathcal{R}$.
  - Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$.
  - Crossed product with a locally finite group of external automorphisms.
- Which means that it has many automorphisms.
- Most of them are external.
  - Some of them can be internalised: crossed products.
34-The hyperfinite factor

- The factor $\mathcal{R}$ is remarkably stable:
  - Matrices with entries in $\mathcal{R}$: $\mathcal{M}_2(\mathcal{R}) \sim \mathcal{R}$.
  - Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$.
  - Crossed product with a locally finite group of external automorphisms.
- Which means that it has many automorphisms.
- Most of them are external.
  - Some of them can be internalised: crossed products.
  - Typically, the twist $\sigma$ of $\mathcal{R} \otimes \mathcal{R}$ can be added.
34 - THE HYPERFINITE FACTOR

- The factor $\mathcal{R}$ is remarkably stable:
  - Matrices with entries in $\mathcal{R}$: $\mathcal{M}_2(\mathcal{R}) \sim \mathcal{R}$.
  - Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$.
  - Crossed product with a locally finite group of external automorphisms.

- Which means that it has many automorphisms.
- Most of them are external.
  - Some of them can be internalised: crossed products.
  - Typically, the twist $\sigma$ of $\mathcal{R} \otimes \mathcal{R}$ can be added.
  - Since $\sigma^2 = I$, the result still isomorphic to $\mathcal{R}$. 
34-The Hyperfinite Factor

- The factor $\mathcal{R}$ is remarkably stable:
  - Matrices with entries in $\mathcal{R}: \mathcal{M}_2(\mathcal{R}) \sim \mathcal{R}$.
  - Tensor with himself $\mathcal{R} \otimes \mathcal{R} \sim \mathcal{R}$.
  - Crossed product with a locally finite group of external automorphisms.
- Which means that it has many automorphisms.
- Most of them are external.
  - Some of them can be internalised: crossed products.
  - Typically, the twist $\sigma$ of $\mathcal{R} \otimes \mathcal{R}$ can be added.
  - Since $\sigma^2 = I$, the result still isomorphic to $\mathcal{R}$.
  - But adding $\mathcal{M}_2(\mathcal{R}) \sim \mathcal{R}$ leads to a type III factor.
VII-Gol
35-The Feedback Equation

- Basic paradigm:
35-The feedback equation

- Basic paradigm:

\[ h(x \oplus y) = x' \oplus \sigma(y) \]
35-THE FEEDBACK EQUATION

- Basic paradigm:
  \[ h(x \oplus y) = x' \oplus \sigma(y) \]  

- Usually the partial symmetry \( \sigma \) swaps I/O of two operators:
35-The Feedback Equation

- Basic paradigm:
  \[ h(x \oplus y) = x' \oplus \sigma(y) \] (37)

- Usually the partial symmetry \( \sigma \) swaps I/O of two operators:
  \[ h(x \oplus y) = x' \oplus y' \] (38)
35-The feedback equation

- Basic paradigm:
  \[ h(x \oplus y) = x' \oplus \sigma(y) \]  

- Usually the partial symmetry \( \sigma \) swaps I/O of two operators:
  \[ h(x \oplus y) = x' \oplus y' \]  
  \[ k(y' \oplus z) = y \oplus z' \]
35-THE FEEDBACK EQUATION

- Basic paradigm:
  \[ h(x \oplus y) = x' \oplus \sigma(y) \]  \hspace{1cm} (37)

- Usually the partial symmetry \( \sigma \) swaps I/O of two operators:
  \[ h(x \oplus y) = x' \oplus y' \]  \hspace{1cm} (38)
  \[ k(y' \oplus z) = y \oplus z' \]  \hspace{1cm} (39)

- Chiasmi: matrices \( \chi_u := \begin{pmatrix} 0 & u \\ u^* & 0 \end{pmatrix} \).
35-The Feedback Equation

- Basic paradigm:
  \[ h(x \oplus y) = x' \oplus \sigma(y) \]  \hspace{1cm} (37)

- Usually the partial symmetry \( \sigma \) swaps I/O of two operators:
  \[ h(x \oplus y) = x' \oplus y' \]  \hspace{1cm} (38)
  \[ k(y' \oplus z) = y \oplus z' \]  \hspace{1cm} (39)

- Chiasmi: matrices \( \chi_u := \begin{bmatrix} 0 & u \\ u^* & 0 \end{bmatrix} \).

  - Feedback between \( \chi_u \) and \( \chi_v \) yields \( \chi_{uv} \).
### 35 - The Feedback Equation

- **Basic paradigm:**
  \[
  h(x \oplus y) = x' \oplus \sigma(y)
  \]  
  \[(37)\]

- **Usually the partial symmetry** \(\sigma\) **swaps I/O of two operators:**
  \[
  h(x \oplus y) = x' \oplus y'
  \]  
  \[(38)\]
  \[
  k(y' \oplus z) = y \oplus z'
  \]  
  \[(39)\]

- **Chiasmi : matrices** \(\chi_u := \begin{bmatrix} 0 & u \\ u^* & 0 \end{bmatrix}\).

  - Feedback between \(\chi_u\) and \(\chi_v\) yields \(\chi_{uv}\).

  - The feedback equation (37) «solved» in full generality:
35-The Feedback Equation

- Basic paradigm:
  \[ h(x \oplus y) = x' \oplus \sigma(y) \tag{37} \]

- Usually the partial symmetry \( \sigma \) swaps I/O of two operators:
  \[ h(x \oplus y) = x' \oplus y' \tag{38} \]
  \[ k(y' \oplus z) = y \oplus z' \tag{39} \]

- Chiasmi: matrices \( \chi_u := \begin{bmatrix} 0 & u \\ u^* & 0 \end{bmatrix} \).
  - Feedback between \( \chi_u \) and \( \chi_v \) yields \( \chi_{uv} \).

- The feedback equation (37) «solved» in full generality:
  - Sole hypothesis: \( \|h\| \leq 1 \).
35-THE FEEDBACK EQUATION

- Basic paradigm:
  \[ h(x \oplus y) = x' \oplus \sigma(y) \]  
  \( (37) \)

- Usually the partial symmetry \( \sigma \) swaps I/O of two operators:
  \[ h(x \oplus y) = x' \oplus y' \]  
  \( (38) \)
  \[ k(y' \oplus z) = y \oplus z' \]  
  \( (39) \)

- Chiasmi: matrices \( \chi_u := \begin{bmatrix} 0 & u \\ u^* & 0 \end{bmatrix} \).
  - Feedback between \( \chi_u \) and \( \chi_v \) yields \( \chi_{uv} \).

- The feedback equation \( (37) \) « solved » in full generality:
  - Sole hypothesis: \( \| h \| \leq 1 \).
  - Associativity: \( (\sigma + \tau)[h] = \sigma[\tau[h]] \).
36-The determinant

- In finite dimension:
36- THE DETERMINANT

In finite dimension:

$$\det \begin{bmatrix} I - a & b \\ b^* & c \end{bmatrix} = \det(I - a) \cdot \det(I - (c + b^*(I - a)^{-1}b))$$

(40)
36- THE DETERMINANT

- In finite dimension:

\[
\det \begin{bmatrix} I - a & b \\ b^* & c \end{bmatrix} = \det(I - a) \cdot \det(I - (c + b^*(I - a)^{-1}b))
\]

- In logical situations, nilpotency: \(\det(I - a) = 1\).
36-THE DETERMINANT

- In finite dimension:

\[
\begin{vmatrix}
I - a & b \\
\ b^* & c
\end{vmatrix} = \det(I - a) \cdot \det(I - (c + b^*(I - a)^{-1}b))
\]

- In logical situations, **nilpotency** : \(\det(I - a) = 1\).

- In type \(\text{II}_1\) factor, nilpotency will be replaced by weaker condition \(r(u) < 1\).
36- THE DETERMINANT

► In finite dimension:
\[
\det\begin{bmatrix}
I - a & b \\
b^* & c
\end{bmatrix} = \det(I - a) \cdot \det(I - (c + b^*(I - a)^{-1}b))
\]

► In logical situations, nilpotency: \(\det(I - a) = 1\).

► In type \(\text{II}_1\) factor, nilpotency will be replaced by weaker condition \(r(u) < 1\).

► Then determinant accessible through a power series expansion: \(\det(I - u) := e^{\text{tr} \log(I - u)}\)
36-THE DETERMINANT

- In finite dimension:
  \[
  \begin{vmatrix}
  I - a & b \\
  b^* & c
  \end{vmatrix} = \det(I - a) \cdot \det(I - (c + b^*(I - a)^{-1}b))
  \]

- In logical situations, *nilpotency*: \(\det(I - a) = 1\).

- In type \(\text{II}_1\) factor, nilpotency will be replaced by weaker condition \(r(u) < 1\).

- Then determinant accessible through a power series expansion:
  \[
  \det(I - u) := e^{\text{tr}(\log(I - u))}
  \]

- Familiar manipulations on determinants accessible through (converging) power series.
37-GOI IN A VN ALGEBRA

- Old style: interprets proofs by operators.
37-GoI in a VN algebra

- Old style: interprets proofs by operators.
  - Are galaxies made of stars or is it the other way around?
37-GOI IN A VN ALGEBRA

- Old style: interprets proofs by operators.
  - Are galaxies made of stars or is it the other way around?
    * Foundations always proceed in seven days.
37-GoI in a VN Algebra

- Old style: interprets proofs by operators.
  - Are galaxies made of stars or is it the other way around?
    - Foundations always proceed in seven days.
    - This eventually leads to the FOM discussion list.
37-GoI in a VN Algebra

- Old style: interprets proofs by operators.
- Are galaxies made of stars or is it the other way around?
  - Foundations always proceed in seven days.
  - This eventually leads to the FOM discussion list.
- Old GoI (papers 1,2,3) indeed use type I. «The stable form of commutativity» (dixit Connes).
37-GOI IN A VN ALGEBRA

- Old style: interprets proofs by operators.
  - Are galaxies made of stars or is it the other way around?
    * Foundations always proceed in seven days.
    * This eventually leads to the FOM discussion list.
  - Old GoI (papers 1, 2, 3) indeed use type I. « The stable form of commutativity » (dixit Connes).
  - Type I: minimal projections $\sim$ points (sets, graphs).
37-GOI IN A VN ALGEBRA

- Old style: interprets proofs by operators.
  - Are galaxies made of stars or is it the other way around?
    - Foundations always proceed in seven days.
    - This eventually leads to the FOM discussion list.
  - Old GoI (papers 1,2,3) indeed use type I. « The stable form of commutativity » (dixit Connes).
  - Type I: minimal projections $\sim$ points (sets, graphs).
- New style: takes place in the Murray-vN factor $\mathcal{R}$:
37-GoI in a VN algebra

- Old style: interprets proofs by operators.
  - Are galaxies made of stars or is it the other way around?
    * Foundations always proceed in seven days.
    * This eventually leads to the FOM discussion list.
  - Old GoI (papers 1, 2, 3) indeed use type I. « The stable form of commutativity » (dixit Connes).
  - Type I: minimal projections $\sim$ points (sets, graphs).

- New style: takes place in the Murray-vN factor $\mathcal{R}$:
  - Finiteness forbids the primitives $p, q, d$. 
37-GoI in a VN Algebra

- Old style: interprets proofs by operators.
  - Are galaxies made of stars or is it the other way around?
    - Foundations always proceed in seven days.
    - This eventually leads to the FOM discussion list.
  - Old GoI (papers 1, 2, 3) indeed use type I. « The stable form of commutativity » (dixit Connes).
  - Type I: minimal projections ~ points (sets, graphs).

- New style: takes place in the Murray-vN factor R:
  - Finiteness forbids the primitives p, q, d.
  - In a finite algebra, \( pp^* = I \Rightarrow p^*p = I \).
37-GoI in a vN Algebra

- **Old style**: interprets proofs by *operators*.
  - Are galaxies made of stars or is it the other way around?
    - Foundations always proceed *in seven days*.
    - This eventually leads to the FOM discussion list.
  - Old GoI (papers 1,2,3) indeed use type **I**. « *The stable form of commutativity* » (dixit Connes).
  - **Type I**: minimal projections $\sim$ *points* (sets, graphs).

- **New style**: takes place in the Murray-vN factor $\mathcal{R}$:
  - Finiteness forbids the primitives $p, q, d$.
    - In a finite algebra, $pp^* = I \Rightarrow p^*p = I$.
  - Hyperfiniteness forbids $t(u \otimes (v \otimes w))t^* = (u \otimes v) \otimes w$. 
VIII-Finite GoI
38-Finite GoI

- A base is the pair \((\xi, \xi')\) of two orthogonal projections of the same dimension \(\neq 0\) (default \(1/2\)).
38-FINITE GOI

- A base is the pair \((\xi, \xi')\) of two orthogonal projections of the same dimension \(\neq 0\) (default \(1/2\)).
- Design of base \((\xi, \xi')\): \((\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}\) such that:
38-Finite GoI

- A **base** is the pair \((\xi, \xi')\) of two orthogonal projections of the same dimension \(\neq 0\) (default \(1/2\)).
- **Design of base** \((\xi, \xi') : (\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}\) such that:
  - \(h\) hermitian of support \(\subset \xi \otimes I\) of norm \(\leq 1\).
38-Finite GOI

- A base is the pair \((\xi, \xi')\) of two orthogonal projections of the same dimension \(\neq 0\) (default \(1/2\)).
- Design of base \((\xi, \xi')\) : \((\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}\) such that:
  - \(h\) hermitian of support \(\subset \xi \otimes I\) of norm \(\leq 1\).
  - Second tensor component \(\mathcal{R}\) is the dialect.
38-Finite GoI

- A base is the pair \((\xi, \xi')\) of two orthogonal projections of the same dimension \(\neq 0\) (default \(1/2\)).
- Design of base \((\xi, \xi')\) : \((\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}\) such that :
  - \(h\) hermitian of support \(\subset \xi \otimes I\) of norm \(\leq 1\).
  - Second tensor component \(\mathcal{R}\) is the dialect.
  - \(\delta \in \mathbb{R}\) s.t. \(0 \leq \delta < 2^{1-\dim \xi}\) is the daimon.
A base is the pair \((\xi, \xi')\) of two orthogonal projections of the same dimension \(\neq 0\) (default \(1/2\)).

Design of base \((\xi, \xi')\) : \((\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}\) such that :

- \(h\) hermitian of support \(\subset \xi \otimes I\) of norm \(\leq 1\).
- Second tensor component \(\mathcal{R}\) is the dialect.
- \(\delta \in \mathbb{R}\) s.t. \(0 \leq \delta < 2^{1-\dim \xi}\) is the daimon.

Duality on the same base : given \(h, k\) :
38-Finite GoI

- A **base** is the pair \((\xi, \xi')\) of two orthogonal projections of the same dimension \(\neq 0\) (default 1/2).
- **Design of base** \((\xi, \xi')\) : \((\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}\) such that:
  - \(h\) hermitian of support \(\subset \xi \otimes I\) of norm \(\leq 1\).
  - **Second** tensor component \(\mathcal{R}\) is the **dialect**.
  - \(\delta \in \mathbb{R}\) s.t. \(0 \leq \delta < 2^{1-\text{dim} \xi}\) is the **daimon**.
- **Duality on the same base** : given \(h, k\):
  - Tensorise \(h, k\) with \(I\), swap the two \(\mathcal{R}\), to get \(h', k''\).
38-Finite GoI

A base is the pair \((\xi, \xi')\) of two orthogonal projections of the same dimension \(\neq 0\) (default \(1/2\)).

Design of base \((\xi, \xi')\) : \((\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}\) such that :

- \(h\) hermitian of support \(\subset \xi \otimes I\) of norm \(\leq 1\).
- Second tensor component \(\mathcal{R}\) is the dialect.
- \(\delta \in \mathbb{R}\) s.t. \(0 \leq \delta < 2^{1-\text{dim } \xi}\) is the daimon.

Duality on the same base : given \(h, k\) :

- Tensorise \(h, k\) with \(I\), swap the two \(\mathcal{R}\), to get \(h', k''\) :
  \[* \cdot \otimes \mapsto \cdot \otimes \cdot \otimes I*\]
**38-Finite GOL**

- **A base** is the pair \((\xi, \xi')\) of two orthogonal projections of the same dimension \(\neq 0\) (default \(1/2\)).

- **Design of base** \((\xi, \xi')\) : \((\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}\) such that:
  - \(h\) hermitian of support \(\subset \xi \otimes I\) of norm \(\leq 1\).
  - **Second** tensor component \(\mathcal{R}\) is the dialect.
  - \(\delta \in \mathbb{R}\) s.t. \(0 \leq \delta < 2^{1-\dim \xi}\) is the daimon.

- **Duality on the same base** : given \(h, k\) :
  - Tensorise \(h, k\) with \(I\), swap the two \(\mathcal{R}\), to get \(h', k''\) :
    - \(*\otimes \cdot \mapsto \cdot \otimes \cdot \otimes I\)
    - \(*\otimes \cdot \mapsto \cdot \otimes I \otimes \cdot\)
38-Finite GoI

- A base is the pair $(\xi, \xi')$ of two orthogonal projections of the same dimension $\neq 0$ (default $1/2$).

- Design of base $(\xi, \xi') : (\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}$ such that:
  - $h$ hermitian of support $\subset \xi \otimes I$ of norm $\leq 1$.
  - Second tensor component $\mathcal{R}$ is the dialect.
  - $\delta \in \mathbb{R}$ s.t. $0 \leq \delta < 2^{1-\dim \xi}$ is the daimon.

- Duality on the same base: given $h, k$:
  - Tensorise $h, k$ with $I$, swap the two $\mathcal{R}$, to get $h', k''$:
    - $\rightarrow \odot \otimes \rightarrow \odot \otimes I$
    - $\rightarrow \odot \otimes \rightarrow \otimes I \otimes$
  - $(\delta, h), (\epsilon, k)$ are polar, notation $(\delta, h) \perp (\epsilon, k)$ iff:
38-Finite GoI

A **base** is the pair \((\xi, \xi')\) of two orthogonal projections of the same dimension \(\neq 0\) (default \(1/2\)).

**Design of base** \((\xi, \xi')\) : \((\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}\) such that :
- \(h\) hermitian of support \(\subset \xi \otimes I\) of norm \(\leq 1\).
- **Second** tensor component \(\mathcal{R}\) is the dialect.
- \(\delta \in \mathbb{R}\) s.t. \(0 \leq \delta < 2^{1-\dim \xi}\) is the daimon.

**Duality on the same base** : given \(h, k\) :
- Tensorise \(h, k\) with \(I\), swap the two \(\mathcal{R}\), to get \(h', k''\) :
  * \(\cdot \otimes \cdot \mapsto \cdot \otimes I \otimes \cdot\)
  * \(\cdot \otimes \cdot \mapsto \cdot I \otimes \cdot\)
- \((\delta, h), (\epsilon, k)\) are polar, notation \((\delta, h) \perp (\epsilon, k)\) iff :
  \[
  r(h'k'') < 1 \quad \delta \cdot \epsilon \cdot \det(I - h'k'') \neq 1 \quad (41)
  \]
38-Finite GoI

A base is the pair \((\xi, \xi')\) of two orthogonal projections of the same dimension \(\neq 0\) (default \(1/2\)).

Design of base \((\xi, \xi')\) : \((\delta, h) \in \mathbb{R} \times \mathcal{R} \otimes \mathcal{R}\) such that :

- \(h\) hermitian of support \(\subset \xi \otimes I\) of norm \(\leq 1\).
- Second tensor component \(\mathcal{R}\) is the dialect.
- \(\delta \in \mathbb{R}\) s.t. \(0 \leq \delta < 2^{1-\text{dim } \xi}\) is the daimon.

Duality on the same base : given \(h, k\) :

- Tensorise \(h, k\) with \(I\), swap the two \(\mathcal{R}\), to get \(h', k''\) :
  - \(\odot \odot \rightarrow \odot \mathcal{I} \odot \odot \)
  - \(\odot \odot \rightarrow \odot \mathcal{I} \odot \odot \)
- \((\delta, h), (\epsilon, k)\) are polar, notation \((\delta, h) \lessdot (\epsilon, k)\) iff :
  \[ r(h'k'') < 1 \quad \delta \cdot \epsilon \cdot \det(I - h'k'') \neq 1 \] (41)
- Behaviour : set \(B\) of designs of given base s.t. \(B = \sim\sim B\).
39-SEQUENTS

- Heavy use of the cobase $\xi'$. 
Heavy use of the cobase $\xi'$.

Binary example $(\xi, \xi') \vdash (\eta, \eta')$:
39-Sequents

- Heavy use of the cobase $\xi'$.
- Binary example $(\xi, \xi') \vdash (\eta, \eta')$:
  - $2 \times 2$ matrix with entries in $\mathcal{R} \otimes \mathcal{R} \otimes \mathcal{R}$. 
39-SEQUENTS

- Heavy use of the cobase $\xi'$.
- Binary example $(\xi, \xi')\vdash (\eta, \eta')$:
  - $2 \times 2$ matrix with entries in $\mathcal{R} \otimes \mathcal{R} \otimes \mathcal{R}$.
  - Supports $\xi \otimes \eta' \otimes I$, $\eta \otimes \xi' \otimes I$. 
39-SEQUENTS

- Heavy use of the cobase $\xi'$.
- Binary example $(\xi, \xi') \vdash (\eta, \eta')$:
  - $2 \times 2$ matrix with entries in $\mathcal{R} \otimes \mathcal{R} \otimes \mathcal{R}$.
  - Supports $\xi \otimes \eta' \otimes I$, $\eta \otimes \xi' \otimes I$.
  - All supports have same dimension: no need for $p, q$. 

Keio 16/17 Mars 2006
39-SEQUENTS

- Heavy use of the cobase $\xi'$.
- Binary example $(\xi, \xi') \vdash (\eta, \eta')$:
  - $2 \times 2$ matrix with entries in $\mathcal{R} \otimes \mathcal{R} \otimes \mathcal{R}$.
  - Supports $\xi \otimes \eta' \otimes I, \eta \otimes \xi' \otimes I$.
  - All supports have same dimension: no need for $p, q$.
- Let $(\gamma, h)$ and $(\delta, k)$ of respective bases $(\xi, \xi')$ replace:
39-Sequents

- Heavy use of the cobase $\xi'$.
- Binary example $(\xi, \xi') \vdash (\eta, \eta')$:
  - $2 \times 2$ matrix with entries in $\mathcal{R} \otimes \mathcal{R} \otimes \mathcal{R}$.
  - Supports $\xi \otimes \eta' \otimes I, \eta \otimes \xi' \otimes I$.
  - All supports have same dimension: no need for $p, q$.
- Let $(\gamma, h)$ and $(\delta, k)$ of respective bases $(\xi, \xi')$ replace:
  - In $h$, $\cdot \otimes \cdot$ with $\cdot \otimes \eta' \otimes \cdot \otimes I$ yields $h'$
39-Sequents

- Heavy use of the cobase $\xi'$.
- Binary example $(\xi, \xi') \vdash (\eta, \eta')$:
  - $2 \times 2$ matrix with entries in $\mathcal{R} \otimes \mathcal{R} \otimes \mathcal{R}$.
  - Supports $\xi \otimes \eta' \otimes I, \eta \otimes \xi' \otimes I$.
  - All supports have same dimension: no need for $p, q$.
- Let $(\gamma, h)$ and $(\delta, k)$ of respective bases $(\xi, \xi')$ replace:
  - In $h$, $\cdot \otimes \cdot$ with $\cdot \otimes \eta' \otimes \cdot \otimes I$: yields $h'$
  - In $k$, $\cdot \otimes \cdot \otimes \cdot$ with $\cdot \otimes \cdot \otimes I \otimes \cdot$: yields $k''$
39-Sequents

- Heavy use of the cobase $\xi'$.
- Binary example $(\xi, \xi') \vdash (\eta, \eta')$:
  - $2 \times 2$ matrix with entries in $\mathcal{R} \otimes \mathcal{R} \otimes \mathcal{R}$.
  - Supports $\xi \otimes \eta' \otimes I, \eta \otimes \xi' \otimes I$.
  - All supports have same dimension: no need for $p, q$.
- Let $(\gamma, h)$ and $(\delta, k)$ of respective bases $(\xi, \xi')$ replace:
  - In $h$, $\cdot \otimes \cdot$ with $\cdot \otimes \eta' \otimes \cdot \otimes I$: yields $h'$
  - In $k$, $\cdot \otimes \cdot \otimes$ with $\cdot \otimes \cdot \otimes I \otimes \cdot$: yields $k''$
- Apply GoI, which yields $l$. 
39-Sequents

- Heavy use of the cobase $\xi'$.
- Binary example $(\xi, \xi') \vdash (\eta, \eta')$:
  - $2 \times 2$ matrix with entries in $R \otimes R \otimes R$.
  - Supports $\xi \otimes \eta' \otimes I, \eta \otimes \xi' \otimes I$.
  - All supports have same dimension: no need for $p, q$.
- Let $(\gamma, h)$ and $(\delta, k)$ of respective bases $(\xi, \xi')$ replace:
  - In $h$, $\cdot \otimes \cdot \otimes \eta' \otimes \cdot \otimes I$: yields $h'$
  - In $k$, $\cdot \otimes \cdot \otimes I \otimes \cdot \otimes I \otimes \cdot$: yields $k''$
- Apply Gol, which yields $l$.
- Output: $(\gamma^{\dim(\eta)} \cdot \delta \cdot \det(I - h' \cdot k''), l)$
40-MULTIPLICATIVES

- The fax (identity axiom) :
**40-MULTIPLICATIVES**

- **The fax (identity axiom):**

\[
\begin{bmatrix}
0 & \xi \otimes \xi' \otimes I \\
\xi \otimes \xi' \otimes I & 0
\end{bmatrix}
\]  

(42)
The fax (identity axiom):

\[
\begin{bmatrix}
0 & \xi \otimes \xi' \otimes I \\
\xi \otimes \xi' \otimes I & 0
\end{bmatrix}
\] (42)

- Maps \( \cdot \otimes \cdot \) to \( \cdot \otimes \xi' \otimes \cdot \otimes I \)
40-MULTIPLICATIVES

- The fax (identity axiom) :

\[
\begin{bmatrix}
0 & \xi \otimes \xi' \otimes I \\
\xi \otimes \xi' \otimes I & 0
\end{bmatrix}
\]

(42)

- Maps \( \cdot \otimes \cdot \) to \( \cdot \otimes \xi' \otimes \cdot \otimes I \)
- Not an etaspansion.
The fax (identity axiom):

\[
\begin{bmatrix}
0 & \xi \otimes \xi' \otimes I \\
\xi \otimes \xi' \otimes I & 0
\end{bmatrix}
\]  

(42)

- Maps \( \cdot \otimes \cdot \) to \( \cdot \otimes \xi' \otimes \cdot \otimes I \)
- Not an etaspansion.
- If \( \dim(\xi) \) rational, finite matrix with entries \( = 0, 1 \).
40-MULTIPLICATIVES

- The fax (identity axiom):
  \[
  \begin{bmatrix}
  0 & \xi \otimes \xi' \otimes I \\
  \xi \otimes \xi' \otimes I & 0
  \end{bmatrix}
  \]  
  \[\text{(42)}\]

- Maps \(\cdot \otimes \cdot\) to \(\cdot \otimes \xi' \otimes \cdot \otimes I\)
- Not an etaspansion.
- If \(\dim(\xi)\) rational, finite matrix with entries \(= 0, 1\).
- Tensor (cotensor) product replaces \((\xi, \xi'), (\eta, \eta')\) with
  \[(\xi \otimes \eta' + \xi' \otimes \eta, \xi \otimes \eta + \xi' \otimes \eta').\]
The fax (identity axiom):

\[
\begin{bmatrix}
0 & \xi \otimes \xi' \otimes I \\
\xi \otimes \xi' \otimes I & 0
\end{bmatrix}
\]  

(42)

- Maps \( \cdot \otimes \cdot \) to \( \cdot \otimes \xi' \otimes \cdot \otimes I \)
- Not an etaspansion.
- If \( \dim(\xi) \) rational, finite matrix with entries \( = 0, 1 \).

Tensor (cotensor) product replaces \((\xi, \xi'), (\eta, \eta')\) with \((\xi \otimes \eta' + \xi' \otimes \eta, \xi \otimes \eta + \xi' \otimes \eta')\).

- Basically use an isometry \( \varphi \) between \( \xi' \otimes \eta \) and \( \eta \otimes \xi' \).
40-MULTIPLICATIVES

- The fax (identity axiom):
  \[
  \begin{bmatrix}
  0 & \xi \otimes \xi' \otimes I \\
  \xi \otimes \xi' \otimes I & 0
  \end{bmatrix}
  \]  
  (42)

  - Maps \( \cdot \otimes \) to \( \cdot \otimes \xi' \otimes \cdot \otimes I \)
  - Not an etaspansion.
  - If \( \dim(\xi) \) rational, finite matrix with entries \( = 0, 1. \)

- Tensor (cotensor) product replaces \((\xi, \xi'), (\eta, \eta')\) with \((\xi \otimes \eta' + \xi' \otimes \eta, \xi \otimes \eta + \xi' \otimes \eta').\)

- Basically use an isometry \( \varphi \) between \( \xi' \otimes \eta \) and \( \eta \otimes \xi'. \)

- \( \varphi \) is part of the data.
The fax (identity axiom):
\[
\begin{bmatrix}
0 & \xi \otimes \xi' \otimes I \\
\xi \otimes \xi' \otimes I & 0
\end{bmatrix}
\]

- Maps \( \cdot \otimes \cdot \) to \( \cdot \otimes \xi' \otimes \cdot \otimes I \)
- Not an etaspanion.
- If \( \text{dim}(\xi) \) rational, finite matrix with entries \( = 0, 1 \).

Tensor (cotensor) product replaces \((\xi, \xi'), (\eta, \eta')\) with
\((\xi \otimes \eta' + \xi' \otimes \eta, \xi \otimes \eta + \xi' \otimes \eta')\).

Basically use an isometry \( \varphi \) between \( \xi' \otimes \eta \) and \( \eta \otimes \xi' \).

\( \varphi \) is part of the data.

\( A \rightarrow A \) based on \((\xi \otimes \xi' + \xi' \otimes \xi, \xi \otimes \xi + \xi' \otimes \xi')\).
Additive situation: $\xi, \xi', \eta, \eta'$ pairwise orthogonal.
41 - THE ADDITIVE MIRACLE

- Additive situation: $\xi, \xi', \eta, \eta'$ pairwise orthogonal.
- Replace $(\xi, \xi'), (\eta, \eta')$ with $(\xi + \eta, \xi' + \eta')$. 
41-The additive miracle

- Additive situation: $\xi, \xi', \eta, \eta'$ pairwise orthogonal.
- Replace $(\xi, \xi'), (\eta, \eta')$ with $(\xi + \eta, \xi' + \eta')$.
- The with rule (how to share contexts):
41-The additive miracle

- Additive situation: $\xi, \xi', \eta, \eta'$ pairwise orthogonal.
- Replace $(\xi, \xi'), (\eta, \eta')$ with $(\xi + \eta, \xi' + \eta')$.
- The with rule (how to share contexts):
  - Premises are $2 \times 2$ matrices:
41-The Additive Miracle

- Additive situation: $\xi, \xi', \eta, \eta'$ pairwise orthogonal.
- Replace $(\xi, \xi'), (\eta, \eta')$ with $(\xi + \eta, \xi' + \eta').$
- The with rule (how to share contexts):
  - Premises are $2 \times 2$ matrices:
  - Their supports are $\xi \otimes \nu' \otimes I, \nu \otimes \xi' \otimes I$ and $\eta \otimes \nu' \otimes I, \nu \otimes \eta' \otimes I.$
41- THE ADDITIVE MIRACLE

- Additive situation: $\xi, \xi', \eta, \eta'$ pairwise orthogonal.
- Replace $(\xi, \xi'), (\eta, \eta')$ with $(\xi + \eta, \xi' + \eta')$.
- The with rule (how to share contexts):
  - Premises are $2 \times 2$ matrices:
  - Their supports are $\xi \otimes \nu' \otimes I, \nu \otimes \xi' \otimes I$ and $\eta \otimes \nu' \otimes I, \nu \otimes \eta' \otimes I$.
  - Just sum them: disjoint supports.
41-THE ADDITIVE MIRACLE

► Additive situation: $\xi, \xi', \eta, \eta'$ pairwise orthogonal.
► Replace $(\xi, \xi'), (\eta, \eta')$ with $(\xi + \eta, \xi' + \eta')$.
► The with rule (how to share contexts):
  - Premises are $2 \times 2$ matrices:
  - Their supports are $\xi \otimes \nu \otimes I, \nu \otimes \xi' \otimes I$ and $\eta \otimes \nu' \otimes I, \nu \otimes \eta' \otimes I$.
  - Just sum them: disjoint supports.
► Violently anti-$\eta$, like Quantum coherent spaces.
41-The additive miracle

- Additive situation: $\xi, \xi', \eta, \eta'$ pairwise orthogonal.
- Replace $(\xi, \xi'), (\eta, \eta')$ with $(\xi + \eta, \xi' + \eta')$.
- The with rule (how to share contexts):
  - Premises are $2 \times 2$ matrices:
  - Their supports are $\xi \otimes \nu' \otimes I$, $\nu \otimes \xi' \otimes I$ and $\eta \otimes \nu' \otimes I$, $\nu \otimes \eta' \otimes I$.
  - Just sum them: disjoint supports.
- Violently anti-$\eta$, like Quantum coherent spaces.
- Summing up, perfect logic (in the linguistic sense) can be interpreted in the hyperfinite factor.
42-NOVELTIES

- $A \vdash B$ no longer maps $A$ into $B$. 
42-NOVELTIES

- $A \vdash B$ no longer maps $A$ into $B$.
- Maps $A \otimes \eta'$ into $B \otimes \xi'$. 
42-NOVELTIES

- $A \vdash B$ no longer maps $A$ into $B$.
- Maps $A \otimes \eta'$ into $B \otimes \xi'$.
- $A \otimes \eta' := \{(\gamma^{\dim(\eta)}, h \otimes \eta'); (\gamma, h) \in A\}$ (modulo some twisting). Basic fact:
42-NOVELTIES

- A ⊨ B no longer maps A into B.
- Maps A ⊗ η' into B ⊗ ξ'.
- A ⊗ η' := \{(\gamma^{\text{dim}(\eta)}, h \otimes \eta'); (\gamma, h) \in A\} (modulo some twisting). Basic fact:
  \[(\sim A) \otimes \eta' = \sim (A \otimes \eta')\] (43)
42-NOVELTIES

- A[B no longer maps A into B.
- Maps $A \otimes \eta'$ into $B \otimes \xi'$.
- $A \otimes \eta':=\{(\gamma^{\dim(\eta)}, h \otimes \eta'); (\gamma, h) \in A\}$ (modulo some twisting). Basic fact:
  $$(\sim A) \otimes \eta' = \sim (A \otimes \eta')$$
- Which relies upon:
42-NOVELTIES

- \( A \downarrow \not\rightarrow B \) no longer maps \( A \) into \( B \).
- Maps \( A \otimes \eta' \) into \( B \otimes \xi' \).
- \( A \otimes \eta' := \{(\gamma^{\dim(\eta)}, h \otimes \eta'); (\gamma, h) \in A\} \) (modulo some twisting). Basic fact:
  \[
  (\sim A) \otimes \eta' = \sim (A \otimes \eta') \tag{43}
  \]
- Which relies upon:
  \[
  \det(I - h \otimes \eta') = \det(I - h)^{\dim(\eta')} \tag{44}
  \]
42-NOVELTIES

- $A \vdash B$ no longer maps $A$ into $B$.
- Maps $A \otimes \eta'$ into $B \otimes \xi'$.
- $A \otimes \eta' := \{ (\gamma^{\dim(\eta)}, h \otimes \eta'); (\gamma, h) \in A \}$ (modulo some twisting). Basic fact:
  \[ (\sim A) \otimes \eta' = \sim (A \otimes \eta') \tag{43} \]
- Which relies upon:
  \[ \det(I - h \otimes \eta') = \det(I - h)^{\dim(\eta')} \tag{44} \]
- The daimon, i.e., the scalar component.
42-NOVELTIES

- \( A \vdash B \) no longer maps \( A \) into \( B \).
- Maps \( A \otimes \eta' \) into \( B \otimes \xi' \).
- \( A \otimes \eta' := \{ (\gamma^{\dim(\eta)}, h \otimes \eta'); (\gamma, h) \in A \} \) (modulo some twisting). Basic fact:
  \[
  (\sim A) \otimes \eta' = \sim (A \otimes \eta')
  \]  \hspace{1cm} (43)
- Which relies upon:
  \[
  \det(I - h \otimes \eta') = \det(I - h)^{\dim(\eta')}
  \]  \hspace{1cm} (44)
- The daimon, i.e., the scalar component.
- Corresponds to failure, i.e., falsity, when \( \neq 1 \).
42-Novelty

- $A \vdash B$ no longer maps $A$ into $B$.
- Maps $A \otimes \eta'$ into $B \otimes \xi'$.
- $A \otimes \eta' := \{ (\gamma^{\dim(\eta)}, h \otimes \eta'); (\gamma, h) \in A \}$ (modulo some twisting). Basic fact:
  $$(\sim A) \otimes \eta' = \sim (A \otimes \eta')$$
  \hspace{1cm} (43)
- Which relies upon:
  $$\det(I - h \otimes \eta') = \det(I - h)^{\dim(\eta')}$$
  \hspace{1cm} (44)
- The daimon, i.e., the scalar component.
- Corresponds to failure, i.e., falsity, when $\neq 1$.
- In ludics (commutative), daimon cannot be created.
42-Novelties

- $A \vdash B$ no longer maps $A$ into $B$.
- Maps $A \otimes \eta'$ into $B \otimes \xi'$.
- $A \otimes \eta' := \{(\gamma^{\dim(\eta)}, h \otimes \eta'); (\gamma, h) \in A\}$ (modulo some twisting). Basic fact:
  \[
  (\sim A) \otimes \eta' = \sim (A \otimes \eta')
  \] (43)
- Which relies upon:
  \[
  \det(I - h \otimes \eta') = \det(I - h)^{\dim(\eta')}
  \] (44)
- The daimon, i.e., the scalar component.
- Corresponds to failure, i.e., falsity, when $\neq 1$.
- In ludics (commutative), daimon cannot be created.
- Professional losers, so to speak.
42-NOVELTIES

- $A \vdash B$ no longer maps $A$ into $B$.
- Maps $A \otimes \eta'$ into $B \otimes \xi'$.
- $A \otimes \eta' := \{ (\gamma^{\dim(\eta)}, h \otimes \eta'); (\gamma, h) \in A \}$ (modulo some twisting). Basic fact:
  $$(\sim A) \otimes \eta' = \sim (A \otimes \eta')$$  (43)
- Which relies upon:
  $$\det(I - h \otimes \eta') = \det(I - h)^{\dim(\eta')}$$  (44)
- The daimon, i.e., the scalar component.
- Corresponds to failure, i.e., falsity, when $\neq 1$.
- In ludics (commutative), daimon cannot be created.
- Professional losers, so to speak.
- Here the daimon is created by the determinant.
42-NOVELTIES

- A ⊢ B no longer maps A into B.
- Maps A ⊗ η' into B ⊗ ξ'.
- A ⊗ η' := \{(γ^{\dim(η)}, h ⊗ η'); (γ, h) ∈ A\} (modulo some twisting). Basic fact:
  \((\sim A) ⊗ η' = \sim (A ⊗ η')\) (43)
- Which relies upon:
  \(\det(I - h ⊗ η') = \det(I - h)^{\dim(η')}\) (44)
- The daimon, i.e., the scalar component.
- Corresponds to failure, i.e., falsity, when \(\neq 1\).
- In ludics (commutative), daimon cannot be created.
- Professional losers, so to speak.
- Here the daimon is created by the determinant.
- Truth (winning) not preserved by logical consequence.
Let us fix a subject, i.e., a maximal commutative subalgebra (= boolean algebra) $\mathcal{B} \subset \mathcal{R}$.
43-SUBJECTIVE TRUTH

► Let us fix a subject, i.e., a maximal commutative subalgebra (= boolean algebra) \( \mathcal{B} \subset \mathcal{R} \).

► A subjective winner is a pair \((1, h)\), with \( h^3 = h \) (\( h \) is a partial symmetry), such that:
43-SUBJECTIVE TRUTH

- Let us fix a subject, i.e., a maximal commutative subalgebra (= boolean algebra) \( \mathcal{B} \subset \mathcal{R} \).
- A subjective winner is a pair \((1, h)\), with \(h^3 = h\) (\(h\) is a partial symmetry), such that:
  \[
  \forall \pi \in \mathcal{B} \exists \pi' \in \mathcal{B} \quad h\pi = \pi'h \quad (45)
  \]
43-SUBJECTIVE TRUTH

- Let us fix a subject, i.e., a maximal commutative subalgebra (= boolean algebra) $B \subset \mathcal{R}$.
- A subjective winner is a pair $(1, h)$, with $h^3 = h$ ($h$ is a partial symmetry), such that:
  $$\forall \pi \in B \exists \pi' \in B \quad h\pi = \pi'h$$  (45)
- Subjectivity is the closest approximation to « $h$ is graph-like ». 
Let us fix a subject, i.e., a maximal commutative subalgebra (= boolean algebra) $\mathcal{B} \subset \mathcal{R}$.

A subjective winner is a pair $(1, h)$, with $h^3 = h$ ($h$ is a partial symmetry), such that:

$$\forall \pi \in \mathcal{B} \exists \pi' \in \mathcal{B} \quad h\pi = \pi' h \quad (45)$$

Subjectivity is the closest approximation to « $h$ is graph-like ».

Subjective winners are closed under logical consequence; indeed the feedback equation is of the nilpotent type and no daimon can be created.
IX-An ICONOCLAST LOGIC
44-THE ICONOCLAST PROGRAMME

- Finite from **inside**, infinite from **outside**.
44-THE ICONOCLAST PROGRAMME

- Finite from inside, infinite from outside.
- Accept infinity, but not infinite infinity.
44-THE ICONOCLAST PROGRAMME

- Finite from *inside*, infinite from *outside*.
- Accept infinity, but not *infinite infinity*.
  - Impossibility to create *fresh* objects forever.
44-THE ICONOCLAST PROGRAMME

- Finite from inside, infinite from outside.
- Accept infinity, but not infinite infinity.
  - Impossibility to create fresh objects forever.
- Reduces to search for light exponentials (BLL, LLL, ELL, ...).
44 - The Iconoclast Programme

- Finite from inside, infinite from outside.
- Accept infinity, but not infinite infinity.
  - Impossibility to create fresh objects forever.
- Reduces to search for light exponentials (BLL, LLL, ELL, ...).
  - Alternative definition producing complexity effects.
44 - THE ICONOCLAST PROGRAMME

- Finite from inside, infinite from outside.
- Accept infinity, but not infinite infinity.
  - Impossibility to create fresh objects forever.
- Reduces to search for light exponentials (BLL, LLL, ELL, ...).
  - Alternative definition producing complexity effects.
  - Cannot be semantically grounded: the blind spot.
44-THE ICONOCLAST PROGRAMME

- Finite from inside, infinite from outside.
- Accept infinity, but not infinite infinity.
  - Impossibility to create fresh objects forever.
- Reduces to search for light exponentials (BLL, LLL, ELL, ...).
  - Alternative definition producing complexity effects.
  - Cannot be semantically grounded: the blind spot.
  - Use the geometrical constraints of factor $\mathcal{R}$. 
44THE ICONOCLAST PROGRAMME

- Finite from inside, infinite from outside.
- Accept infinity, but not infinite infinity.
  - Impossibility to create fresh objects forever.
- Reduces to search for light exponentials (BLL, LLL, ELL, ...).
  - Alternative definition producing complexity effects.
  - Cannot be semantically grounded: the blind spot.
  - Use the geometrical constraints of factor $R$.
- B.t.w., logic in a factor of type $\Pi_1$ should correspond to ELL.
**45-Perennial Behaviours**

- **B is perennial when** \( B = \sim \sim (\{1\} \times C \otimes I) \).
PERENNIAL BEHAVIOURS

- $B$ is perennial when $B = \sim\sim({1} \times C \otimes I)$.
- Perennial behaviours are duplicable.
45-Perennial behaviours

- **B** is perennial when \( B = \sim\sim(\{1\} \times C \otimes I) \).
- Perennial behaviours are **duplicable**.
  - \( B \vdash B \otimes B \) inhabited by a sort of fax:
45-**PERENNIAL BEHAVIOURS**

- **B** is perennial when $B = \sim \sim (\{1\} \times C \otimes I)$.
- Perennial behaviours are duplicable.
  - $B \vdash B \otimes B$ inhabited by a sort of fax:
  - Bases $\xi \otimes (\xi \otimes \xi + \xi' \otimes \xi') \otimes I \otimes I$,
    $(\xi \otimes \xi' + \xi' \otimes \xi) \otimes \xi \otimes I \otimes I$. 
45-Perennial behaviours

- B is perennial when $B = \sim\sim(\{1\} \times C \otimes I)$.
- Perennial behaviours are duplicable.
  - $B \vdash B \otimes B$ inhabited by a sort of fax:
  - Bases $\xi \otimes (\xi \otimes \xi + \xi' \otimes \xi') \otimes I \otimes I$, $(\xi \otimes \xi' + \xi' \otimes \xi) \otimes \xi \otimes I \otimes I$.
  - Works because there is no dialectal component $\otimes$. 
45-Perennial Behaviours

- B is perennial when $B = \sim\sim(\{1\} \times C \otimes I)$.
- Perennial behaviours are duplicable.
  - $B \vdash B \otimes B$ inhabited by a sort of fax:
  - Bases $\xi \otimes (\xi \otimes \xi + \xi' \otimes \xi') \otimes I \otimes I$,
    $(\xi \otimes \xi' + \xi' \otimes \xi) \otimes I \otimes I$.
  - Works because there is no dialectal component $\otimes$.
- Exponentials perennialise:
45-PERENNIAL BEHAVIOURS

- **B** is perennial when \( B = \sim\sim(\{1\} \times C \otimes I) \).
- Perennial behaviours are duplicable.
  - \( B \vdash B \otimes B \) inhabited by a sort of fax:
    - Bases \( \xi \otimes (\xi \otimes \xi + \xi' \otimes \xi') \otimes I \otimes I \),
      \( (\xi \otimes \xi' + \xi' \otimes \xi) \otimes \xi \otimes I \otimes I \).
    - Works because there is no dialectal component \( \otimes \).
- Exponentials perennialise:
  - Replace \( \cdot \otimes \cdot \) with \( \cdot \otimes \cdot \otimes I \otimes I \).
45-**Perennial behaviours**

- **B** is **perennial** when \( B = \sim\sim(\{1\} \times C \otimes I) \).
- **Perennial behaviours are duplicable.**
  - \( B \vdash B \otimes B \) inhabited by a sort of fax:
  - Bases \( \xi \otimes (\xi \otimes \xi + \xi' \otimes \xi') \otimes I \otimes I, \)
    \( (\xi \otimes \xi' + \xi' \otimes \xi) \otimes \xi \otimes I \otimes I. \)
  - Works because there is no **dialectal component** \( \otimes \).
- **Exponentials perennialise:**
  - Replace \( \cdot \otimes \cdot \) with \( \cdot \otimes \cdot I \otimes I. \)
  - Takes place in \( \mathcal{R} \otimes ((\mathcal{R} \ldots \otimes \ldots \mathcal{R}) \rtimes G) \otimes \mathcal{R}. \)
**45-Perennial behaviours**

- **B** is **perennial** when \( B = \sim(\{1\} \times C \otimes I) \).
- Perennial behaviours are **duplicable**.
  - \( B \vdash B \otimes B \) inhabited by a sort of fax:
  - Bases \( \xi \otimes (\xi \otimes \xi + \xi' \otimes \xi') \otimes I \otimes I \),
    \((\xi \otimes \xi' + \xi' \otimes \xi) \otimes I \otimes I \).
  - Works because there is no **dialectal** component \( \otimes \).
- Exponentials perennialise:
  - Replace \( \cdot \otimes \cdot \) with \( \cdot \otimes \cdot \otimes I \otimes I \).
  - Takes place in \( \mathcal{R} \otimes ((\mathcal{R} \ldots \otimes \ldots \mathcal{R}) \rtimes G) \otimes \mathcal{R} \).
  - Denumerable tensor product \( \mathcal{R} \ldots \otimes \ldots \mathcal{R} \) crossed by a **locally finite** group \( G \).
45-Perennial behaviours

- B is perennial when $B = \sim \sim (\{1\} \times C \otimes I)$.

- Perennial behaviours are duplicable.
  - $B \vdash B \otimes B$ inhabited by a sort of fax:
  - Bases $\xi \otimes (\xi \otimes \xi + \xi' \otimes \xi') \otimes I \otimes I$,
    $$(\xi \otimes \xi' + \xi' \otimes \xi) \otimes \xi \otimes I \otimes I.$$  
  - Works because there is no dialectal component $\otimes$.

- Exponentials perennialise:
  - Replace $\cdot \otimes \cdot$ with $\cdot \otimes \cdot \otimes I \otimes I$.
  - Takes place in $\mathcal{R} \otimes ((\mathcal{R} \ldots \otimes \ldots \mathcal{R}) \rtimes G) \otimes \mathcal{R}$.
  - Denumerable tensor product $\mathcal{R} \ldots \otimes \ldots \mathcal{R}$ crossed by a locally finite group $G$.
  - $G$ acts on integers by swapping bits in hereditary base $2$. 
46-EXPONENTIALS

- $X \subset \mathbb{N}$ infinite and co-infinite; $\forall x \in B$ stronger when $X$ smaller.
46-EXPONENTIALS

- $X \subset \mathbb{N}$ infinite and co-infinite; $!_X B$ stronger when $X$ smaller.
- $!_X$ perennialises with $\otimes I$ on components of indices not in $2^X$. 
46-EXPONENTIALS

- \( X \subset \mathbb{N} \) infinite and co-infinite; \( !_{X} B \) stronger when \( X \) smaller.
- \( !_{X} \) perennialises with \( \otimes I \) on components of indices not in \( 2^{X} \).
- Multipromotion available with output: \( !_{X} \Gamma \vdash !_{X \cup Y} B \).
46-EXPONENTIALS

- \( X \subseteq \mathbb{N} \) infinite and co-infinite; \( !_X B \) stronger when \( X \) smaller.
- \( !_X \) perennialises with \( \otimes I \) on components of indices not in \( 2^X \).
- Multipromotion available with output: \( !_X \Gamma \vdash !_X \cup Y B \).
  - Need to internalise the swappings of dialects \( \cdot \otimes I/I \otimes \cdot \).
46-EXPONENTIALS

- \( X \subset \mathbb{N} \) infinite and co-infinite; \( !_X B \) stronger when \( X \) smaller.
- \( !_X \) perennialises with \( \otimes I \) on components of indices not in \( 2^X \).
- Multipromotion available with output: \( !_X \Gamma \vdash !_{X \cup Y} B \).
  - Need to internalise the swappings of dialects \( \cdot \otimes I/I \otimes \cdot \).
- Various definitions of integers, all \textit{externally} isomorphic.
46-EXPONENTIALS

- \( X \subseteq \mathbb{N} \) infinite and co-infinite; \( \,!_X B \) stronger when \( X \) smaller.
- \( \,!_X B \) perennialises with \( \otimes I \) on components of indices not in \( 2^X \).
- **Multipromotion** available with output: \( \,!_X \Gamma \vdash \,!_{X \cup Y} B \).
  - Need to internalise the swappings of dialects \( \cdot \otimes I/I \otimes \cdot \).
- Various definitions of integers, all **externally** isomorphic.

\[
\text{nat}_Y := \bigcap_{X,B} (\,!_X (B \circ B) \circ !_X (B \circ B)) \quad (46)
\]
46-EXPONENTIALS

- $X \subset \mathbb{N}$ infinite and co-infinite; $!_X B$ stronger when $X$ smaller.
- $!_X$ perennialises with $\otimes I$ on components of indices not in $2^X$.
- Multipromotion available with output: $!_X \Gamma \vdash !_X \sqcup Y B$.
  - Need to internalise the swappings of dialects $\cdot \otimes I / I \otimes \cdot$.
- Various definitions of integers, all externally isomorphic.
  \[
  \text{nat}_Y := \bigcap_{X,B} (!_X (B \rightarrow B) \rightarrow !_X \sqcup Y (B \rightarrow B)) \tag{46}
  \]
  - Some are internally isomorphic, e.g. $\text{nat}_{2Y}$ and $\text{nat}_{2Y+1}$. 
46-EXPONENTIALS

- $X \subset \mathbb{N}$ infinite and co-infinite; $!_X B$ stronger when $X$ smaller.
- $!_X$ perennialises with $\otimes I$ on components of indices not in $2^X$.
- Multipromotion available with output: $!_X \Gamma \vdash !_X \cup Y B$.
  - Need to internalise the swappings of dialects $\cdot \otimes I/I \otimes \cdot$.
- Various definitions of integers, all externally isomorphic.
  
  $$\text{nat}_Y := \bigcap_{X,B} (!_X (B \rightarrow B) \rightarrow !_X \cup Y (B \rightarrow B))$$

  (46)
  
  - Some are internally isomorphic, e.g. $\text{nat}_{2Y}$ and $\text{nat}_{2Y+1}$.
  - In which case, logical equivalence.
46-EXPONENTIALS

- \( X \subset \mathbb{N} \) infinite and co-infinite; \( !X B \) stronger when \( X \) smaller.
- \( !X \) perennialises with \( \otimes I \) on components of indices not in \( 2^X \).
- Multipromotion available with output: \( !X \Gamma \vdash !X \sqcup Y B \).
  - Need to internalise the swappings of dialects \( \cdot \otimes I / I \otimes \cdot \).
- Various definitions of integers, all externally isomorphic.

\[
\text{nat}_Y := \bigcap_{X,B} ( !X (B \circ B) \circ !X \sqcup Y (B \circ B) ) \tag{46}
\]
  - Some are internally isomorphic, e.g. \( \text{nat}_{2Y} \) and \( \text{nat}_{2Y+1} \).
  - In which case, logical equivalence.

- Basic functions:
46-EXPONENTIALS

- \( X \subset \mathbb{N} \) infinite and co-infinite; \( !_X B \) stronger when \( X \) smaller.
- \( !_X \) perennialises with \( \otimes I \) on components of indices not in \( 2^X \).
- Multipromotion available with output: \( !_X \Gamma \vdash !_X \sqcup Y B \).
  - Need to internalise the swappings of dialects \( \otimes I / I \otimes \).
- Various definitions of integers, all externally isomorphic.
  \[
  \text{nat}_Y := \bigcap_{X,B} \left( !_X (B \rightarrow B) \rightarrow !_X \sqcup Y (B \rightarrow B) \right) \tag{46}
  \]
  - Some are internally isomorphic, e.g. \( \text{nat}_{2Y} \) and \( \text{nat}_{2Y+1} \).
  - In which case, logical equivalence.
- Basic functions:
  - **Sum**: Type \( \text{nat}_Y \otimes \text{nat}_Y \rightarrow \text{nat}_{Y \sqcup Y'} \).
46-EXPONENTIALS

- $X \subset \mathbb{N}$ infinite and co-infinite; $!_X B$ stronger when $X$ smaller.
- $!_X$ perennialises with $\otimes I$ on components of indices not in $2^X$.
- Multipromotion available with output: $!_X \Gamma \vdash !_X \sqcup Y B$.
  - Need to internalise the swappings of dialects $\cdot \otimes I/I \otimes \cdot$.
- Various definitions of integers, all externally isomorphic.

$$\text{nat}_Y := \bigcap_{X,B} (!_X (B \rightarrow B) \circ !_X \sqcup Y (B \rightarrow B))$$

- Some are internally isomorphic, e.g. $\text{nat}_{2Y}$ and $\text{nat}_{2Y+1}$.
- In which case, logical equivalence.

- Basic functions:
  - **Sum**: Type $\text{nat}_Y \otimes \text{nat}_Y \rightarrow \text{nat}_{Y \sqcup Y'}$.
  - **Product**: Type $\text{nat}_Y \otimes \text{nat}_{Y'} \rightarrow \text{nat}_{Y \sqcup Y'}$. 
46-EXPONENTIALS

- \( X \subset \mathbb{N} \) infinite and co-infinite; \( !_X B \) stronger when \( X \) smaller.
- \( !_X \) perennialises with \( \otimes I \) on components of indices not in \( 2^X \).
- Multipromotion available with output: \( !_X \Gamma \vdash !_X \sqcup Y B \).
  - Need to internalise the swappings of dialects \( \otimes I/I \otimes \).
- Various definitions of integers, all externally isomorphic.
  \[
  \text{nat}_Y := \bigcap_{X,B} ( !_X (B \rightsquigarrow B) \rightsquigarrow !_X \sqcup Y (B \rightsquigarrow B)) \tag{46}
  \]
  - Some are internally isomorphic, e.g. \( \text{nat}_{2Y} \) and \( \text{nat}_{2Y+1} \).
  - In which case, logical equivalence.
- Basic functions:
  Sum: Type \( \text{nat}_Y \otimes \text{nat}_Y \rightarrow \text{nat}_Y \sqcup Y' \).
  Product: Type \( \text{nat}_Y \otimes \text{nat}_Y' \rightarrow \text{nat}_Y \sqcup Y' \).
  Square: Type \( !_X \text{nat}_{2Y} \rightarrow !_X \sqcup X' \text{nat}_{2Y+1} \text{nat}_{2Y+1} \).
Observe that there is no need for syntax/semantics.
47-À SUIVRE

- Observe that there is no need for syntax/semantics.
- Don’t bother with a sequent calculus:
47-À SUIVRE

- Observe that there is no need for syntax/semantics.
- Don’t bother with a sequent calculus:
  - Finite combinations in $G$ will do everything.
Observe that there is no need for syntax/semantics.

Don’t bother with a sequent calculus:
- Finite combinations in $G$ will do everything.
- Dynamics of $G$: a tower of exponentials.
Observe that there is no need for syntax/semantics. Don’t bother with a sequent calculus:
- Finite combinations in $G$ will do everything.
- Dynamics of $G$: a tower of exponentials.
  - Height = depth of hereditary bits.
47-À SUIVRE

- Observe that there is no need for syntax/semantics.
- Don’t bother with a sequent calculus:
  - Finite combinations in $G$ will do everything.
- Dynamics of $G$: a tower of exponentials.
  - Height = depth of hereditary bits.
- Which complexity classes can be expressed?