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Abstract. The familiar connective of negation is broken into two operations: linear negation which
is the purely negative part of negation and the modality “of course” which has the meaning of
a reaffirmation. Following this basic discovery, a completely new approach to the whole area
between constructive logics and programmation is initiated.
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I. Introduction and abstract

Linear logic is a logic behind logic, more precisely, it provides a continuation of
the constructivization that began with intuitionistic logic. The logic is as strong as
the usual ones, i.e., intuitionistic logic can be translated into linear logic in a faithful
way. Linear logic shows that the constructive features of intuitionistic operations
are indeed due to the linear aspects of some intuitionistic connectives or quantifiers,
and these linear features are put at the prominent place. Linear logic has two
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semantics:

(i) a Tarskian semantics, the phase semantics, based on the idea that truth makes
an angle with reality; this ‘angle’ is called a phase, and the connectives are developed
according to those operations that are of immediate interest in terms of phases.

(ii) a Heytingian semantics, the coherent semantics, which is just a cleaning of
familiar Scott semantics for intuitionistic operations, followed by the decomposition
of the obtained operations into more primitive ones.

The connectives obtained are
- the multiplicatives (®,%,—) which are bilinear versions of “and”, “or”,

“implies’;

- the additives (@, &) which are linear versions of “or”, “and™;
- the exponentials (!, 7} which have some similarity with the modals [] and < and
which are essential to preserve the logical strength.

All these connectives are dominated by the linear negation (.)*, which is a
constructive and involutive negation; by the way, linear logic works in a classical
framework, while being more constructive than intuitionistic logic. The phase seman-
tics is complete w.r.t. linear sequent calculus which is, roughly speaking, sequent
calculus without weakening and contraction. Since the framework is classical, it is
necessary, in order to get a decent prool-theoretic structure, to consider proof-nets
which are the natural deduction of linear logic; i.e., a system of proofs with multiple
conclusions, which works quite well.

One of the main outputs of linear logic seems to be in computer science:

(i) As long as the exponentials ! and ? are not concerned, we get a very sharp
control on normalization; linear logic will therefore help us to improve the efficiency
of programs.

(i) The new connectives of linear logic have obvious meanings in terms of
parallel computation, especially the multiplicatives. In particular, the multiplicative
fragment can be seen as a system of communication without problems of synchroniz-
ation. The synchronization is handled by proof-boxes which are typical of the
additive level. Linear logic is the first attempt to solve the problem of parallelism
at the logical level, i.e., by making the success of the communication process only
dependent of the fact that the programs can be viewed as proofs of something, and
are therefore sound.

(iii) There are other potential fields of interest, e.g., databases: the use of classical
logic for modelling automatic reasoning has led to logical atrocities without any
practical output. One clearly needs more subtle logical tools taking into account
that it costs something to make a deduction, a guess, etc.; linear logic is built on
such a principle (the phases) and could serve as a prototype for a more serious
approach to this subject.

(iv) The change of logic could change the possibilities of logical programming
since linear negation allows a symmetric clausal framework, free from the usual
problems of classical sequent calculus. '
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- II. Linear logic explained to a proof-theorist

There 1s no constructive logic beyond intuitionistic logic: modal logic, inside which
intuitionistic connectives can be faithfully translated, is nonconstructive: various
logics which have been considered in the philosophical tradition lack the seriousness
that is implicitly needed (a clean syntax, cut-elimination, semantics, etc.) and, in
the best case, they present themselves as impoverishments of intuitionism, while we
are of course secking something as strong as intuitionism but more subtle. The
philosophical exegesis of Heyting’s rules leaves in fact very little room for a further
discussion of the intuitionistic calculus; but has anybody ever seriously tried? In
fact, linear logic, which is a clear and clean extension of usual logic, can be reached
through a more perspicuous analysis of the semantics of proofs {not very far from
the computer-science approach and thus relegated to the next section), or by certain
more or less immediate considerations about sequent calculus. These considerations -
are of immediate geometrical meaning but in order to understand them, one has to
forget the intentions, remembering, with a Chinese leader, that it is not the colour
of the cat that matters, but the fact it catches mice.

I1.1. The maintenance of space in sequent calculus

When we write a sequent in classical logic, in intuitionistic or minimal logic, the
only difference is the maintenance of space: in classical logic we have n+ m rooms
separated by ; in minimal logic m = 1, while in intuitionistic logic m =0 or 1. Into
the three cases we build particular connectives which belong to such and such
tradition, but beyond any tradition we are extremely free, provided we respect an
implicit symmetry that is essential for cut-elimination,

Now, what is the meaning of the separation - ? The classical answer is “‘to separate
positive and negative occurrences”™. This is factually true but shallow; we shall get
a better answer by asking a better question: what in the essence of — makes the two
latter logics more constructive than the classical one? For this the answer is simple:
take a proof of the existence or the disjunction property; we use the fact that the
last rule used is an introduction, which we cannot do classically because of a possible
contraction. Therefore, in the minimal and intuitionistic cases, — serves to mark a
place where contraction (and maybe weakening too) is forbidden; classically speak-
ing, the — does not have such a meaning, and this is why lazy people very often
only keep the right-hand side of classical sequents. Once we have recognized that
the constructive features of intuitionistic logic come from the dumping of structural
rules on a specific place in the sequents, we are ready to face the consequences of
this remark: the limitation should be generalized to the other rooms, i.e., weakening
and contraction disappear. As soon as weakening and contraction have been forbid-
den, we are in linear logic.

I1.2. Linear logic as a sequent calculus

Linear logic ignores the left/right-asymmetry of intuitionism: in particular, one
can directly deal with right-handed sequents. The first thing to do is to try to rewrite
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familiar connectives in this framework where structural rules have been limited to
exchange; in particular, the two possible traditions for writing the right A-rule:

A, C -8, D A, C lB’CA
~AAB C D ’ HAAB C ’

which are equivalent in classical sequent calculus modulo easy structural manipula-

tions, now become two radically different conjunctions:

- rule { M) treats the contexts by juxtaposition and yields the multiplicative conjunc-
tion ® (times);

- rule { A) treats the contexts by identification, and yields the additive conjunction

& (with).

The vaultkey of the system is surely linear negation (.)". This negation, although
constructive, is involutive! All the desirable De Morgan formulas can be written
with (.)*, withoul losing the usual constructive features. Through the De Morgan
translations, the other elementary connectives are easily accessible: the multiplicative
disjunction % (par) and the additive one @ ( plus) and linear implication — (entails).
The last connective was the first to find its way into official life and it has given its
name to the full enterprise.

There is a philosophical tradition of ‘strict implication’ amounting to Lewis. In
some sense, linear implication agrees with this tradition: in a linear implication, the
premise is used ‘once’, in the sense that weakening and contraction are forbidden
on the premise (in fact ‘once’ means only something in multiplicative terms, i.e.,
w.r.t. juxtaposition: additively speaking, the premise can be used several times.
A — A® A is not derivable, but A — A&A is). Even if this philosophical tradition
has not been very successful, the existence of linear logic gives a retrospective
justification to these attempts.

The most hidden of all linear connectives is par, which came to light purely
formally as the De Morgan dual of & and which can be seen as the effective part
of a classical disjunction. Typically, A — A, which everybody understands, is literally
the same as A~ % A.

I1.3. Strength of linear logic

Is linear logic strong enough? In other terms, is it possible to translate usual logic
{especially intuitionistic logic) into linear logic? If we look at usual connectives, we
discover that some laws belong to the multiplicative universe (e.g., A — A), and
others to the additive realm (e.g., the equivalence between A and A & A). In flact,
no translation works, for a very simple reason: since there are no structural rules,
the proofs diminish in size during normalization! This feature, one of the most
outstanding qualities of linear logic, definitely forbids any decent translation on the 1|
basis of the connectives so far written. The only solution is to allow weakening and |
contraction to some extent; in order to do so, the exponentials ! and ? are introduced;
these modalities indicate the possibility of structural rules on the formula beginning
with them. For linear proofs involving these modalities, a loss of control over the
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. normalization times occurs, as expected. Roughly speaking, one can say that usual
logic (which can be viewed as the adjunction of the modalities) appears as a passage
to the limit in linear logic since, for 74 to be equivalent with ?A % 74, we have to
do something like an infinite “*par”. The translation of intuitionistic logic into linear
logic is defined by

A’=A for A atomic,

(AnB)’=A"& B°, (AvB)=1A"®!B", (A=B)"=1A"— B",
(11A)*=1A% =0 (0 is one of the constants of the system),
(Vx.A)=A x.A°, (AxA) =V x1A"

(A and V/ are the linear quantifiers, about which there is little to say except that \/
is cffective, and the De Morgan dual of A!).

11.4. Subilety of linear logic

Let us give an example in order to show the kind of unexpected distinctions that
linear logic may express; for this, we shall assume that the formula A is quantifier-
free, and is represented in linear logic in such a way that “or”” between instances
of A becomes "%, We claim that linear logic can write a formula with this meaning:
IxAxy and this with a Herbrand expansion of length 2. Intuitionistic logic can
handle the Herbrand expansion of length 1 and classical logic can handle the general
case with no hound on the length, but the much more interesting case of a given
length bound was not expressible in usual logics. People with some proof-theoretic
background know that a Herbrand expansion of length 2 can be rewritten as a
sequent - Atx, Aux’, with x, x" not free in 7, x' not free in u (midsequent theorem).
Now, the formula

(Vx AyAxy) % (Vx AvAxy)

of linear logic will be cut-free provable exactly when a sequent of the above kind
is provable.

I1.5. The semantics of linear logic: phases

The sentence saying that usual logic is obtained from linear logic by a passage
to the limit is reminiscent of the relation between classical and quantum mechanics.
There is a Tarskian semantics for linear logic with some physical flavour: w.r.t. a
certain monoid of phases formulas are true in certain situations. The set of all phases
for which a formula may be true is called a fact, among which the fact of orthogonal
phases plays a central role to represent the absurdity L. One easily defines the
orthogonal A* of a fact and by restricting to facts which are themselves orthogonals,
we get an involutive operation representing linear negation. There usual connectives
are easily defined: & is the intersection, whereas — is the dephasing, i.e., A — B is
the set of all p such that p.A < B, where the phase space, although commutative, is
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being written multiplicatively. A fact is said to hold when it contains the unit phase
1. This semantics is complete and sound w.r.t. linear logic. One of the wild hopes
that this suggests is the possibility of a direct connection with quantum
mechanics . . . but let’s not dream too much!

II1. Linear logic explained to a (theoretical) computer scientist

There are still people saying that, in order to make computer science, one
essentially needs a soldering iron; this opinion is shared by logicians who despise
computer science and by engineers who despise theoreticians. However, in recent
years, the need for a logical study of programmation has become clearer and clearer
and the linkage logic-computer-science seems to be irreversible.

(i) For computer science, logic is the only way to rationalize ‘bricolage’; for
instance, what makes resolution work is not this or that trick, but the fundamental
results on sequent calculus. More: if one wants to improve resolution, one has to
respect the hidden symmetries of logic. In similar terms, the use of typed systems
(e.g., the system F), is a safeguard against errors of various sorts, e.g., loops or
bugs. Moreover, in domains where the methodology is a bit hesitating, as in
parallelism, logic is here as the only milestone. In some sense, logic plays the same
role as the one played by geometry w.r.t. physics: the geometrical frame imposes
certain conservation results, for instance, the Stokes formula. The symmetries of
logic presumably express deep conservation of information, in forms which have
not yet been rightly conceptualized.

(ii) For logic, computer science is the first real field of application since the
applications to general mathematics have been too isolated. The applications have
a feedback to the domain of pure logic by stressing neglected points, shedding new
light on subjects that one could think of as frozen into desperate staticism, as
classical sequent calculus or Heyting’s semantics of proofs. Linear logic is an
illustration of this point: everything has been available to produce it since a very
long time; in particular, retrospectively, the syntactic restriction on structural rules
seems so obviously of interest that one can hardly understand the delay of fifty
years 1n its study. Computer science prompted this subject through semantics: The
idea behind Heyting's semantics of proofs is that proofs are functions; this idea has
been put into a formal correspondence between proofs and functional systems by
Curry, Howard, and De Bruijn. The tradition on Heyting’s semantics is of little
interest because it is full of theological distinctions of the style: “*how do we prove
that this a proof™, etc.; computer scientists have attacked more or less the same
question, but with the idea of concentrating on the material part of these proofs,
or functions. This has led to Scott semantics, for long the reference concept in the
subject; however, Scott’s semantics is not free from big defects, specifically, where
what is called finite in these domains is not finite in any reasonable sense (noetherian
would have been a happier terminology) and in particular, the fact that arbitrary
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objects are approximable by finite ones only because we have abused the word
finite’. In recent work in 1985, the present author has made essential simplifications
of Scott's work: by use of a more civilized approach to function spaces one can
work with qualitative semantics (rebaptized here to coheren! spaces) in which
finiteness is finiteness. Moreover, all basic definitions involving coherent spaces are
very simple and a certain number of features that were hidden behind the heavy
apparatus ol Scott domains are brought to light, in particular, the discovery that
the arrow is not primitive.

111.1. The semantics of linear logic: coherent spaces

A coherent space is a graph on a set (the web of the space). What counts as an
object in this space is any subset of the graph made of pairwise compatible (we
say: coherent) points. The interpretations made in 1984-85 gave very simple interpre-
tations for the intuitionistic connectives in terms of coherent spaces as schemes for
building new coherent spaces. Now, it turns out that there are intermediate construc-
tions; typically, the function space X =Y can be split into

- the formation of the ‘repetition space’ 'X = X',

- the formation of the linear implication X' — Y.

Later, — can in turn be split as X — Y= X" % ¥, but this is a bit more dubious
since X ® Y =X — Y] so there is some subjectivity in deciding which among the
two multiplicatives is more primitive (not to speak of ®!).

In fact, after some times, one arrives at the following stock of operations:
()%, —,®, &, @, !, ?; usual functional types admit decompeositions according to
the formulas in Section IL.3. One can imagine other linear connectives (e.g., a
primitive equivalence) which, although very natural, do not lead to any logical
system. What is outstanding here is that the decomposition can also be carried out
al the logical level; i.e., that these new connectives have all qualities of a logic. This
logic has already been disclosed before, but we have to look again at its proof-system,
as will be done in the following section.

111.2. Proof-nets: a classical natural deduction

In the beginning (say: up to the end of '85) things remained simple because it
was not clear that the intuitionistic framework was an artificial limitation; at that
moment, (.}*, %, and ? were still in statu nascendi. It was therefore possible to keep
a functional notation for the proofs of this intuitionistic linear logic: for instance,
the formation of the linear application tu was subject to the restriction FV({)
FV(u)=@; for the additive pair &fu, the restriction was FV(t) = FVY{u), for linear
lambda abstraction Lx.1, the restriction was x € FV(t), etc. This gave a reasonable
system, still of interest, however with the defect of too many connectives involving
commutative conversions (&), &, !). The conviction that the system should be relevant
to parallelism and the rough analogy ‘sequential = intuitionistic, parallel = classical’
produced a shift to the ‘classical’ framework, where sequents are left/right-symmetric
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with bad consequences for normalization since it i1s well-known that no decent
natural deduction exists in classical frameworks. However, linear logic is not so
bad since it has been possible to define a notation of “proaf-net” which is a proof
with several conclusions. (It seems that the problem is hopeless in usual classical
logic and the accumulation of several inconclusive attempts is here to back up this
impression. In linear logic, we can distinguish between, for instance, the multiplica-
tive features of disjunction, which deserve a certain treatment, and the additive
ones, which deserve another treatment; trying to unify both treatments would lead
to a mess.)

In fact, the core of proof-nets consists in studying the multiplicative fragment,
which is handled in a very satisfactory way: starting with axioms A A" one develops
proof structures by combination of two binary rules, or links,

A B d A B
- an —
ARB ™ AwB

Most of these structures are incorrect because the left-hand side may work in a way
contradicting the right-hand side. Now the soundness criterion is as follows: to each
multiplicative link is associated a switch with two positions L and “R"; an ideal
particle (representing the flow of input/output inside the proof) tries to travel starting
from a given formula, and in a given direction (upwards: question, or downwards:
answer); at each moment, the particle knows (the switches are here to help) where
to go, so it eventually makes a cyclic frip.

The soundness requirement is simple: for any positioning of the n switches, the
trip is long, i.e., it goes twice through all formulas, once up, once down; in other
terms, the whole structure has been visited, and every question has been answered,
every answer has been questioned. Clearly, the most difficult result of the paper is
to prove that this notion of proof-net is equivalent to a sequent calculus approach,
i.e., can be sequentialized. The full calculus does not have such a system; it is
handled through the concept of proof-box, which is a lazy device: moments of
sequentialization are put into boxes and the boxes are interconnected in the perfect
multiplicative way already explained.

The soundness conditions for proof-nets (absence of shorttrips) should not be
misunderstood; it is not a condition that should be practically verified because, with
n switches, we essentially have 2" verifications to make. It must be seen as an
abstract property of these paraliel proofs that we are not supposed to check by
means of a concrete algorithm. {In the same way, the fact that an object of type
int=>int of F when applied to an integer # yields, after normalization, an integer
m need not be checked; this, however, is an important abstract property of F).
However, we want to work with proof-nets as programs, and when we have one,
we want to be sure by some means that it is actually a proof-net; this is why methods
for generating proof-nets are very important, and we know the following ones:-

(1) Desequentialization of a proof in linear sequent calculus: we can imagine
this as the most standard way to obtain a proof-net. The user would produce a
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source program (in linear sequent calculus), and this program would be compiled
as a proof-net, i.e., as a graph between occurrences of formulas.

(ii) Logical operations between proof-nets: for instance, a proof-net 8 with two
conclusions A and B can be connected to a proof-net 8’ with conclusion A*, by
means of the cut-link in Fig. 1(a). Here, 8 has been seen as a (linear) function
taking as arguments objects of type A (proof-nets admitting A* as conclusion)
and yielding an answer of type B. The function applies to the argument by means
of CUT.

TN \1 e N [{B”\"

k"Af p}“—- 3 :35._,, R.f \HJ_-"
“cut cuT
(a) (h)

Fig. 1.

The picture is however wholly symmetrical; one can also apply 8 to an argument
B" of type B*, and this yields a result of type A as shown in Fig. 1(b). One can
also combine both ideas and apply B8 to both 8’ and 8" etc.; when we say that we
‘apply’ B to B', this is really to explain the things very elementarily because one
could have said that 8" is applied to 8. There is a perfect function/argument symmetry
in linear logic.

(iii) Normalization: There is a normalization procedure which eliminates the use
of the cut-link. When we normalize a proof-net, then the result is still a proof-net,
as we can easily prove. In the study of normalization, the structure

A Al
CUT

plays an important role: first, this is not a proof-net, because there is the shorttrip
A", A, A" etc.; second, it would be a ‘black hole’ in the normalization process,
i.e., a structure hopelessly normalizing into itself. If we try to imagine what could
be the meaning of this pattern, think of a variable of type A (denoting the address
of a memory case) calling itself. To some extent, the conditions on trips are here
Just to forbid this ‘black hole’ and to forbid by the way all situations that would
lead to such a pattern by normalization, etc.

Although we can deal with concrete proof-nets without a feasible characterization,
alternative definitions of soundness are welcome. One can expect from them two
kinds of improvements:

(i) feasibility, i.c., the possibility to use proof-nets directly that have been written
on a screen for instance;

(ii) the extension of the advantages of the parallel syntax outside the multiplicative
fragment; for instance, the weakening rules for (1) and (?) are handled in terms
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of boxes because our definition of rip excludes disconnected nets. Surely, some
disconnected nets are however acceptable, but we have not found any simple
soundness characterization for them.

I11.3. Normalization for proof-nets

There is a radical and quick procedure for normalizing the multiplicative fragment
of proof-nets. The full language is more delicate to handle because the cut-rule
sometimes behaves badly w.r.t. boxes; in particular, it is difficult to define a terminat-
ing normalization process for the full calculus with a Church-Rosser property. Here
we have to be a little more careful;

(i) Although the Church-Rosser property is lost, there is a semantic invariance
of the normalization process which ensures that no serious divergence can be
obtained.

(ii) One can even represent a proof-net by a family of slices, and this representa-
tion is Church-Rosser. Unfortunately, the status of slices is far from being well-
understood and secured.

(ifi) One can expect to be able to improve the syntax by reducing the number of
hoxes. The box of the rule (!) is an absolute one and one cannot imagine to remove
it. But the boxes for 1 and (W?), for (&) and for (/\) can perhaps be removed with
various difficulties. The main problem is of course to find euch time the ad hoc
modification of the concept of trip and also to remain with a manageable condition.

Anyway, there is a strong normalization theorem for PN2 which generalizes the
familiar result of [1] for F. The methodology combines the old idea of candidat de
réductibilité (CR) with phase-like duality conditions; it is very instructive to remark
that a CR defined by duality immediately has a lot of properties which, in the old
works (e.g., [2]), we were forced to require explicitly!

Cut-elimination plays the role of the execution of a program; here we must recall
a point that is very important: proof-nets generalize natural deduction, which in
turn is isomorphic to lambda-calculi with types. Hence, proof-nets are a direct
generalization of typed lambda-calculus and a proof-net is as much expressive as
a functional notation. It is sometimes difficult for computer scientists to go through
this point: they are shocked by the fact that PN2 does not look like a functional
calculus. In fact, the earlier versions were functional, using typed linear abstraction,
elc.; but the functional notation is unable to make us understand this basic fact,
namely, that a (linear) term ¢[x*] (of type B) should be simultaneously seen as a
term u[¥""] (of type A*). The functional notation is surely too expressive for our
imagination to ever abolish its use; but at a very high degree of abstraction, it is
clearly misleading and unadapted. But, once more, proof-nets are lambda
expressions, simply written in the way best adapted to their structure. The fact that
they are quite remote from our usual habits or prejudices should not be seen as an
argument against their use in computer science: if there is ever any computer working
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- with linear logic, it is expected that the proof-nets will mostly be seen by the compiler,
the user however will use more traditional devices!

I11.4. Relevance for computer science

Roughly speaking, proof-nets represent programs whose termination is guaranteed
by the normalization theorem. The kind of programs obtained is quite different from
those coming from intuitionistic logic; let us examine this in detail in the following
sections.

I11.4.1. Questions and answers

In typed lambda-calculus, a term t[x,, ..., x,] of type [a,...., 7,]7 represents
a communication between inputs of types o,,...,c, and an output of type 7. The
communication works as follows: oulputs u,,...,u, of types o,,..., o, can be.
substituted for x,, ..., x, yielding t[u,, ..., u,]; recall that substitution is the func-
tional analogue of the cut-rule. Now, the terminology ‘input/output’, although
correct, is a bit misleading because we have a tendency to say that ¢ waits for the
inputs uy, ..., u,, whereas it is preferable to realize that the inputs are in fact the
abstract symbols for inputs, i.e., the variables x,,...,x,. For that reason, the
terminology question (for x,,...,x,) and answer (for t) is more suited. In other
terms, x; is a question answered by u, when doing the substitution. The functional
approach to programmation is essentially asymmetric as the communication is
always between several questions and one answer: this unique answer depends on
the answers to the previous questions. For instance, the term x of type o represents
a very simple type of communication: the question is to find a term u of type o
and, from an answer to this question, we get the answer corresponding to the term

ae

x", namely “u". The communication is therefore just recopying.

I11.4.2. Towards parallelism

Parallelism will occur as soon as we are able to break the Q/A-asymmetry between
questions and answers. The most radical solution is the ability to exchange roles;
i.e., a question could be seen as an answer and conversely. Lineaments of this
situation appear in usual typed lambda-calculus: the term t[x], which is a communi-
cation between a question of type o and an answer of type 7, yiclds a term [ y]
which is a communication between a question of type r=>p and an answer of type
o=p: [y]=Axy(t[x]). The roles Q/A have been exchanged during this process;
however, the transformation made is not reversible: the exchange of roles is hope-
lessly mixed with other things and we cannot proceed any longer in this framework.

In linear logic, this limitation is overcome: questions and answers play absolutely
symmetric roles, which are interchanged by linear negation. A proof-net with con-
clusions A,,... A, can be seen as a communication net between answers of
respective types A,, ..., A,. But since we have

answer of type A = question of type A*,
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we can put it as, say, a communication between questions of types Ay,..., Ai_,
and an answer of type A,, and this immediately sounds more familiar!

Typically, the axiom link A A*, which is a communcation between two answers
of types A and A', can be seen as the trivial communication between either a
question of type A" and an answer of the same type, or between a question of type
A't = A and an answer of the type A. The cut-rule 2=+, which puts together two
questions of orthogonal types (or a question and an answer of the same type), is
the basic way to make the communication effective.

I11.4.3. Communication and trips

In spite of the equality between an answer and a question of the orthogonal type,
the two things should be distinguished a little; for instance, in the basic sequential
case (Section ITL.4.1) the communication is from the question (variables) to the
answer (the term). This distinction is essentially the one used for trips: A" stands
for a question of type A", where A, stands for an answer of type A, In other terms,
when we move upwards, we question, when we move downwards, we answer!

The way communication works is well explained by the trips:

(i) In a CUT-link “¢,;7'" the trip algorithm: ‘from A, go to A*" and from Al
go to A", is easily explained as: an answer of type A is replaced by a question of
type A, and an answer of type A* is replaced by a question of type A*: the questions
met their answers. -

(ii) In the axiom link A A*, the interpretation is basically the same, the only
difference being that, in the case of the cut, an answer is changed into a question,
whereas in the case of the axiom, a question hecomes an answer.

(iii) The multiplicatives @ and % are the two basic ways of living concurrence:
in both cases, a question of type (A m B)" has to be seen as two separate questions
of type A* and B*; an answer of type A m B has to be seen as two separate answers
of types A and B. However,

- in the case of ®, there is no cooperation: if we start with A", then we come back
through A, before entering B" after which we come back through B, ;

- in the case of %, there is cooperation: if we start again with A", then we are
expected through B, , from which we go to B” and eventually come back through
A,

(iv) The additives & and & correspond to superposition, whose typical example
is the instruction IF-THEN-ELSE:

- in terms of answers, the type A & B means one answer of each type;

- in terms of questions, the type A & B means cither a question of type A or a
question of type B. (The meaning of @ is explained by duality.)

In particular, only one of the answers occurring in an answer of type A & B is
of interest, but we do not know which until the corresponding question is clearly
asked. This is why the rule (&) works with boxes in which we put the two alternative
answers so that this superposition is isolated from the rest. This is a typical lazy
feature.
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(v) The exponentials ! and ? correspond to the idea of storage:

- an answer of type !A corresponds to the idea of writing an answer of type A in
some stable register so that it can be used ad nauseam.

- a question of type !A corresponds to several questions of type A, ‘several’ being
extremely unspecified (0 times: rule (W?), 1 time: rule (D?), etc.), i.e., is an
iterated reading.

The fact that the rule (1) works with boxes expresses the idea of storage.

I11.4.4. Work in progress
In the previous section we explained the general pattern of communication in
linear logic; compared to extant work on parallelism, especially Milner's approach,
the main novelty lies in the logical approach, i.e., parallelism should work for internal’
logical reasons and not by chance. Systems like F, which are of extremely general
interest for sequential computation, work because they are logically founded.
(Remember that F is the system of proofs of second-order intuitionistic propositional
calculus.) For similar reasons, the programs coming from linear logic are proofs
within a very regular logic and this gives the good functioning of such programs
(in terms of communication) at a theoretical level. At a more practical level, all
these general ideas have to be put into more concrete proposals and this will be
done in separate publications among which the following are expected quite soon:
- A paper with Yves Lafont, concentrating on the nonparallel aspects, in particular
the new treatment of data suggested by linear logic; the formalism used is
intuitionistic linear logic.
- A paper with Gianfranco Mascari, concentrating on the parallel aspects of linear
logic; in particular, it will give some more details for a concrete implementation.

IV. Pons asinorum: from usual implication to linear implication?

What is the use of semantics of programming languages?

(1) Some people think that the purpose of a semantics is to interpret sets of
equations in a complete way; in some sense, the semantics comes like the official
blessing on our language, rules, etc.: they are perfect and cannot be improved. The
success of this viewpoint lies in Gidel’s completeness theorem which guarantees,
for any consistent system of axioms, a complete semantics.

(2) A more controversial viewpoint consists in looking for disturbing semantics,
which shed unexpected lights on the systems we know. Of course, this viewpoint is
highly criticizable since there is no absolute certainty that anything will result from

! In this, our approach is radically differcat from the idea of an external logical comment to parallelism
by means of modal, temporal, ete. logics.

* Remark on notations: the symbol % is not accessible on a word processor; 1 therefore propose (o
replace it by || and simultaneously to replace & by the symbol ™ : it is important that the two symbols
remind one of another.
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such attempts, But the stakes are clearly higher than in the hagiographic viewpoint
(1) and a change of syntax (as the one coming with linear logic) may occur from
disturbing semantics.

Let us explain what is the starting disturbance that led to linear logic: the semantics
of coherent spaces (qualitative domains in [4]), developed in Section 3 below, works
as follows in the case of an implication.

IV.1. Definition. If X and Y are two coherent spaces, then a stable function from
X to Y is a function F satisfying:

(S1) ac bh-> F(a)c F(b),

(82) aube X > Flanb)=F(a)n F(b),

(S3) F commutes with directed unions.

1V.2. Theorem (see [4, 5]). With any stable function F from X to Y, associate the set
Tr( F) defined by

Tr(F) = {(a, z); a finite ohject of X, z€ F(a) such that
ze F(bYand bca->b=al.
Then, for any c€ X, we have
F{c)={z;3ac< ¢ such that (a, z)e Tr( F)}. (1)

Moreover, the set of all sets Tr( F), when F varies through all stable functions from X
to Y, is a coherent space X = Y which can be independently defined by

IX_'> Y|= X, x| Y]
{a, 2)Z=(b, t)[mod X=Y] iff (1) aube X->zZ1[mod Y],

(2) avbeXanda#h->z#1.

1V.1. Interpretation of functional languages

Theorem 1V.2 is enough to interpret A-abstraction and application in typed
languages; the formation of the trace, encoding a function by a coherent set, interprets
A-abstraction whereas application is defined by means of formula (1) above. Beta-
and eta-conversion are immediately seen to be sound w.r.t. this semantics.

IV.2. The disturbance

If one forgets the fact that coherent spaces are extremely simpler than Scott
domains, nothing unexpected has occurred: the semantics follows the same lines
as Scott-style interpretation. The novelty is that, for the first time, we have a readable
definition of function space. The disturbance immediately comes from a close
inspection of this definition: why not consider independently:

(1} a space of repetitions !X,

(2) a more restricted form of implication; the linear one.
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IV.3. Definition. Let X and Y be coherent spaces; a stable function F from X to
Y is said to be linear when it enjoys the two conditions:

(L1) aube X > Flaub)=F(a)u F(b),

(L2) F(@)=a.

Equivalently, (L1), (L2), and (S3) can be put together in one condition (L):

(L) Assume that A < X is a set of pairwise coherent subsets of X;then F(| ) A)=
(U {F(a);ac A}

IV.4. Theorem. A stable function F is linear iff its trace is formed of pairs (a, z), where
the components a are singletons.

Proof. (a,z)eTr(F) when ze F(a): this forbids a=¢ by {L2) and when a is
minimal w.r.t. inclusion among such pairs (b,z). Write a =a’'U a”; then, from
(a,z)eTr(F), we get ze F(a)= F(a'}u F(a"), so ze F(a') or zc F(a"). Now, the
minimality of a implies that a is a singleton.

IV.5. Definition. For linear maps, it is more suited to forget the singleton symbols;
so we get the following characterization of the space X — Y formed of traces of
linear maps from X to Y:

| X — Y]=|X|x|Y];

(x, S(x', ') [mod X — Y] iff (1) xSx'[mod X]- yZy'[mod Y],
(2) x~x'[mod X]-y~y [mod Y].

Formula (1) is now replaced by the formula of linear application:

F(b)={y;3xe< b such that (x, y) e Tr{ F)}. (2)

IV.6. Definition. If X is a coherent space, then !X is defined as follows:
|!X| = Xfms

aZbmod !X if aubeX.

IV.3. The decompasition

We clearly have: X =Y = !X — Y, in order to make this look like a decomposi-
tion, we have to decompose A-abstraction and application; for linear functions, the
trace and formula (2) will play the role of linear A-abstraction and linear application.
We need two other operations connected with !:

(1) when x € X, the formation of 'x& ! X:

!x={a;a€x and a finite};

(ii) the linearization of a function: if F is a stable map from X to Y, one can
construct a linear stable map LIN(F) from !X to Y simply by Tr(LIN(F)) = Tr(F).
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Now, A-abstraction can be viewed as two operations: first linearization, then
linear A-abstraction.

Application can be viewed as two operations too: applying a to b is the linear
application of a to !b.

IV.4. Further questions

This already suggests to develop linear implication and ! for themselves. However,
there are a lot of other disturbing facts; for instance, nothing prevents us from
considering the result of replacing a coherent space X by its dual X* where the
roles of coherence and incoherence have been exchanged. But then X — Y is the
same as Y —o X' i.e., linear functions are reversible in some sense. This immedi-
ately suggests a classical framework (symmetry between inputs/outputs, or vari-
ables/results, or questions/answers). Deep syntactic modifications come from simple
semantic identifications.

1. The phase semantics

Usual finitary logics (we mean classical and intuitionistic logics) involve a certain
conception of semantics which may be described as follows: truth is considered as
meaningful independently of the process of verification. In particular, this imposes
strong limits on the propositional parts of such logics and, for instance, starting
with the general idea of conjunction we are hopelessly led to “A & B true iff A true
and B true’. By admitting several possible worlds, the intuitionistic semantics (Kripke
madels) allows more subtle distinctions, promaoting drastically new connectives (the
intuitionistic disjunction) while being extremely conservative on others (con-
junction).

The change of viewpoint occurring in linear logic is simple and radical: we have
to introduce an observer; in order Lo verifly a fact A, the observer has to do something,
i.e., there are tasks p, q,... which verify A (notation: p/= A, g /= A,...). These
tasks can be seen as phases between a fact and its verification; phases form a monoid
P and we shall consider that a fact is verified by the observer when there is no
phase between him and the fact, i.e., when 1 /= A. The idea of introducing phases
makes a radical change on our possible connectives, which we shall explain by
starting with the idea of a conjunction:

(1) “&: say that p /= A& B when p /= A and p /= B;

(i) “®": say that pg /=A® B when p/= A and g /= B}

In the case of & the task p shares two verifications, while in the case of “®",
the verification 1s done by dispatching the total task pg between A and B: p verifies
A and g verifies B. These two connectives have very different behaviours, as expected
from their distinct semantics. '

? The definition given here is slightly incorrect and has been simplified for pedagogic purposes.
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By the way, observe that “®" appears as a noncommutative operation. In order
to keep the simplicity of the theory at this early stage of development, we shall
make the hypothesis of the commutativity of P, i.e., we shall develop commutative
linear logic. The noncommutative case is abviously more delicate and we have not
accumulated enough materials in the commutative case to he able to foresee the
general directions for a noncommutative linear logic; also we should have some
real reason to shift to noncommutativity!

Semantically speaking, let us identify a fact A with the set {p;p /= A} so that a
fact appears as a set of phases. Among all facts, we shall distinguish the absurd
fact 1, which is an arbitrary fixed subset of P. Given any subset G of P, we define
(w.r.t. 1) its dual G'; facts will be exactly those subsets G of P such that G'' = G.
The basic linear connectives are then easily developed as those operations leading
from facts to facts.

1.1. Definition. A phase space P consists in the following data:

(1) a monoid, still denoted P, and whose elements are called phases; the monoid
is supposed to be commutative, i.c.,
- neutrality: 1p=pl=p for all pc P,
- commutativity: pg=gp for all p,ge P,
- associativity: (pg)r=p(qr) for all p, g, re P;

(ii) aset | p(often denoted L for short), the set of antiphases of P. (One can also
say “orthogonal phases”.)

1.2. Definition. Assume that G is a subset of P; then we define its dual G* by

G'={peP;Yq(qge G-pgc L)}

1.3. Definition. A fact is a subset G of P such that G** = G; the elements of G
are called the phases of G, G is valid when 1¢ G.

1.4. Immediate properties
(i) Forany G P, G= G**;
(ii) Forany GG H= P, G H->H < G*;
(ili) G is a fact iff G is of the form H* for some subset H of P.

1.5. Examples. (i) L is a fact because 1 ={1}".

(i1) Define a fact 1 by 1= L*; then, observe that 1€1; moreover, if p, g€ 1, then
pq <1 (more generally, if pe 1, and g € G, then pge G-*), Hence, 1 is a submonoid
of P

(iii) Define a fact T by T=0"; clearly, T=P

(iv) Define a fact 0 by 0=T*; then 0 is the smallest fact (w.r.t. inclusion). Most
of the time, @ will be void.

1.6. Proposition. Facts are closed under arbitrary intersections.
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Proof. If (G;);.; is a family of facts, then (| G, =(l ) G;)*" and [) G, are therefore
facts. O

1.7. Definition. The connective nil (linear negation) is defined by duality: if G is a
fact, then its linear negation is G—. Things have been made so that nil is an involution,
ie., G''=G.

1.8. Definition. The multiplicative connectives (or multiplicatives) are the con-
nectives times, par and entails; all three are definable from the operation of product
of subsets of P: if G, H< P, then GH ={pg,pc G and gc H}.
(i) If G and H are facts, their parallelization (connective par) G ® H is defined

by G® H=(G*.H")".

(ii) If G and H are facts, their tensorization (connective times) G@ H is defined
by GRH=(G.H)".

(iii) If G and H are facts, their linear implication (connective entails) is defined
by G — H =(G.H*)*.

1.9. Basic properties of multiplicatives. (i) Any multiplicative can be defined from any
other and nil:

G®H=(G"%®H")", G- H=G"%H,

G®WH=(G'®H'")", G—-H=(G®H'")',

G®H=G"—H, G@H=(G— H")"

(ii) par and times are commutative and associative; they admit neutral elements
which are L and 1 respectively:

L¥®G=0G, 1®9G =G,
(GRPH)®PK=G®(H®K), (GOH)®K=G®HK®K),
G®H=H%G, GOH=H®G.

(ili) entails satisfies the following properties:
1-G=gG, G— L1=0G",
(GAH)—=K=G—(H—oK), G-(H®K)=(G— H)®K,
G—oH=H"—G",

Proof. (i) is immediate from the definitions; once (i) has been established, (ii) and
(iii) can be reduced to the particular case of ®, i.e., associativity, commutativity
and neutrality of 1 for this connective; among these properties only associativity
deserves some attention: we shall prove that (GRH)®K =(G.H.K)*". This
property is easily reduced o the following lemma.
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1.9.1. Lemma. If F, G are two subsets of P, then (F.G)' '>F' ".G'".

Proof. Assume that pe F'*, gc G**; we have to show that, given any ve (F.G)',
pque 1; the hypothesis v € (F.G)”", however, means that, for all fe F and ge G,
vfg € L. In particular, if we fix f€ F, it follows that uf ¢ G* = G***, hence, vfge L.
For similar reasons, vge F* = F*** so vpge L. L]

1.10. Remark. There is the following illuminating alternative definition of &G — H:
pe G — H ift, for all ge G, pge H.

1.11. Definition. The additive connectives (or additives) are the connectives with
and plus which are obtained from the boolean operations:

(i) If G and H are facts, then their direct producr (connective with) G & H 1s
defined by G& H=Gn H.

(ii) If G and H are facts, then their direct sum (connective plus) G@ H is defined
by GRH=(GuH)"".

1.12. Basic properties of additives. (i) The additives are interrelated hy a De Morgan
principle
G& H=(G'®©H")", GRH=(G"& H")".

(ii) with and plus are commutative and associative; they admit neutral elements
which are T and 0 respectively:

T& G=0G, 028G =G,
G& H-H&CG, GDH=H®DG,
G&(H&EK)=(G& H)& K, GBE(H®K)=(Ga@H)®K.
1.13. Distributivity properties. (i) ® is distributive w.r.t. ®, and 8 is distributive w.r.1.
&.

GCRHOK)=(GRH)YD(G®K), G¥®(H&K)
=(GYH)&(G®K),

0 G =10, TRG=T.
This yields, for —o,
(GB@H)—-<K=(G—<K)&(H—K), GC—(H&K)=(GC—H)&(G— K),
0—G=T, G—T=T.
(ii) Between ® and &, between ¥ and @, there is only “half-distributivity’
GH(H&K)c(GRH)&(GRBK),
(CRH)Q(CRK)cGR(HDK)
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which yields, in the case of —o,
(G— K)Y®(H - K)c(G& H)— K,
(G- H®B(G—-K)cG-—-<(HPK).

Proof. Let us concentrate on the first distributivity property; the following lemma
is of general interest.

1.13.1. Lemma. If G is any subset of P, then G** is the smallest fact containing G.

Proof. There is a smallest fact containing G, namely the intersection of all facts
containing G; let us call it S; clearly, §< G*~, from which we get G** < §**c
Glil_l_‘ ﬂl’]d 50 G_;J_=SJ.J_=S- D

Proof of Properties 1.13 (continued). Now, observe that G(Hu K)'“'c
(G(HUK))" (Lemma 1.9.1); but G.(Hu K)= G H v G.K, from which we get

GHUK) "« (GHUGK)"'=(GRH)®(G®K).

By Lemma 1.13.1, GR(H®K)c (GRH)®(G®K).
Conversely, starting with GH<c G®(H®K) and GK< GR(HEK), we get,
by Lemma 1.13.1, GRHUGRKc GR(H® K), and, by Lemma 1.13.1 once more,

(GRH)B(GRK)c GR(H®K). a

Up to now we have described the propositional framework of linear logic. This
part is the most important part of linear logic, the one which is the most radically
different from usual logics. For this fragment, we shall now set up a formal system
and prove a completeness theorem; afterwards, we shall have a quick overview of
the modalities and quantifiers which have been deleted for reasons of clarity. These
new operations, although important, will not disturb too much the ordinance of
things that is now taking shape. Our first syntactical concern is economy: we
essentially need 4 multiplicative, an additive, and nil. We get a very nice syntax by
adopting the fellowing conventions:

(i) The atomic propositions are 1, L, T,0 together with propositional letters
a,b,c,...and theirduals a', b', c',. ...

{(ii) Propositions are constructed from atomic ones by applyin 1 the binary con-
nectives (0, ¥, @, &.

In particular, linear negation of a proposition is defined as follows:

1'=1, 1*=1, T*=0, 0°'=T,

a “=a (a'is already in the syntax),
(A®B)*=A" % B*, (A®B)'=A"®B",
(ADB) =A" & B, (A& B)* =A@ B*,
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This particular form of syntax without negation is not something deep; once more,
this is just a way to avoid repetitions.

1.14. Definition. (i) A phase structure for the propositional language just described
consists in a phase space (P, Lp) and, for each propositional letter a, a fact ay of P,

(ii) With each proposition we associate its interpretation, i.e., a fact of P, in a
completely straightforward way: the interpretation of A in the structure S is denoted
by As or S(A).

(iii) A is valid in § when 1€ §(A).

(iv) A is a linear tautology when A is valid in any phase structure S.

1.15. Definition. We develop here a sequent calculus for linear logic; as expected
from the peculiarities of our syntax, the sequents will have no left-hand side, i.e.,
they will be of the form —A,, ..., A,. The real change w.r.t. usual logics consists
in the dumping of structural rules and, in fact, only the rule of exchange is left. Such
a situation is more familiar than it seems at first sight since intuitionistic logic is
built on such a restriction: the unique right-hand side formula in a special place in
the sequent where contraction is forbidden. In linear logic this interdiction is
extended to the whole sequent and weakening is forbidden as well.

Logical axioms:

HA, A",

(It is enough to restrict it to the case of a propositional letter a.)
Cut rule:
—A, B FAS, C
+B, C

CUT.

Exchange rule:

A
—EXC
'_BE CH,

where B is obtained by permuting the formulas of A.
Additive rules:

+T,A (axiom, A arbitrary) (no rule for 0),

A, C +B C ~A, C ~B, C
~FA& B C FA®B C +A®BC

2.

Multiplicative rules:

A
1 (axiom), L,
L, A
HFA, C +B, D ~A, B, C

FA®B C, D T FA®B C
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The additional possibilities of linear logic can be ascribed to the dumping of the
structural rules: in presence of these rules, for instance the rule (&) and the rule
(®) would amount to the same. Without structural rules, the contexts (i.e., the
unspecified lists of formulas A, B, C, etc.) which occur in the rules take a greater
importance. In particular, if we start with the idea of a conjunction, there are two
reasonable ways to handle the contexts: by juxtaposition (connective ®) or by
identification (connective &). By the way, observe that contexts behave like phases
and this will be the basis of the completeness argument.

1.16. Proposition. Linear sequent calculus is sound w.r.t. validity in phase structures.

Proof. We have not defined the interpretation of a sequent - A; but, obviously, —A
must be read as the par of its components (and, when the list is void, as 1). We
prove that, whenever -4 is provable, then it is valid in any phase structure
(P, Lp, (as)). We argue by induction on a proof of 4:

(i) The proof consists of the axiom —B8, B*. B B*= B — B und, by Remark
1.10, 1€ S(B — B)= S(B) — S(B).

(ii) The proof consists of the axiom T, A. The interpretation is of the form
S(T)¥® G, with G as fact; equivalently, S(0) — G, but since $(0) is the smallest
fact of P, 0p is included in G and, by Remark 1.10, 1 € $(0).

{(iii) The proof consists of the axiom 1. The interpretation of 1is 1, and we
have already observed that 1e 1, (Example 1.5(ii)).

(iv) The proof ends with a cut-rule. To prove the soundness of this rule, we
have to show that, in case 1€ G H and 1€ G* % K, then 1 ¢ H ® K. This is easily
seen if one puts G® H, G' ¥ K, and H % K under the forms H* — G, G — K,
and H* — K and if one then applies Remark 1.10.

(v) The proof ends with an exchange rule: immediate.

{(vi) The proof ends with (&). In order to prove the soundness of (&), we have
to show that, in case 1e G® K and 1c H — K, then 1€(G & H) — K. This is
immediate from the distributivity law 1.13(i).

{vii) The proof ends with (1®) or (2®). In order to prove the soundness of these
rules, we have for instance to show that, in case 1c G K, then 1e (GO H) ¥ K,
which is immediate from the half-distributivity of par w.r.t. plus (c.f. Property
1.13(ii)).

(viii) The proof ends with ( L). In ordet to prove the soundness of (L), we have
to show that, in case 1€ G, then 1€ S(L) ® & this is immediate from L, — G =G.

(ix) The proof ends with (). In order to prove the soundness of (®), we have
to show that,incase 1e F ® G,1¢ H® K, then 1 (F® H)® G % H. If these three
facts are put as G"— F, K* — H, and (G'®K ") — (F® H), then we have, by
hypothesis, G © F, K* < H from which one deduces G*®K*< FRH.

(x) The proof ends with (¥®): immediate. O

L17. Theorem. Linear sequent calculus is complete w.r.t. phase semantics.
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~ Proof. For the time of the proof, let us adopt the following convention: we are
dealing with sequences of formulas A, B, C, . .. up to their order, i.e., we are dealing
with multisets of formulas. Multisets of formulas form a commutative monoid, when
equipped with concatenation * and with {} as a neutral element. This defines a phase
space M, and the antiphases of M will just be those multisets A such that — A is
provable in linear sequent calculus (pedantically, in the variant without exchange,
adapted to multisets of formulas). We claim the existence of a phase structure
(M, Ly, (ag)) such that, for all formulas A,

S(A)={B;-A, B is provable in linear sequent calculus}. (3)

Let us call the right-hand side of the equation (3) Pr(A).

A crucial observation is that sets Pr(A) are facts of M; more precisely, that
Pr(A)=Pr(A*)":if Be Pr(A) and if CePr(A"), then —A, B and —A", C are both
provable and, by CUT, so is —B, C; hence, B* C € L, This shows that Pr(A)c
Pr(A)*.

Conversely, if Be Pr(A")", observe that since A, A" is an axiom, A€ Pr(A"):
hence, A* Be 1,, ie., —A B is provable; but then BePr(A). It is therefore
legitimate to define a phase structure S by setting S(a) = Pr(a) for any propositional
letter a.

By induction on the formula A, we prove that S{A)=Pr(A):

(1) A is an atom a: by definition.

(ii) A is of the form a*: because S(a*) = S(a)* =Pr(a)* =Pr(a").

(iii) A is L: observe that 1 ,, =Pr{Ll) (immediate).

(iv) A is I: as in (i1).

(v) Ais T: the axiom for T yields S(T)=M =T,,.

(vi) A is 0: as in (ii).

(vil) Ais B& C: it is easily seen that —B & C, D is provable iff —B, D and
+C, D are both provable. From this we get Pr(A & B) = Pr(A) & Pr(B) which is
what is needed to go through this step.

(viii) Ais B&@ C: from Pr{A & B) = Pr(A) & Pr(B), we easily obtain Pr{A® B) =
Pr(A)@® Pr( B), etc.

(ix) Ais B&C: Pr(A).Pr(B)= Pr(A® B) (by the ®-rule); hence, by Lemma
1.13.1, Pr(A)®Pr(B)= Pr(A® B). Conversely, if CePrlA®B) and De
(Pr(A).Pr(B))*, then —D, A*, B* is provable and, by the rule (%) and a cut, we get
a proof of =1, C. This shows the reverse inclusion, namely, Pr(A® B)< Pr(A)®
Pr(B). From this we can easily conclude our statement.

(x) Ais B%® C: similar to (viii).

Now, assume that A is a linear tautology; then A is valid in S, which means that
#e S(A)=Pr(A); but then - A is provable in linear sequent calculus. O

1.18. Remarks. (i) Usually, a completeness is stated, not for logical calculi, but for
theories. We have given absolutely no meaning to the concept of ‘linear logical
theory’. The reason is that if we were allowing an axiom, say A, to say that B is
provable with the help of A, this has nothing to do with the provability of A — B;
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in fact, this is equivalent to the provability of !A — B, where **!” is the connective
‘of course’, which has not yet been introduced.

(ii) The phase spaces P have been supposed to be commutative. If P were not
commutative and if we restrict our attention to distinguished subsets of P (i.e.,
p.G=G.p for all pe P) (in particular, L, must be distinguished), then one can
develop the same theory as we did, and the connectives & and % are still commuta-
tive. Of course, when we were thinking of a possible ‘noncommutative hnear logic’,
this is not the straightforward generalization that we have in mind, but something
for which the multiplicatives would be noncommutative.

Now that the main features of linear logic have been disclosed, let us complete
the language to obtain a predicate calculus with the same expressive power as the
usual ones. The first effort has to be made on the propositional part: one must be
able to recover somewhere the structural rules. Let us call 7A a formula obtained
from A which is ‘A-saturated w.r.t. the structural rules’. The fact that ?A comes
from A can be expressed as A< ?A; the fact that one can weaken on ?A can he
expressed as | © 7A, and the fact that one can contract on 7A as A ¥ 7Ac %A,
But there are also other properties of ?A and everything will be summarized in the
following definition.

1.19. Definition. A topolinear space ( P, 1, F) consists in a phase space ( P, 1) together
with a set F of facts of (P, L), the closed facts; the following conditions are required:
(i) F is closed under arbitrary with; in particular, P&,
(i1) F is closed under finite par; in particular, L €F.
(iii’ L is indeed the smallest fact of F: L < F for all FcF.
(iv) par is idempotent on F: F % F= F for all FeF.
The linear negations of closed facts are called open facis.

1.20. Definition. The exponential connectives or modalities are the connectives of
course and why not, both of them are definable in topolinear spaces:

(i) If G is a fact, then its affirmation (connective of course) 'G is defined as
the greatest (w.r.t. inclusion) open fact included in G (the interior of G).

(i1) If G is a fact, then its consideration (connective why not) 7G is defined as
the smallest (w.r.t. inclusion) closed fact containing G (the closure of G).

We now adapt our syntax so that we can handle the two modalities; first, the
definition of linear negation is extended to the modalities by

(1A)" =2 A4), (2A)-=1(A").

Then we have to give sequent rules for the modalities. In the definition below, ?C
is short for a sequence 7C,, ..., 7C,.

1.21. Definition. Linear sequent calculus is enriched with the following rules for
maodalities:
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Exponential rules:

—A, B 0 .
Yy BD' (dereliction),

B W ( kent HA, 7B :
A B weakening), —I—!A, B
—74A, A, B .

—_—? contraction).

H1A, B ( )

1.22. Theorem. The calculus as extended in Definition 1.21 is sound and complete
w.r.t. validity in topolinear structures, i.e., the obvious analogue of phase structures
where phase spaces have been replaced by topolinear spaces.

Proof. (i): soundness. The soundness of dereliction comes from F < ?F. The sound-
ness of weakening comes from L < ?F and the soundness of contraction from
9F = 7F % ?F. The soundness of (!) is the fact that if F<=?G,% -- - ® 7G,, then
Fc 1G, ¥ - - % 7G,. This is because ?G, ¥ - - - W 7@, is a closed fact and because
?F is the smallest closed fact containing F.

(ii): completeness. We define the phase space M as in the proof of Theorem 1.17.
Now we define a topolinear structure F on M by saying that the closed facts are
just arbitrary intersections (i.e., with) of facts of the form S(7A).

1.22.1. Lemma. The set E of all facts of the form S(?A) satisfies properties (ii)-(iv)
( Definition 1.19) of topolinear spaces.

Proof. (ii): The axiomatic system just described proves the linear equivalence
NAD B) oo (7A) ¥ (?B) (C o D is short for (C — D) & (D — C)):

AL A B, B —A* A —B' B

— 1 B, 2@ —D? — D?
A A@B B A®RB At 7 B 7
’—@)D? B ’AO D9 L AW? —-*’—BW?
HAY, 7A@ B‘ ~B*, ?A@BT A A 7B Bt A, ?B&
H1AY TA@ BB, 1A® I_3® AT & B 74, ‘?B'
HIA'® B, TA@ B, TA® B{er AN & BT, A, ?373
HIA'®IBY, A B A& B',7AX B

® o » ®
H(?A % ?7B) — A& B) —NADB))— A% B &

H(?A % ?B) = A(AD B)

From this linear equivalence, it is plain that $(?A) % S(?B)= S(?A®1B)=
S(NA® B)), so E is closed by par.
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(iii}: The equivalence L - ) is easily proved. From this, 1 < E; also the weakening
rule shows that M{1)c M(?A).

(iv): From the equivalence A -~ A@® A, it is easy to obtain ?A oo (A® A), and
s0 TAe< (7A % ?A). From this we get S(?7A4)=S(7A) ® S5(7A). O

Proof of Theorem 1.22 (continued). Now, F is made of arbitrary intersections of
elements of E. From this it is immediate that [ satisfies properties (i) and (iii) of
topolinear spaces.

Now, if we observe that % is distributive w.r.t. arbitrary intersections, it is not
difficult to get (ii) and (iv) for F from Lemma 1.22.1. For instance,

(M S(7AN B S(2A)) =) S(?4,) ® S(?A,)

because S(?A,) ¥ S(?A;) = S(?A,;), which in turn follows from S(?4;) > L, etc.
We have established that [ is a topolinear structure. Now, F is defined in such a
way that, in F,

?5(A)={{S(?B);S(A)< S(?B)}={{S(?B);~A — ?B is provable},

But, by rule (!), A — ?B is provable iff =?A — ?B is; i.e., we finally find out that
15(A) = S(?A) and this is enough to finish the completeness argument for Theorem
1.22. OO

1.23. Remark. In spile of the obvious analogies with the modalities of modal logic,
it is better to keep distinct notations, for at least two reasons:

(ii) ! and ? are modalities within linear logic, while [ ] and ¢ are modalities
inside usual predicate calculus; in particular, the rule (!) which looks like the
introduction rule of [J is perhaps not so close since the sequents are handled in a
completely different way.

(ii) The adoption of the modal symbolism would convey the idea of ‘yet another
modal system’, which is not quite the point of linear logic. ...

1.24. Definition. The quantifiers are semantically defined as infinite generalizations
of the additives; these quantifiers are A (any) and \/ (some). The semantic definitions
are straightforward and boring and are left to the reader. The syntactic rules are
Quantifier rules:

A, B ~A[1/x], B

TSEIAY

FAxA, B HVxA, B Vs

(A\) is subject to the familiar restriction on variables: x not free in B. If the reader
has written the boring definition of the semantics, he can in turn prove the following

baring theorem.

1.25. Theorem. Phase semantics is sound and complete w.r.t. linear predicate calculus.
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1.26. Remark. A and V/ are De-Morgan dual; / is effective, which does not prevent
it from being a linear negation!

2. Proof-nets

To understand what is going on in this section, think of the two formalisms for
the intuitionistic fragment (A, »,¥): NJ (natural deduction) and LJ (sequent cal-
culus). In LJ, the portion of proof from A, C,E+~ F to Aan B, Ca D, E'+ F can be
written in two different ways, whereas in NJ there is only one way. According to
Prawitz, the proofs in NJ should be viewed as true ones, while thase in LJ are no
longer primitive, i.e., a proof in LJ gives us instructions enabling us to recover a
real proof in NI. The issue is important, especially if we think of equality of normal
forms and related questions. Unfortunately, already in the case of intuitionistic
logic, something goes wrong with NJ when we consider the full language: the proofs
in NJ cannot any longer be viewed as primitive since one needs additional iden-
tifications between them (commutation rules). The attempts to fix these defects by
means of ‘multiple conclusion logics’ were never convincing.

Linear logic is faced with the same question with a greater acuteness: on the one
hand, since linear logic is constructive, linear proofs must be seen as programs
whose execution involves a normal-form theorem. On the other hand, linear logic
is ‘classical’ to some extent, which means that the commutation problems are bigger
than they are in the intuitionistic case. These constraints made it necessary to have
a second look at this question of ‘multiple conclusion logic’, but now making use
of the linear connectives which enable us to make distinctions that were not accessible
to people warking on the same subject with usual logics.

Proof-nets, which we are going to develop in this section, are the result of these
investigations. The core of the theory is the multiplicative fragment, which works
in an extremely satisfactory way. The extension of the theory to the full language
is not so good, but goad enough to keep a reasonable fragment of the calculus free
from any criticism. We first start with the multiplicative fragment: by this we mean
the formulas built from atoms a, b, ..., a*, b, by means of the connectives & and
. There are three basic ingredients that will be used to produce proof-nets.

(i) Axioms:
A A,
(i1} ®-rules:
A B
A®B’
(iii) P-rules:

A B
A®B’

i e | BT

— e
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(The cut-rule, which has exactly the same geometrical structure as the ®-rule is
omitted from this study.)

Using these three patterns, we can construct (in a way not difficult to imagine)
proof-structures with several conclusions A,, ..., A,. We would like to make sure
that such structures are sound, i.e., that they prove the par of their conclusion, i.e.,
A% - - - W A, With usual proofs (written as trees), the soundness condition is local
(i.e., one checks each rule separately), while, in a pattern with several conclusions,
the left-hand side cannot act in contradiction with the righi-hand side as typified
in Fig. 2. Fig. 2(a) is sound, since FA® B, A* ¥ B* is provable, but Fig. 2(b) is
not. In fact, (a) is sound because the two rules used are distinct. But what is the
general global criterion of correctness?

V| . T

Aa B A-’P-Bl Am D AJ-EBJ-

(a) (h)
Fig. 2.

2.1. Definition. A proof-structure consists of the following objects:

(i) Occurrences of formulas (i.e., to be pedantic, pairs (A, i), where A is the
formula and the second component i serves to distinguish between two occurrences,
etc.); there must be at least one formula occurring.

(ii) A certain number of links between these (occurrences of) formulas. These
links, which must be viewed as binary or ternary relations, are of the three kinds
already mentioned:

Axiom link: AX(A, i; A*,j) between an occurrence of A and an occurrence of
A~. This link is considered to be symmetric, i.e., it is the same as AX(A", j; A, i).
This link has no premise and two conclusions, namely (A, i) and (A*| j).

Times link: @(A, i; B, j; A® B, k). This link is not the same as ®(B, j; A, i; A® B,
k); i.c., the link is not symmetric. The premises of the link are (A, i) and (B, j), and
its conclusion is (A® B, k).

Par link: W(A, i, B,j, A® B, k), whose premises are (A, i) and (B, j) and whose
conclusion is (A ¥ B, k). This link is nat symmetric.

(ili) We require that
- every occurrence of a formula in the structure is the conclusion of one and only

one link;

- every accurrence of a formula in the structure is the premise of at most one link.

2.2. Examples. What we have pedantically defined as a proof-structure corresponds
to the rough idea of starting with the axiom links and then developing the proof in
a tree-like way by using the ®- and ®-rules. In particular, Fig. 2(a) and (b) are
equally satisfactory as proof-structures. One may imagine more pathological
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examples, e.g., nonconnected proof-structures:

A Al B' B.
(In the sequel, proof-nets will be connected.)

We shall content ourselves with a graphical representation for proof-structures
of the kind already used. Such a representation is rarely ambiguous and so easy to
understand. Let us however recall that in an axiom link, the left formula is here for
convenience (symmetry of the link), while in the two other types of link, left and
right have a real meaning. We shall not define obvious notions such as being
above/below a formula, or being connected. By the way, we have already started
with our last abuse: we speak of a formula instead of an occurrence, any time this
is not ambiguous.

2.1. The concept of trip

The problem is to determine which among the proof-structures are logically sound;
such structures will be called nets. For this we shall define the concept of frip, which
is better understood within a temporal imagery and the idea of something (a particle,
information, etc.) travelling through the proof-structure.

(i) The ‘time’ will be cyelic, discrete and finite. In general, the trips will be
scheduled according to some Z/kZ, but the choice of the origin of time will be just
a convention with no meaning. The problem with cyclic time is that ‘after’ and
‘before’ are not defined globally. However, if ¢ and u are two distinct times, the
interval [1, u] makes sense: choose a determination r between () and k—1 for u—#;
then, [, u]| consists of the time moments £, t+1,...,1+r=u

(ii) Each formula will be viewed as a box (see Fig. 3) in which our particle may
travel. The idea is that the particle will enter A by the gate marked “[” and will

Fig. 3.

immediately go out through the gate marked “$. These two operations are per-
formed in the same unit of time ¢": " is used only for this purpose; i.e., at t" the
particle is in A between “}” and “4” and nowhere else. The particle will re-enter
(but there is no ‘before’, no ‘after’) A by “T” and will immediately go out through
“4", all this at another moment t,. Now the particle exits through a gate with a
direction; at the moment just after this exit, it will enter another formula by using
the links of the proof-structure. Sometimes, the trip can only be done in one way,
but very often, there are several ways of continuing, and these ways are selected by
switches.
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(1) Axiom link: The picture in Fig. 4 is clear: immediately after exiting through
gate A%, the particle enters A*Y; immediately after exiting through gate A'#4 the
particle enters AY. In other terms, 1(AL)=t{A"}+1 and t{A,)=1(A"")+1,

- |
f v > a
] A :"ll
A -L v
Fig. 4.

(2} Terminal formula: This is the case of a formula which is not a premise (see
Fig. 5), i.e., just after exiting through Ay, the particle re-enters through AJ. In other

terms, {{A")={{A,)+1.

T Y

Fig. 5.

(3) Times link: Associated with such a link is a switch with two positions “L"
and “R”. The switch is set on one of these two positions for the whole trip,
independently of the paositions of other switches. According to the position of the

switch, the particle moves as shown in Fig. 6.

» L 4 »~ h 4 ¥ -
e TS
_“ N ———— 4 F 9 _ w 1
o £ :d ‘r_ A » ‘r
b L ’
e Bi AmD
'Yy v |
4 v
fa} (b)

Fig. 6. (a) switch on “L™. (b) switch on “R".

Looking carefully, we see that the only difference between “L” and “R” is the
interchange between A and B. The terminology “L’ comes from the fact that we
reach the conclusion (A® BY) through the left premise (A4) when the switch is on
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" “L” The same reason is behind the terminology for the par link.
‘L (BN =t(AR BN +1, (A =HB,)+1, HA®B,)=1(A)+];
“R™: t(A")=t{(A®B")+1, H{B")=1t(A)+], t(A®@B,)=t(B,)+1

(4) Parlink (see Fig. 7): Associated with such a link is a switch with two positions
“L” and *“R"; here too, the switch is set once and for all for the trip, independently

1 H i

Fig. 7. {a) switch on "L". {b) switch an "R".

from other switches. The two positions of the switch lead to symmetric travels of
the particle.

“LP (A" =1(A®B)'+1, ((A®B,)=t(A)+1, t(B")=1(B,)+1;
“R™ H(BN)=1(A¥B)'+1, HARBY=1(A)+1, (A" )=1(A)+1.

(iii) Everything is now ready for the trip, which can be made as follows: we set
the switches of all par and times links on arbitrary positions (so there are 2"
possibilities if n is the number of switches). We select an arbitrary formula A and
an exit gate (A% or A{) at time 0. Then there are clear, unambigous conditions to
go on forever. Since the whole structure is finite, the trip is eventually periodic, but
since the same remark can be made if one inverts the sense of time, this concretely
forces the existence of a strictly positive integer k such that, at time k, the particle
enters through the dual gate (A} or AY respectively); the number k with this property
can be chosen minimal and then we have obtained a trip parameterized by Z/kZ.
Now, two possibilities arise:

(a) k <2p, where p is the number of formulas of the structure; the trip is called
a shorttrip.

(b} k=2p, with p as above; the trip is called a longtrip.

2.3. Examples. Go back to the examples in Fig. 2 and, in both cases, set all switches
on “L: in Fig. 2(a) we get a longtrip, namely,

Aa’ Aj'l A_ @ B:i-! AJ- @ BJ_I“? A I !\) A\-‘! A®Bu 1 A®BI"1 B"" B:! BLA! B'-’T An!

S e e —— e TR
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Here, each formula has been passed in both senses. In Fig. 2(b), however, we get
A A, A'®B.,A'®B"", B*, B, A",...,

a typical shorttrip. These examples are enough to give some evidence for the
following definition.

2.4. Definition. A proof-structureissaid to be a proof-net when it admits no shorttrip.

2.5. Reformulation. We reformulate the definition of proof-net in more usual terms:
A proof structure with p formulas and n switches is said to be a proof-net when,
for any position of the switches, there is a bijection t(.) between Z/2pZ and the
2p distinct exits of the structure such that, for any two exils ¢, e', t{e')=t{e)+ 1 iff
e’ comes immediately after e in the travel process that has been exposed in full
details in the introduction of Section 2.1 (w.r.t. the positions of the switches, of
course).

2.6. Remark. Checking that a proof-structure has no shorttrip requires looking at
2" difterent cases. This number can be decreased to 2" ': let (1) and (2) be two
positions of the switches, (2) being obtained from (1) by commuting all ®-switches
to the other position. It is easily checked that (2) is the same as (1) but with time
reversed and, in particular, it suffices to check only one of them. Anyway, the
soundness condition is not feasible. However, it is not part of our intentions to
check soundness by concrete means. The proof-nets we shall deal with in practice
will all come from sequent calculus or will be obtained from other proof-nets by
means of transitions preserving the soundness condition. Hence, the soundness
condition is an abstract notion (just like, say, semantic soundness), whose importance
lies in its relation to linear sequent calculus. We shall now prove that proof-nets
are the ‘natural deduction of linear sequent calculus’.

2.7. Theorem. If w is a proof in linear sequent calculus of A,, ..., A, (in fact, in
the multiplicative fragment without cur), then we can naturally associate with = a
proaf-net w~ whose terminal formulas are exactly (one occurrence of ) A, ..., (one
occurrence of ) A,.

Proof. The proof-net w is defined by induction on 7 as follows.
Cuase 1: = is an axiom —A, A"; obviously, one must define 7= as

A A

which is a proof-net: there is no switch, and only one longtrip A’
A;-; AJJ‘& A.,,, Ah: DRI
Case 2: 1 is obtained from A by an exchange rule: take = = A
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Case 3: 7 is obtained from A by (%):

A
~A, B, C
FA® B, C

By induction hypothesis, we have obtained A~, in which we can individualize A
and B and = is obtained as follows

A

A B
A®B’

We have to prove the soundness of 7 7: Setting all switches on arbitrary positions

in 7~ and assuming that the switch of the new link is on, say ““L”, we can start a

trip at +=0 and A"; since A~ is sound, at time 2rn —1 (where n is the number of

formulas of A") we arrive at A,; then the trip is easily finished by adding

A% B,,A% B" al times 2n, 2n+ 1. We have obtained a longtrip, so o~ is correct.
Case 4: 7 is obtained from A and u by (®):

A i
~A4,C +~BD
~A®B, C,D

By induction hypothesis, we have obtained A~ and #, in which we can respectively
individualize A and B. 7~ is obtained as follows:

A e
A B
A®B

Again, set all switches of 7~ for a trip, and let us say that the last switch is on “R".
Assume that there are n formulas in A ™, m formulas in 4 7: starting with A" at time
r=0, we arrive at A, at lime ¢ =2n—1 (soundness of A~); then, al lime ¢ =2n, we
move at B" and so, since u is sound, we arrive al B, at time 1 =2n+2m — 1. Then,
at times 2n+2m and 2n+2m+1, we visit A® B, and A® B¥, therefore ending a
longtrip. Hence, =~ is sound. [

2.8. Remark. The transformation 7 ~» 7~ identifies proofs which difler by the order
of rules. For instance, the proofs

+A, A* B B A, A~ +~B, B*

I A® B, Ai,fﬁw —A® B, A+, B' —C, C!
&

HA® B A*® Bt |—C",C*® HFHIARB)® C, A* B~ C*

HA®B)RC,A* % B*, C" —(A®B)®C, A* ¥ B, i

are the same, up to the order of the rules. Both are represented by the same proof-net,
shown in Fig. 8. The question is to prove the converse of Theorem 2.7, namely that
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-
l_

ABDB C ] A B
(AmBlmC J— AI’? BI

Fig. 8.

a proof-net can always be written as o~ for an appropriate 7. The difficulty is that
several #’s are possible, and the converse is a very subtle result.

2.9. Theorem. If B is a proof-net, one can find a proof w in sequent calculus such that

B=a".

Proof. By induction on the number of links in B:

(i) If B has exactly one link, then 8 must be of the form A A": in that case,
the claim is proved by taking as o the axiom FA, A™.

(11) 1f B has more than one link, then one of these links must be a par or a times
link (otherwise, B8 is not connected and it is immediate that, in a nonconnected
proof-structure, all trips are short). Hence, there is a terminal formula which is the
conclusion of a par or a times link. In this case, we state the hypothesis that one
can find such a terminal formula as the conclusion of a par link: write g as

8
A B
A¥®B’

where B’ is the proof-structure obtained by restriction. 8 has one link less than 8.
Furthermore, B’ is a proof-net: setting all switches for a trip in 8', and setting the
additional switch of 8 on “L”, we get a longtrip

A" ...,B,,B",...,A,,A¥® B, A®B" A", ...
in B. But this shows the existence of a longtrip
A", ... B, B',..., A, A" ...

in B, and this established the soundness of 8'.
The induction hypothesis has built " such that = = f'. Then, for 7 one can
take the proof:

A, B, C

»
FA® B, C

(exchanges have not been indicated).
(i1i) In this case we assume that there is more than one link, but that no Iermmal
formula is the conclusion of a par link. The temptation is to split the proof-net as
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follows:
B B
A B
A®B’

where 8’ and B" are disjoint subproof-nets of B. Of course, we can try to make such
a splitting for each terminal conclusion of a rimes link in 8 and in simple examples
it turns out that if we choose the wrong terminal formula, then the splitting does
not work. For instance, the proof-net in Fig. 9 has three terminal ®-links but one

——
1 l \ e M Ll
D nJ- t:L 0 Ay B PLIHE'L
I.l——rmt.: & (A9B)
Fig. 9.

of them (the one ending with A*® B') cannot be split. The proof-net can be split
at the two other terminal links, and the non-unicity of the solution of splitting
problems makes it even more complicated. We shall now try to prove the existence
of a splitting from which the last case of the theorem will easily follow. Let us
remark however that the hypothesis ‘no terminal ¥-link’ is needed since the net in
Fig. 10 cannot be split.

A b sl
Am B AI » 13_[
Fig. 10.

2.9.1. Lemma. Let 8 be a proof-net and consider (w.r.i, a certain position of the
switches) the respective times of passage of the particle through A,, AQ B*, B, , say
1y, I, t;, in a given ®-link of B; then t,e[t,, t;]. In other terms, in case "L, the
particle travels as follows:

\

and not as:

\ 2 ﬁ'

Proof. Assume, for a contradiction, that t;€[¢, £;] and assume that the switch of
our ®-link is set on, say “L”. Then the trip runs as follows:

A, A®B,,...,B, A", ... A@B", B,...,A,.

E
b
I,
!
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Now commute the switch to “R” and observe that we get a shorttrip
A®B,, B,,...,AQB,,....

(The portions in dots in the original trip are common to both trips.) [

29.2. Lemma. Let 8 be a proof-net and consider (w.r.t. a certain position of the
switches) the respective times t,, 1,, 1, of passage of the particle through the gates
A,, A" and B, of a given ¥-link; then t€[t,, 3]. In other terms, in case ‘L, the
order of passage is

N

and not;

N

Proof. Very similar to the proof of Lemma 2.9.1. Assume, for a contradiction, that
;€[ 1y, t;]. Then (if our ¥-switch is ‘'on *“L”), the trip runs as follows:

A,,A®B,,... B, B",... A®B", A", .. A,.

Setting the switch on the position “R”, we get the shorttrip A", ..., A, , A". [

2.9.3. Definition. Assume that “xz5® is a given ®-link in a proof-net 8. We define
the empires eA and eB of A and B as follows: eA consists of those formulas C such
that, for any trip leaving A" at time f, and returning at A, at time ¢, and passing
through C” and C, at times u, and u,, we have u,, u,€[¢,, t,]. The empire eB is
defined in a symmetric way.

2.9.4. Facts
(i) AceA
(ii) eAneB =0,
(i) If CceA, and Cis linked to C* by C C*, then C* € ¢A.
(iv) If C® D e eA is the conclusion of a link Sezp°, then C, D < eA.
(v) If C %® De eA is the conclusion of a link %52, then C, D€ eA.
(vi) If “coo is a ®-link distinct from the link A=s2 and if C € eA (respectively
DeeA), then C® D e eA.
(vii) If 51 is a ®-link and C, D€ €A, then C ¥ De eA.

Proof. (i): self-evident.
(ii): By Lemma 2.9.1, the intervals A",..., A, and B",... B, in a given trip
are necessarily disjoint, etc. -
(iti): This is because the gates of C~ are crossed just one step before or after the
gates of C.
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(iv): Take a trip with the C® D-switch on “L”. Then, since C, and D" are
passed at one step from C® D, and C® D", C, and D" belong to the interval
A", ..., A,. Now, imagine that the two consecutive times of passage through D,
and C" are outside the interval A", ..., A,: then the interval B*,..., D, (or
ARB,,..., D,) is performed without passing through any of the two links 255
and ez . Now, let us commute the switch Sz to “R™. It is immediate (for
reasons of symmetry) that /), belongs to the interval A", ..., A, of this new trip.
However, the partindots B”, ..., D, (or A®B,, ..., D,) is common to both trips,
and does not contain A; a contradiction. We arrive at the conclusion that the four
exits of C and D are passed between A" and A .

(v): Assume that the switch of our %-link is on “L". Then the times of passage
through C, and C" being one step from the times of passage through C® D, and
C® D", it follows that C,,C"€ A", ..., A,. Now, assume that the consecutive
times of passage through D, and D" are outside the interval A*,..., A, . Then we
conclude that the interval B,..., D, (or A® R,,..., D,) is performed without
passing through the links “5z5" and G175 Form another trip by setting our ®-switch
to “R’ and derive a contradiction as in (iii).

(vi): Consider a trip with the switch “~z5" on “L”. Then, by hypothesis, the
times of passage through C, and C" are within the interval A",..., A,. We have
the following possibilities, using Lemma 2.9.1:

A ...,C,.C®D,,...,CQD" D" ...,D,, C", ... A,
A',...,C®D",D",...,D,,C",...,C,,C®D,,..., A,,

W

A ....D,,C"...,C,,C®D,,....CRD", D", . ..  A,.

There is no other possibility since A,,...,D",...,A"and A,,..., CR® D", ... A"
are easily refuted by commuting our switch to “R”. From this we get the result.

(vii): Consider a trip (with our ®-switch on “L”). Then, by Lemma 2.9.2, the
order is as follows:

c....b,.,D",...,C,,C®D,,...,.C®D" C"

and we still have to determine the respective places of A" and A, in this pattern.
If A" is between C % D, and C % D", then the only way to ensure that C € eA is
to have

A", C®DNC,...,C,,C®D,,.... A

i.e., A, is also in the same interval. If A" is between C" and D, , then the only way
to have CceA is
A oD C,, L C A

i.e., A, is also in the same interval. Using I € eA we can conclude in the case where
A’ is between D" and C, that A, is also in the same interval. In these three cases,
the two cxits of C ® D are between A" and A,. []
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2.9.5. Theorem (Trip Theorem). There is a position of the switches such that eA is
exactly the interval A", ..., A,.

Proof. Each time there is a ®-link %7 with exactly one premise in eA, set the
corresponding switch to “R” if C'ceA and to “L” if Dc eA. The other switches
are set arbitrarily. Now we start our trip with A", i.e., with an element of eA, and
we check that we stay in eA up to the point A,: this can be easily proved by
induction since the only way to exit eA would be going from a premise to a conclusion
in a ¥-link. In that case, however, only one premise is in eA and the switches have
been set such as to move backwards, i.c., to pass from E, to E" and thus to stay
in eA. So the whole portion betwen A" and A, is in eA and since it contains eA,
we are done. [}

2.9.6. Corollary. If C® D2 is ‘above’ A, ie., is an hereditary premise of A, and if
C® D is the conclusion of a ®-link &2, then eC U eD < eA.

Proof. Set the switches so that eA is performed between A" and A,; since all
formulas ‘above’ A belong to eA, we are free to set the switches so that, after A",
the particle goes from conclusion Lo premise up to D", Then the trip can be visualized
as

"~ A
LA DN Dy, A,

From this, eD< D", ..., D ,c A", ..., A, = ¢A. For similar reasons, eC < eA. [J

2.9.7. Theorem (Splitting Theorem). Let B be a proof-net with at least one terminal
®@-link and no terminal W -link. Then it is possible to find a terminal ®-link "‘A@.RH such
that B is the union of eA, eB, and of the formula A® B.

Proof. Choose a link %555 such that eA U eB is maximal w.r.t. inclusion. If A® B
is not terminal, then below A® B there is a terminal link and, by hypothesis, this
link must be of the form “=zz=. (Say that, for instance, A® B is above D.) Then,
by Corollary 2.9.6, eAw eB  eD, contradicting the assumption of maximality. Now,
assume, for a contradiction, that eA w eB U {A® B} # B. Then we claim the existence
of a link &4 with either CeeA and DeeB, or Ce€eB and De eA. This link
exists because, otherwise, by setting the switches as we did in the proof of the Trip
Theorem 2.9.5, we can simultaneously realizeeA= A", ..., A, andeB=B",.. .  B,.
In the remaining two steps, the particle is in A® B, so f=eAueBUu{A®B}: a
contradiction.

Now the formula C % 1 is above a terminal ®-link SzzF" and we may assume
that C % D is indeed above, say F. Set the switches for a trip such that F*, ... F, =
el In Corollary 2.9.6 it has already been observed that we are free to set the switches
as we want above F, and we do it so that, immediately after F", the particle runs
up to C": in particular, our ®-switch is on *L”. Now the trip looks as follows (using
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Lemma 2.9.2)
LFEL ..., cwDLCch,...,D, D", ...,C,,C¥D,,....F,,....

Using the fact that D eB and C < eA, the only room for B" in this picture is
between C'" and D,; the only possible room for B, in this picture is between D"
and C,. But this shows that eB c eF. By interchanging C and D, we obtain that
eAc eF. But then eAvu eB cannot be maximal any longer. We have therefore
contradicted the assumption eA UeBU{A®@B}# 8. O

Proof of Theorem 2.9 (continued). The remaining case is just the case where Theorem
2.9.7 applies, so choose a terminal link 455" with the splitting property. We claim
that, once the terminal link has been removed, the subsets eA and eB are not linked
together. The only possible linkage would be through a #¥-link -4 with one
premise in eA and the other in eB, but then C % D would be nowhere. So it makes
sense to speak of the respective restrictions 8" and 8” of 8 to eA and eB respectively.
The fact that 3" and 8" are in turn proof-nets is a trifle compared with the complexity
of the proof of the Splitting Theorem and is therefore omitted! Il we associate,
using the induction hypothesis, with 8’ and 8" proofs 7' and =" in linear sequent
calculus of —A, C and B, D respectively such that #' =8"and =" = 8", then we
can define 7 as

f w
T ™

A, C +—B D
&
~A®B, C, D

and, clearly, w " =8. O

2.2, The cut-rule

The cut-rule has been omitted because, geometrically speaking, it is very close to
the ®-rule. The cut-rule can be written as a link

A At

with two premises and no conclusion. Trips through this link proceed in the obvious
way: after A, go to A'", after A, go to A". Now this is (up to inessential details)
as if one were working with a link

A A*
AR A*

with A® A" terminal (the position of the corresponding switch does not matter).
We decide to write the cut-rule as
A At
CUT °
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where CUT is a symbol (not a formula) which is used so that the cut-rule looks
formally like a &-link, the only difference being that since CUT is not a formula,
CUT is necessarily terminal. Then this link is treated exactly as a @-link and our
main theorem immediately extends to the calculus with cut. In particular, the
phenomenon of splitting (Theorem 2.9.7) involves either a @-link of a CUT-link.

2.3, Cut-elimination

Take B, a proof-net in the multiplicative fragment with cut and select a particular
CUT-link #cyf* . We define a contractum B’ of B (w.r.t. this particular link) as
follows:

(i) If A and A" are the respective conclusions of dual multiplicative links, i.e.,
if A ends with

B C B" -
BmC B*m*C*
CcuT

with m, m~ dual multiplicatives, then replace this part of 8 by

B B! cC C*
CUT CUT

(i) If A is the conclusion of an axiom-link, i.e., 8 ends with

A A At
: CUT

unily the two occurrences of A’ so that one gets
AL

(iii) If A* is the conclusion of an axiom-link, we define 8’ symmetrically. When
both A and A" are conclusions of axiom-links, i.e., in the situation

Al A A A
: CUT 2

then we have a conflict between (ii} and (iii). However, both cases lead to

At A
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2.10. Proposition. (1) If B is a proof-net and B’ is a contractum of B, then B’ is a
proof-net.

(2) B’ is strictly smaller than B, i.e., has strictly less formulas.

Proof. We prove (2) first, then (1).

(2): The size s(B) of a proof-net is the number of formulas of B including the
symbol CUT. The inclusion of these cut-symbols is the most elegant solution. In
case (i) the size is diminished by 1; in cases (ii) and (iii) it is diminished by three
units. There is however a hidden trap in this apparently trivial proof: when A is
the conclusion of an axiom-link, who tells us that the two occurrences of A~ are
distinct ? In fact, they can be the same if B 1s the proof-structure

A__A
CuT

in which case 8’ is B. But this particular proof-structure is obviously not a proo[-net
since it has a shorttrip. This shows the extreme importance of being a proof-net.

(1): Assume that we are in case (i) (cases (ii) and (iii) are immediate) and that
the multiplicative m is @. Set the switches of 8’ for a trip. This induces a switching
of 8 (our two multiplicative links being switched on “*L"). Then the trip works as
follows (cf. Lemmas 2.9.1 and 2.9.2):

B,,BRC,,B*"®CY BY, ..., CL,C", ... BL B-% C.,
B®C,C"...,C.,B", ..., B,.
Hence, in B, the particle travels as follows:
B, B>,...,C,,C",...,C,,C*, ... . B B, ..., B,

which is a longtrip. [

2.11. Proposition. Say that 8 reduces to B’ (notation: B red B’} when ' is a hereditary
contractum of B. Then, reduction satisfies the Church- Rasser property,

Proof. Essentially, this proposition says that if we contract two distinct cuts of S,
then the result does not depend on the order of application of the contractions.
This is practically immediate. []J

2.12. Theorem (Strong Normalization). A proof-net of size n normalizes into a cut-free
proof-net in less than n steps: the resull, which does not depend on the order of
application of the contractions, is called the normal form nf our proof-nel,

2.13. Remark. The ‘n steps’ of the theorem suggest a sequential procedure for the
normalization process. It is, of course, more natural to think of a parallel procedure,
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namely to work independently on each CUT. One of the astounding properties of
the multiplicative fragment is that everything works perfectly well, i.e., that there
is not the slightest problem of synchronization.

The problem is now to extend the theory of proof-nets to the full language. At
the present moment (September 1986) there is no extant extension of the same
quality as what exists for the multiplicative fragment. Moreover, we doubt that
anything really convincing might ever be done for the additives. For the rest of
the language, what we present below can surely be improved . ...

The general pattern we shall now introduce is that of a proof-box. Roughly
speaking, proof-boxes are synchronization marks in the proof-net. They can also
be seen as moments where we restore the sequent (i.e., the sequential!) structure.
Their use is therefore a bridle to parallelism and, for that reason, one must try to
limit their use. In particular, reasonable improvements of the concept of proof-net
showing that some rules can be written without boxes will be of great practical
interest (however, we helieve that (&) cannot be written without boxes).

How to make a box depends on the particular syntax, the particular rules we
want to express, and is of no interest right now. What concerns us naw is how to
use a box. When made, a box looks as shown n Fig. 11, i.e., a black ‘thing’ with

n outputs/inputs, n#0. Whalt is inside the square is the building process of the
box, which is irrelevant: boxes are treated in a perfectly modular way: we can use
the box B in 8 without knowing its contents, i.e., another box B’ with exactly the
same n doors A,, ..., A, would do as well. This is the principle of the black box:
in order to check the correctness of a proof-net involving a box B, we have to check
the proof-net without knowing anything about B and check B itself. Now, what is
the criterion for the correctness of a proof-net involving a box B? Simply, the box
is treated as any potential proof-net with conclusions A,, ..., A,.

2.14. Definition. The multiplicative fragment with proof-boxes admits, besides the
links already acknowledged, a new kind of link shown in Fig. 12, where A;,..., A,
are arbitrary formulas and » # 0. With such a box is associated a switch: a position
of the switch consists in a permutation of n which is cyclic, i.e., 1, o(1), o*(l),...,
a” '(1) are all distinct. The trip is executed as follows: after A go to A,y

2.15. Theorem. Theorems 2.7 and 2.9 can he extended to the calculus with boxes: the
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-
1K
"Al—- —————— - An—-
Fig. 12
use of a proaf-box with doors A,,..., A, ina proof-net corresponds to the use of the

axiom —A,,..., A

ne

Proof. The extension of the results to this new context offers no difficulty. In fact,
proof-boxes have more or less the same structure as the logical axiom A A*. For
instance, let us look at the analogue of Fact 2.9.4(iii): if one door A, of B belongs
to eA, then any other door A, of B does so too. ( Proof: First observe that a trip is
performed by putting together slices A4,,,..., A" because if outside the box one
could have something like A;,,..., Aj with j# { then, by appropriately choosing
o (a(j)=1i), one would get the shorttrip A,,, ..., Aj, A, . Now, if A" and A, are
located in A;,,..., A} and Aj,, ..., A} respectively, we claim that 1 =j; suppose
otherwise, then take (i) =j: the two doors of A are not in A, ..., A}. Finally,
the only possible location of A" and A, within Aio ..., Al s
A, Al A L, AL and from this, we easily conclude that all the doors
of B are in eA) Apart from this analogue, there is very little novelty in this
generalization. [J

2.4. The system PN]1

The system PN1 is a proof-net system for lincar propositional calculus based on
the idea of putting all contextual rules (i.e., rules which in sequent calculus depend
on the context in sequent calculus) into proof-boxes without trying to limit the
number of boxes. Besides boxes and the multiplicative links, there will be a certain
number of links corresponding to unary rules

A

B!

such links are so harmless (trip: from A, go to B,, from B" go to A") that they
practically do not alter the multiplicative paradise.
Axioms:

A At logical axiom,
1 axiom for 1,

[T— > axiom for T.
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Technically speaking, these three axioms are boxes, in which we distinguish front

doors (A and A" in the logical axiom, 1 in the axiom for 1, T in the last case), and
auxiliary doors (C in the last case).
Unary links:

A B A

1 20, —D.
A®B D, ADB A
Rinary links:
B
A_By A8y
A®B A®B
A A At

TA

1%

CUT

Box formation: From proof-nets B’ and 8" whose respective conclusions (CUT is
not counted) are A, C and B, C, we form a box whose conclusions are A & B C
(see Fig. 13: front door: A & B; auxiliary door: C),

. - ~ r -~
i i \
I ] nu .

: \

. .

Co-a’ Ng— pf

E—- AL B

Fig. 13,

From a proof-net 8 with conclusions € (CUT is not counted), we form a box

with conclusion C, L (respectively C, ?A) (see Fig. 14: front door: L (respectively
?A); auxiliary doors: C).

Fig. 14.

From a proof-net 8 whose conclusions (CUT is not counted) are A, 7B, we form
abox whose conclusions are 1A, ?B (see Fig. 15: front door: 14, auxiliary doors: 7B).
We recall that, geometrically speakiﬁg, the rule (CUT) behaves like (®)* and
that rule (C?} behaves like (%). It is not difficult to translate propositional linear

* It is convenient to consider the CUT link symmetric, 1.e., there is no ‘left’ or ‘right’ in the rule as
i the logical axiom.
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teee B T A

Fig. 15.

logic within this system, the only remark to make being that the rule (W?2) is now
done with the logical axioms. The fact that this translation is faithful offers no
difficulty.

2.5. The system PN2

We finally direct our attention to the predicate case. Here, however, we make a
different syntactic choice, moving from first-order to second-order. It was natural
ta deal with first-order linear logic to get a completeness theorem as obtained in
Section 1. Already at that moment we did not spend too much time with the
quantifiers! As the paper continues it focuses more and more on computational
aspects, so it is more and more interesting to consider second-order logic in the
spirit of the system F of [1]. So we shall develop here the system PN2 of second-order
propositional logic. First-order quantifiers will from now on disappear from our
world. The reader who would like to consider second-order predicate calculus would
not encounter the slightest problem, just as the results on F were immediately
transferable to Takeuti's system. Second-order propositional logic (linear version)
is obtained by considering propositional variables a, b, ¢, ... (instead of arbitrary
constants) together with the quantifiers Aa. and V/a.. The crucial concept is that of
substitution of a proposition B for a propositional variable a in A, denoted A[B/a]:
Replace all occurrences of a by B, all occurrences of a* by B*. In terms of sequent
calculus, the rules for second-order quantification can be written as

A, B ~A[B/a], C

~AaA BV Fvad, C Vi

In (A), there is the familiar restriction: a not free in B.
The rules for quantifiers are handled as follows:
- on the one hand, the unary link

A[B/a], ,
Va.A Vi

- on the other hand, the box-formation scheme: from a proof-net 8 whose con-
clusions B, A are such that a does not occur free in B, we form a box whaose
outputs are B and Aa.A (see Fig. 16).

2.16. Definition (terminology). PN1 and PN2 have already been introduced; PNO
is the subsystem of PN1 concerned with the multiplicative fragment only including
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E__f'\u.r's

Fig. 16.

cul. PN} is the cut-free part of PNO; similarly, PN1~ and PN2 are the cut-free
parts of PN1 and PN2.

2.6. Discussion

Here we shall shortly discuss the possibility of improving the syntax by removing
or tranforming some boxes.

(1) The box for !is an absolute one; later on, we shall write no contraction rules
making this scheme commute with others. Hence, the box, viewed as an interruption
of the linear features, should not be touched. Even if, by some sort of miracle, it
were possible to erase such boxes, this would mean that one can reconstruct them
in a unique way, so why not directly note them?

(i1) The boxes for weakening seem of very limited interest. The problem is that
if we admit configurations like

then we are forced to accept certain shorttrips from which endless complications
start. However, the only kind of shorttrip that is definitely bad is the one including
only one gate for a formula, e.g. A" but not A,, and the inclusion of unboxed
weakening would not introduce these bad boxes. A nice criterion for soundness for
this variant is however not vet known.

(iii) The box for A seems removable too; the same comments hold as in the case
of the weakening boxes.

(iv) Finally, the case of &-boxes is the most delicate: when we contract such
boxes, there is a phenomenon of duplication, and removing the boxes would mean
that we have a way to write the two boxes in Fig. 17 as the same proof-net. This
goal seems out of reach. However, see Section 6 for what could be a solution by
means of [amilies of proof-structures.

el L R e [ ~ = - . -
R R ana 3 rkl,’., A r.J;,1
e SN
Ly al St e
fpl_“ A& A 2a — al g al

Fig. 17.
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3. The coherent semantics

In Section 1, we developed the semantics of linear logic in the Tarskian style,
i.e., by explaining the formulas. But there is another semantic tradition, amounting
by Heyting’s semantics of proofs, which consists in modelling the proofs themselves.
In this tradition, proofs are considered as functions, relations, etc. on some kind
of constructive space, which has often been viewed as Scott domains. In previous
work, we have simplified Scott domains in order to get what we called qualitative
domains. The binary ones, rebaptized coherent spaces, will form the core of our
semantics of proofs,

3.1. Definition. A coherent space X is a set satisfying the following conditions:

(i) ae X abca=be X,

(ii) Say that a, be X are comparible w.r.t. X when a U be X, then, if A is any
subset of X formed of pairwise compatible elements, we have A€ X. In particular,
fc X.

3.2. Definition. Assume that X is a coherent space. The web of X, W(X) is a
reflexive, unoriented graph, defined by

(i} the domain | X| of the graph is X ={z;{z}e X}

(ii) the linkage relation (coherence modulo X') is defined as follows:

xZy[mod X] iff {x, y}le X

3.3. Proposition. The map associating 1o any coherent space X its web W(X) is a
bijection between coherent spaces and reflexive unoriented graphs. The graph may be
recovered from its web by means of the formula

acX o agc|X|aV¥x,yea: xZy[mod X).
Proof. More or less immediate. [J

3.4. Remark. In general, the webs stay denumerable and effective, whereas the
spaces have the power of the continuum. So, most of the time we deal with webs.
I[nstead of coherence, it is sometimes more convenient to consider sirict coherence:

x~y[mod X] iff xZy[mod X] and X #y,

The following relations are also of interest:
- strict incoherence: x~y [mod X] iff "(xZy [mod X]);
- incoherence: x>y [mod X ] ifl 7(x~y [mod X]).

We shall now proceed with the definition of the interpretation of the operations
of linear logic in terms of coherent spaces. A large attention will be paid to canonical
isomorphisms (indicated by ~). It is however necessary (o attract the reader’s
attention to the two following points:
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(i) ~ is not a connective of linear logic; in particular, it is strictly stronger than
o<, In fact, it would be easy to define a coherent semantics for something like ~,
but we would get problems in other stages, i.e., the phase semantics and the
proof-nets.

(ii) Some canonical isomorphisms are omitted: this is because coherent spaces
do not catch all of linear logic: typically, 1 and | are the same coherent space for
stupid reasons, but their equivalence (translated as 10o 1) is not provable. So,
writing the isomorphisms would have been misleading.

3.5, Definition (linear negation). If X is a coherent space, its linear negation X~
1s defined by

|X | =1X],
xZy [mod X*] iff x=y[mod X].

In other terms, the operation nil exchanges coherence and incoherence. We clearly
have X** =X i.e., nil is involutive. The existence of a constructive involution is a
tremendous improvement on intuitionistic logic. As we shall proceed with the other
connectives, it will be our first task to check the De Morgan equalities, which will
justify, at the level of the coherent semantics, the restriction of nil to atoms.

3.6. Definition (multiplicarives). The name itself comes from the coherent semantics:
the three multiplicatives are variations on the theme of the cartesian product:
IX@Y|=|X®Y|=|X—Y|=|X|x]|Y],
(x, y)(x, ¥ [mod X® Y] iff xTx'[mod X] and yZy' [mod Y],
(x, )7 (x, ¥ [mod X B Y] iff x™x'[mod X]or y ™y (mod Y],
(x, y)(x', '} [mod X — Y] iff (x™x"[mod X]=y"y [mod Y]) and
(xZx'[mod X ]=yZy' [mod Y]).

Observe that & is defined in terms of <, whereas % is defined in terms of ™, and
—o is defined in terms of preservation properties, which is in the spirit of an
implication, linear or not.

The De Morgan equalities are easily verified:

(X®Y)'=X+*%Y" (X?Y)'=X'®Y", X -Y=X"%Y el
The commutativity of the multiplicatives is expressed by
XRY~Y®X, XPY~Y®X, X-Y~Y'=Xx'
The associativity of the multiplicatives is expressed by
XD(YRZI)~(XRYI®Z, XB(YRZD)~(XBY)®2Z,
X (Y =Z)~(X®V)—=Z X—=(Y¥Z)~(X=Y)®Z
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3.7. Definition (ke unit coherent space). Up to isomorphism, there is exactly one
coherent space whose web consists of one point, say 1. In particular, this space is
equal to its linear negation. The space will be indifferently dencted 1 or 1 since it
will stand as the interpretation of these constants. We write the isomorphisms
expressing the neutrality of the unit space, choosing between the two notations 1
and L the one which has also a logical meaning:

X®1~X, X¥®L~X, 11— X~X X — 1 ~X"

3.8. Definition (the additives). Here too the name comes from the coherent seman-
tics: the two additives are variations on the theme of the direct sum:

X & Y|=]X® Y= |X|+|Y]|={0} x| X|w{1}x]Y],

(0, x}Z(0, x") [mod X & Y] or [mod X® Y] iff xTx'[mod X1,
(1, »)Z(1, ) [mod X & Y]or[mod X&@ Y] iff yZy' [mod Y],
(0, x)7(1,y)[mod X & Y] forall xe|X]| and yc|Y],

(0, x)=(L, ) [mod X@® Y] forall xe|X|and ye|Y]|.

X and Y have been recopied as if they were in the direct sum; now there are only
two good-taste solutions as to coherence between X and Y: either always “ves”
(&) or always “no” (@®).

The De Morgan equalities are immediate:

(X&Y)=X'®Y" (XeYr=X'&Y"

The commutativity of the additives is expressed by
X&Y~Y&X, XDY~YDX

The associativity of the additives is expressed by
X&(Y&Z)~(X&Y)&Z XYDZ)~(XBY)SZ

The distriburivity of the multiplicatives w.r.t. the additives is expressed by
XO(YRZ)~(X@Y)D(X®2Z),
XP(Y&DH)~(X&Y)P(X & Z),
X—=(Y&Z)~(X = Y)& (X — 2Z),
(XBY) = Z~(X—=Y)&(X = Z).

The semi-distributivity of the multiplicatives w.r.t. the additives is the fact that
between X @(Y & Z) and (X@Y)&(XR2Z),
between (X ® Y)®(X ®Z) and X (YD Z),
between (X — Y)®(X — Z) and X — (Y@ Z),
between (X = Z)®(Y < Z) and (X & Y)— Z
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it is possible to construct a bijective mapping from the web of the left-hand space
to the web of the right-hand space, preserving coherence. In general, these maps
are not isomorphisms.

3.9. Definition (the null coherent space). This space has a void web. We shall denote
it by 0 or T, with the same hidden intentions as in the case of the unit coherent
space: the neutrality of the void space w.r.t. additives is expressed by

X@0~ X, X&T~X
The fact that they absorb multiplicatives is expressed by

X®0-0, X®T~T, 0—=X~T, X—=T~T.

3.10. Definition (the exponeniials).
'X|={a;acX and a finite}, aZhb[mod!X] iff aube X,
[?X|={a;ae X" and a finite}, a~b[mod ?2X] it aube X1,
The De Morgan formulas are immediate:
(X)) =AX"), (2X)' =1UX").
The distributivity isomorphisms are
NX&Y)~(IX)®(Y), AXDY)~(2X)®(?7Y).
The following can be taken as definitions of 1 and L:

IT~1, N~ 1.

We now have to deal with quantifiers. First-order quantifiers have a boring
coherent semantics; hence, we concentrate on second-order propositional quan-
tifiers, which will be handled by means of the category-theoretic methods introduced
in [5] which we quickly recall in the following items (i)-(v):

(i) Coherent spaces form a category COH by taking as morphisms from X to
Y the set COH(X, Y) of all injective functions from |X| to | Y| such that

Vx,yel|X| xTy[mod X] « f(x)Tf(y) [mod Y].

Associated with such a morphism are two (linear) maps:
® " from X to Y:f'(a)={f(z):z€ a},
¢ f from Yto X:f (by={z;f(z)ebh).

(i) Now, if A[a,,...,a,] is a formula of second-order propositional calculus,
we can define an associated functor (denoted A[X,,..., X, ], Alfi.....,f.]) from
COH" to COH:

(1) when A is one of the constants 0, 1, T, or L, then A[X] is the coherent space
already described in Definitions 3.7 or 3.9, whereas A[f] is the identity morphism
of this space;
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(2) when A is the propositional variable a;, then A[X]= X, and A[f]=f;;

(3) when A is o}, then A[X]= X, and A[f]=/;

(4) when A is B®C, then A[X]=B[X]®C[X] and A[f](x, y)=
(BLf)(x), CLAIW));

(5) when A is B¥C, then A[X]=B[X]®C[X] and A[fl(x y)=
(BLS1(x), CLAID);

(6) when A is B & C, then A[X]=B[X]& C[X] and

ALFI0, x)=(0, BLFI(x)),  ALF1(, ¥)=(1, CLfI»));
(7) when A is B®C, then A[X]= B[X1® C[X] and

ALF10, x)=(0, BLfi(x)),  ALFI(1, »)={(1, C[fU»));

(8) when A is !B, then A[X]=!B[X]and A[f](a)=B[f]"(a):

(9) when A is 7B, then A[X]="B[X] and A[f](a)= B[ f]"(a).
The definition of A[X] when A is of the form AB.B or V8.8 will be given soon.
For the definition of A[f] in both cases, we have to define A[ £1(X,, 2) =(X}, z'),
where X and z' are obtained as follows: Let y = B[g, f 1(z) where g is the identity
of Xo; then, w.rt. the functor A[., ¥] (fe COH(X, Y)), y has a normal form
y=A[h,idy](z") for a suitable X, a suitable h € COH(X,, X}) and a suitable z'
such that (X4, z') is in the trace of A[., Y.

(iii) The functors defined in that way preserve

- direct limits,
- pull-backs.

Unfortunately, preservation of kernels is lost when dealing with exponentials and
this is one of the reasons for looking for variants of the exponentials.

(iv) For such functors, we have a Normal Form Theorem [5, Theorem 1.3]: let
F be a functor from COH to COH preserving dircct limits and pull-backs; if
z€|F(X)|, then it is possible to find a finite coherent space X, together with an
Se COH(X,, X) and a z,€|F(X,)| such that

(1) ze F(fNzo);

(2) if Y, ge COH(Y, X) and z,€|F(Y)| are such that z = F(g)(z,), then there is
a unique h € COH(X,, Y) such that z= F{g){z,) and /= gh.

(v) A trace of F is a set T such that

(1) the elements of T are pairs (X, z), with X finite coherent space and z € | F( X)|;

(2) given any coherent space Y and any y € |[F(Y)|, there is a unique ( X, z) € Tr( F)
and a morphism fe COH(X, Y) such that y = F(f)(z). One uses the notation Tr(F)
to denote an arbitrary trace of F, chosen once and for all; the actual choice of the
trace does not matter.

3.11. Definition (the guaniifiers). Assume that F is a functor from COH to COH

preserving direct limits and pull-backs; then A F and \/ F are defined as follows:
(1) [AF| consists of those (X,z) in Tr(F) such that, for all f,,f, in

COH(X, Y): F(A)(z2)TF(f,)(z) [mod F(Y)]. Further, (X, z)(X’, z') [mod A F]
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ifl, for all Y, for all fe COH(X, Y) and f'e COH(X’, Y): F(f z)SF(f'"z")
[mod F(Y)].

(2) |V F| consists of those (X, z) in Tr(F) such that, for all Y and all fi.fsin
COH(X, Y): F(f)(z)=<F(£,)(z) [mod F(Y)]. Further, (X, z)Z(X’, z') [mod \ F]
iff for some Y, for some /e COH(X, Y) and f'c COH(X", Y): F{fz)yZF(f)(z)
[mod F(Y)].

3.12. Remarks. (i) AB.A[B, X] and VB.A[B, X] are defined as respectively, AF
and V F, where F is the functor A[., X].

(ii) The quantifiers involved in Definition 3.11 can be bounded. This was indeed
shown in [5], and binary qualitative domains (now called coherent spaces) were
introduced just to ensure that.

(iii) Computations made in the same paper show that

Na.a =0, ANea —a~1.
(In fact, it is shown that Ae.a=>a ~ 1, from which we easily get Aa.a — a~1.)
(iv) The interpretation of existence is a pure De-Morganization; in particular,

|V F| has an unexpected definition which has deep consequences, and is presumably
far from being well understood.

3.13. Example (some isomorphisms). Among the many isomorphisms involving
quantifiers, let us mention:
(1) the De Morgan equalities:

(Aa.A) =Va.A', (Va.A) = Aa.A';
(2} the distributivity formulas:
Aea(Ala]® B)~(AeAla]) ¥ B, Va(Al«]®B)~(Va.Ala])® B,
Ne(Ala] — B)~(Va.Alal) = B, Aa(A— Bla])~A— Aa.Blal;
(3) the associativity formulas:
Ac.(Ala] & B)~(Aw.A) & B, Va(Ala]® B)~(Va.Ala])@ B,
etc. To remember them, recall that A and V/ are to some extent generalized additives,

and that A looks like &, \/ looks like @.

Our next goal is to define the semantics of the proofs of second-order linear
propositional logic. For this, it is simpler to stay with sequents in order to avoid
combining the novelty of the semantics with the novelty of the syntax!

3.14. Remark (general partern). Our goal is to interpret a proof 7 of a sequent -4
in linear sequent calculus. For this, we shall make a certain number of conventions:

(1) We consider A to be made out of closed propositions; il not, substitute for
the free propositions of A arbitrary coherent spaces. This means that we are in fact
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working with additional constants, namely X for each coherent space X; but this
is enough for these trifles.

(2) We shall identify a formula with its associated coherent space; a convention
that saves boring extra symbols like *, etc.

(3) However, we use * for the interpretation of #; hence, =¥ is an object of the
coherent space that would interpret the par of the sequence A. In other terms, =¥

will be made of sequences 7€ A. By this we mean, in case A is A,,..., A, that z
is of the form z,,...,2z,, and z,€ A,,..., z, € A,. Strict coherence modulo A is
defined by

z7z' [mod A] iff z7™z)[mod A,] forsame i

Of course, one has to check that the subsets #* are made of pairwise coherent
elements. (For readability, we add a symbol + in front of the sequences z.)

3.15. Definition. #™ is defined by induction on the proof 7 of —A. We simul-
tancously check the coherence of «* modulo A.

(i) If  is the axiom B, B*, then 7* ={-z, z;z €|B|}. Observe that when z # z’,
either z7—~z'[mod B] or z™z'[mod B*].

(ii) If 7 is obtained from #' and =" by the cut-rule

—B, C ~B+ D
—C, D ’

then 7* ={z', z"; 3y €|B| (Fy, '€ #"*and -y, "¢ w"*)}. To show the compatibility
of two different points 2z, 2" and - ¢', t" of 7*, assume that y, x are such that -y, z’
and Fx,t'eq™, and +y,z" and +x, t"e ™. Then, cither y=<x[mod B] or
y=x[mod B*]. In the first case, z""Fz"[mod C]; in the other one,
—t'" +t"[mod D], and in both cases, -z', "™ 27", t"[mod C, D].

The most important semantic feature of the cut-rule is the existential quantifier
in front of the interpretation. Observe that this quantifier has a very unexpected
feature: the unicity of y. (Proof: Assume that ty, 2" and —x, '€ #'¥, and that -y, 7"
and tx, z"€ #"*; necessarily, yZx [mod B] and yZx [mod B*] and necessarily,
y=x)

(iii) If 7 is obtained from 7’ by the exchange rule replacing A by a permutation
v(A), then #* ={a(z);ze 7*}.

(iv) If 7 is the axiom T, A, then =* ={.

(v) If 7 is obtained from 7' and 7" by (&):

~A,C |+ BC
A& B C

then #* ={~(0, a), z';Fa, 2’ e ®#*} L {+ (1, b), 2":t- b, "€ #"*).
(vi) If o is obtained from =’ by (1®), then 7* ={—(0, a), z';a, '€ 7™}.
(vii) If 7 is obtained from «' by (2@®), then #*={—(1, a), 7';+a, '€ #"™*}.
(viii) If 7 is the axiom 1, then #* consists of one point, namely 1.
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(ix} If = comes from 7' by the weakening rule (1):

A

,A’

then w*={-1,z;+z¢e =™*}
(x) If 7 comes from 7' and 7" by (&®):

—A,C B D
~A®B,C,D '

then #* ={1 (', z"), ¥, ¢";z', * € #'* and 2", t" € ="*}. Assume that —(z, ), e,
and H(x', x"), w', w" are two distinct points (4 and ©) or #* so that, for instance,
bz, t'#—x", w'; then,
- either 7w’ [mod €] in which case u and v are coherent,
- or t"=<w'[mod C] in which case z"~x'[mod A].
Now, if z"=x", we get the coherence of (z', z") with (x', x"), from which u and v
are coherent; hence, we can assume that —z", 1" #—x", w", in which case we have
- either "~ w”[mod D] and u and v are coherent,
-or t"<w"'[mod D] and so, z"7™x"[mod B]; but then, (z', z")™(x’, x") [mod
A® B] and once more # and v are coherent.
(xi) If = comes from = by (%):

A, B, C
HA®B C’

then w* = {(x, y), z;x, y, z€ #*}. Inthis case, there is practically nothing to verify.
(xii) If 7 is obtained from 7' by weakening rule { W?):
B
—?A, B’
then 7™ ={-@, z:t z€ 7*).
(xiii) If 7 is obtained from =’ by the dereliction rule (D?):
—A, B
~?A, B’
then o* ={{a}, z;a, z& ='*}.
(xiv} If o is obtained from =’ by the contraction rule (C7);
H7A,?A B
~A, B °
then w*={~aub z;a b zc«™ and aube A}, The coherence of 7* is practi-
cally immediate.
(xv) If o is obtained from =’ by the rule (!):

~A, 1B
1A 2B
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then #* is the set of all sequences of the form —{x,, ..., x,}, z;u" - - U z, such that
(1) {x11“‘:xn}EAa
(2) fO.l'Ilzl,...,ﬂ,"xi,z!E‘iTr*,

(3) zyu--ruz, e Bt
(By the way, x,,..., X, are necessarily distinct: if x, = x,, then z, U Z,€ B* and the
fact that the x,, z,’s are coherent shows that 7, = z,, in which case we have a useless
repetition.)

The coherence of two elements w—={x,,...,x,},z;u - Uz, and v=
{yi.o. o ¥mh iU -, is shown as follows: assume u # v,
-if {xy, ..., X0, ¥is ..., Y} € A, then u and v are coherent;

- otherwise, one x; (say x,) is incoherent with one y; (say y,). But I-x,, z, and
=)1, ti are coherent; hence, z;t, [mod ?B]; this shows that gz, vz, ¢ U
~++ut, [mod ?B] and u and v are coherent.

(xvi) If 7 is obtained from #' by the rule (A):

—A, B
FAa.A, B’

then 7* = {—(X, a), z;(X, a)c|Aa.Al and }-a, z € 7#'[ X/ a]*. Here we use the substi-
tution of the new constant X for a.

The compatibility of distinct sequences = (X, a), z and v=(Y, b), t is shown as
follows: take Z together with fc COH(X, Z), g COH(Y, Z), then, consider a’'=
Alf/a](a) and b’= A[g/a](h). Then, the general properties of the interpretation,
as studied in [5], show that a', z and + &', t both belong to #[Z/a]*, hence, are
coherent. Moreover, they are still distinct by the general properties of a trace. If z
is coherent with ¢ then u is coherent with v otherwise, a’ b’ mod A[Z/«] and
then, (X, a)™ (Y, b) [mod Aa.A] from which we conclude again.

(xvii) If 7 is obtained from #’ by the rule (\/):

-A[B/a], C
FVa.A C

then 7* ={—(X, a),z,(X, a)e |Va.A| and 3f = COH(X, B): —A[f/a](a), zc 7'*}.
Assume that (X, a), z (=wu) and (Y, b), t (= v) are two distinct elements of #* with
witnesses f, g in COH(X, B) and COH(Y, B). If a' = A[ f/«)(a), if b'= A[f/a](b),
then a’, zTb', t mod A[ B/ «], C, and these two sequences are distinct. Then, either
z7t[mod C] or a"=b’ mod A[ B/ a], in which case (X, a)™(Y, b) [mod Va.A]; in
both cases, u is coherent with v. This rule is the other case (after the cut-rule) of
an existential quantifier. Here too, we have unicity: if the element (X, a), 7 of #*
is witnessed by both f, gc COH(X, A[B/a]), then, with a'=A[f/a](a), a"=
Alg/a](a), we get the coherence of a', z and a”, z. But, looking at the definition
of Va.A we see that a"=<a" mod A[B/«], so a'= a". Hence, the element a’ ‘above’
a is uniquely determined (unfortunately, f is not uniquely determined because of
the nonpreservation of kernels; however, the range of f is uniquely determined).
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3.16. Remarks. (i} The fact that the cut-rule formally behaves like the existential
rule can be explained as follows: Define a formula CUT as Va.a®a™; then,
semantically speaking, CUT consists of a trivial unit coherent space with only one
point, namely (1,(1,1)) (=a,). Now it is easy to show that the cut-rule can be
mimicked by the formula CUT:

FAB +FAYC

FA® AL, B, Cv®
—HCUT, B, C

(This is not far from some techniques used in [6].) Now, given premises 7’ and ="
of a cut-rule, let us compare the semantic interpretation of the proofs 7 and u
obtained by applying in one case the cut-rule, in the other case the procedure given
above: u*={a,,z:z¢ 7*}, which means that there is no significant difference
between both interpretations, and the unicity features of the cut-rule are therefore
explainable from the similar features of the existential rule.

(ii) Assume, just for a minute, that we try to compute the semantics of a proof
7, 1.e.,, we try to decide, given z €|A|, whether or not zc #*. In all cases but (ii)
and (xvii), the problem is immediately reduced to several simpler problems of the
same type, with an eflective bound on these problems. But in Definition 3.15(ii)
and (xvii), the problem is reduced to infinitely many simpler ones, due to the
presence of an unbounded existential quantifier. But this existential part is unigue,
i.e., in some sense there is a well-defined 2’ ‘above’ z, summarizing the existential
requirements on z. We can also think of z' as implicitly defined by z. In particular,
cut-elimination looks as the elimination of implicit features, an elimination which
can be achieved when the formula proved has no existential type.

This basic remark is the key to a semantic approach to computation, which will
be undertaken somewhere else. Also observe that we are tempted to remove not
only cuts, but also (\/)-rules!

The just given semantics of sequential proofs induces a semantics of the corre-
sponding proof-nets: une simply has to make the boring verification that, whenever
m =p ,wehave 7% = 4™ Now, one could dream to work with proof-nets directly,
without sequentializing, We shall illustrate this by a semantic interpretation of PN0,
directly defined on the proof-nets. PNO has been chosen because of its syntactic
simplicily, and because in PN© all the difficulties of the task are concentrated; from
the sketch given here, there is no problem to move to PN2.

3.17. Definition (experiments). Let 8 be a proof-net in PNO. For each terminal
formula A of B, we select an ¢lement a from the web of (the interpretation of) A.
Now, by moving upwards, we construct, for each formula of the nel, say B, an
element b < |B|. For the symmetry of the argument, 1t is convenient to consider the
terminal symbol CUT as interpreted as a unit coherent space {ap}.
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(i) Assume that we have a binary ®- or %-link 2+2¥; we have already chosen
ce|C|; now, |C|=|A|@|B], ie., c={(a, b}, then we choose a in |A|, b in |B|.

(ii) Assume that we have a cut-link #+5F—; in |CUT], a, has been chosen by
convention. We select an arbitrary element a c|A| (if | A| # @} and we put this element
a both in |A| and |A"|; in case |A| =@, the process fails.

By moving upwards, we eventually obtain (provided we never fail) an assignment
of points for each formula of the net and this assignment is called an experiment.
In the experiment, some choices have been made which were not mechanical. Now,
for each axiom link A A“, we have selected points a’€|A|, a”€|A|. The experiment
succeeds when, for any such link, the two choices are the same, i.e., a’ = a".

A sequence of points in the interpretations of the conclusion of 8 belongs to g*
exactly when there is a successful experiment starting with those points.

3.18. Compatibility Theorem. Assume that we have made two experiments in 8 (corre-
sponding (o two terminal sequences a', a") and that these experiments succeed; then
a' and a" are coherent (in the sense of the par of the conclusions).

Proof. Immediate consequence of the following lemma.

3.18.1. Compatibility Lemma. Assume that b’ and b" are two experiments in 3, and
that, for any conclusion A of B, the corresponding points- a’, a" are incoherent:
a’=<a"[mod A); then the two experiments coincide. ( In particular, there is exactly one
successful experiment corresponding to a given sequence of B*.)

Proof. For each formula A of B, we shall write A: T (respectively, ™, =, >, =, #)
to indicate the corresponding relation between the two inhabitants of A that have
been chosen in both experiments. Now, the proof proceeds as follows.
(i) In the case of a ®-link ?553°, we shall distinguish between two cases:
Case 1: AWB:Z or A:—;
Case 2: AQB:Z or B>,
Clearly, one of these cases holds.

(ii) In the case of a ®-link %4, we shall distinguish between two cases:

Cuase' 1: A¥ B:=or A:#;

Case 2: A B:= or B:#.

Here too, one of these cases holds.

(1ii) We shall now prove the impossibility of being always in Case 1, except if
b'=b".In fact, if n is the number of multiplicative switches, there are 2" simultaneous
cases that may occur, and, by symmetry, the argument made in this particular
situation immediately extends. From this Lemma 3.18.1 will follow.

(iv) We shall make a trip starting with a given terminal formula A, . The hypothesis
1s A;:><. At the end of the trip, we wanl to arrive with the conclusion A,:Z. We
shall visit all formulas twice: upwards, we shall conclude A:x; downwards, we
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shall conclude A:Z. Hence, a formula A visited twice is such that A: =, and weg
shall be done. When we start, the switches are not yet set; this will be done as follows:

(1} Assume that we arrive for the first time in a link Aas, and that we arrive
through the conclusion A® B; so we are upwards, i.e., A®B:=. Since we are in
Case 1, A: <, so set the switch on “R” to go to A"

(2) Assume that we arrive for the first time in a link “s5%2, and that we arrive
through the premise A; so we are downwards, i.e., A: . Since we are in Case 1,
A B:Z, so set the switch on “L” to move to AXRB, .

(3) As in (2), but arriving through B: switch on “R™.

(4) Assume that we arrive for the firs/ time in a link 454, and that we arrive
through the conclusion A ¥ B; so we are upwards, L.e., A % B:=, But then, observe
that B:<, so set the switch on “R” to move to B".

(3) Assume that we arrive for the first time in a link 452, and that we arrive
through the premise A; so we are downwards, i.e., A:C. Since we are in Case 1,
A® B:, so set the switch on “L” to move to A S B,.

(6) As in (5), but arriving through B: we are downwards, i.e., B:Z; we have
two subcuses:

(6)(a): if B:=, then switch on “L" to goto B";
(6)(b): if B:# then A® B:™: hence, AY B.Z; switch on “R” to go to
A®B,.

(7) Assume that we arrive for the second time in a link AA.g)nlj and that the first
passage was as in (1); then we come back through A, , i.e., A:Z. Since we are in
Case 1, A® B:Z and since we had AR B: =, we get A B: —. But then, B: <
and the next step to B" will be sound.

(8) Assume thal we arrive for the second time in a link A, and that the first
time was as in (2) or (3); now, Lhe order of passage is such that we arrive through
A®B’, ie., A®B:=; but we already had AXB:Z,s0 A@B:= and so, A:=,
B:= and the next step to A* or B" will be sound.

(9) Assume that we arrive for the second time in a link As#n, and that the first
time was as in (4); so we arrive through A, , i.e., A: Z; but we had A % B: < from
which A: =<, so A:=, but we are in Case 1, hence, A® B: =, The next step of the
trip to A" is clearly sound since A: .

(10) Assume that we arrive for the second time in a link 452, and that the first
passage was as in (5) or (6); we have two subcases:

(10){a): first passage as in (6)(a): we arrive through A, , i.e., A:Z, but we
had B:=, hence, A® B:Z and the next step to A ® B will be sound;
(10)(b): first passage as in (5) or (6)(b): we arrive through A % B" and we
had already passed through A® B,,s0 A% B- =, hence, the next step to
A" or B" will be sound, since A: =, B:=.

(11) Assume that we arrive for the third time in a multiplicative link 2 2 we
have already scen in cases (7), (8), (9) and (10)(b) that C: =. In case (10)(a) for
the second passage, we are in A ¥ B" after being in A ® B, , so here too, C: =; but
then, in every case, A:=, B:=, and the next step is sound.
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" (12) Assume that we arrive in a conclusion A, 1.e., A;:Z; then we can move to
A? because of the hypothesis A;:=.

(13) Assume that we arrive on one side of a cut-rule 2=, say through A, ;
then, A:Z from which it is immediate that A" : =< (the points are the same) and
50 the move to A" is logically sound.
~ (14) Assume that we arrive on one side of an axiom A A~ say through A",
then, A:= from which it is immediate that A*:Z (the points are the same) and
the move to A7 is logically sound.

(v} Summing up now, we have obtained A:= for any formula A. []

3.19. Remark. The same argument works for PN2, with a heavier apparatus. In
experiments, we have to choose existential witnesses, but the same unicity can be
obtained; i.e., there is only one successful experiment. (In a rule

A[B/a]
VaA

observe that \/a.A:= implies A[B/a]: =, and that A[B/a]:Z implies Va.A:Z.)

4. Normalization in PN2

We shall define a normalizing algorithm for proof-nets. The algorithm is a rewriting

procedure (contraction) whose properties are as follows:
(i) If B entr B', then B and B’ have the same terminal formulas (conclusions).

(ii) If B entr B', then B'™* = B* (semantic soundness).

(iii) Thereis a B'such that 8 entr 8" ift 8 contains CUT-links; a proof-net g with
no CUT-link is said to be normal.

Reduction is defined as the transitive closure of entr, and is denoted B =/ 8'. It
is sometimes useful to speak of a reduction sequence from 8 to ', i.e.,

B=pBycntr B, catr- - - 8, ,cntr 8, = 8"

We can also use the notation 8 =/, B’ to indicate the existence of a reduction
sequence of length n+1 from 8 to 8. The main property of reduction is the
following:

(iv) Strong normalization: A proof-net 8 is said to be SN when there is no infinite
reduction sequence starting from f3; in this case we define the integer N() as the
greatest n such that 8 =/, B8' for some B'. (By Konig's Lemma, using the fact that,
for a given B, there are finitely many 8’ such that g =/ ', N(B) is definable.) It
may be useful to define N(8) in general by

N{(B)={supn;3B" (B =/, B")}

so that 3 is SN exactly when N ()< . The Strong Normalization Theorem, which
is the main result of this section, says that all proof-nets of PN2 are SN. One of
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the main problems with our procedure is that it is not Church-Rosser, ie., 8 may
reduce to normal forms B’ and 8” which are distinct. However, B'™=B" so that
they do not differ too much. In particular we shall see in Section V how to represent
booleans, integers, etc. in PN2.

A given integer (say 10) has several representations in PN2, all very close one to
another. What we want is that if one reduction sequence yields the result 10, another
does not yield the result 28; semantically speaking however, any representation of
10 in PN2 is interpreted in the same way as some set 10*, similarly for 28 and,
clearly, 10¥ # 28%; hence there is no ambiguity.

One of the most interesting features of strong normalization is the possibility to
ignore certain normalization rules. If we decide to use all contractions except, say
(R), we eventually reach a normal form relative to (R), i.e., a proof-net where the
only contractions that can be performed are instances of (R). In some cases, this
is enough to ensure that we reach a normal form without using (R).

Let us give an example demonstrating this possibility: Imagine that we ignore
the commutation rule for &. If we start with a proof-net not involving & or \/ in
its conclusions, and take a relative normal form 8 for it, then assume 8 is not
normal. We start with a CUT Sog5—, where C* is the auxiliary door of a &-box.
So let us go to the front-door C’ of this box: the downmost formula below ', say
1), bears one of the symbols & or V, so it cannot be a conclusion, and is therefore
the premise of a CUT-rule. The other premise I is again the auxiliary door of a
&-box. Iterating the process we eventually find a cycle since there are finitely many
cuts in B from which a shorttrip is easily made. Thus, we have contradicted the
assumption that 8 was not cut-free.

By the way, observe that it was also possible in that case to forbid contractions
inside &-boxes and still arrive at a normal form: strong normalization justifies lazy
strategies for computation.

We shall now describe the normalization procedure by giving the contraction
rules. They are divided into three groups, axiom contraction (Section 4.1) symmetric
contractions (Section 4.2), and commutative contractions (Section 4.3). For each of
these groups we establish, with the definition, the semantic soundness of the
contraction rule. In order to save space, it is very convenient to consider the CUT-link
as symmetric, ie., “cgr- and SeprC are exactly the same link. In particular, in
our graphical representations, it will be possible to put what is most convenient on
the left, in order to avoid duplicating all cases!

4.1. Axiom contraction

The axiom contraction (AC) can be performed every time one of the premises of
a cut-link is the conclusion of an axiom link: it consists in replacing a configuration:

) ! !
A A~ A by: A,
! cuT !
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i.e., by identifying the two occurrences of A and removing A" and the CUT- and
axiom-links. We have already seen that the two occurrences of A are necessarily
distinct.

We show the semantic soundness of (AC): assume that 8 cntr 8’ by (AC), then
B* =B is shown by induction on the number n of boxes containing the CUT we
contract.

Basis step: If n =0, then consider an experiment in 8' corresponding to a certain
choice of values z for the conclusions. If the experiment succeeds, let x be the point
chosen in the formula A. Now, we can form an experiment in 8 corresponding to
the same initial choice z: for the cut-rule, choose x, both in A and A, and report
the values from the given experiment everywhere else. This new experiment succeeds,
so B™< B* Conversely, from a successful experiment in B, it is not difficult to
deduce a successful experiment in B8": at the level of the cut-rule, we have to guess
a value y €|A|=|A"|, but, in order for the experiment to succeed, this value has to
be the same as the value x already chosen in the ‘left’ A, and so it is perfectly
harmless to identify the two A’s: B*< g'*.

Induction step: If n # 0, then the contraction takes place within a box B, replaced
by B’. Now, boxes are built in such a way that {using the induction hypothesis)
B* =B"*. Then the semantics of 8 and 8’ will coincide since they are built in the
same way from these boxes. (In later contractions, as this argument is perfectly
general, we shall always assume that the contraction is not done within a box.)

4.2. Symmetric contractions

This concerns all CUT-links where one side comes by a rule, whereas the other
side comes by the dual rule.

4.1. Definition ( T-contraction). Since there is no rule for 0, this case never occurs!

4.2, Definition (addition contraction: (&/1®-SC)). A configuration as in Fig. 18(a)
is replaced by the one in Fig. 18(b).

\A-I- ‘, 1) {
ﬁ le /
AL e B "g-ax‘ al
} CuT
{a) (b}

Fig. 18. (&/1 &-5C).

The semantic soundness is shown as follows: In 8, at some moment, we have
ce|C| and we have to guess an element (0, 2) or (1,b) of |A & B|. Inside the box,
one goes on with ¢, a in B, or ¢, b in 8,, according to the case. However, due to
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the (160)-rule, the choice of (1, b) would be a failure, so the only successful choice
is (0, @), in which case we proceed above A' by choosing a. Now, in 8’, we have
to choose some a in |A|, and then go up in 8, and in A*. This estahlishes clearly
that g* = g"*.

4.3. Definition (additive contraction: (&/2®-SC)). This case is perfectly symmetric
to (&/1@-8C). :

4.4. Definition (unit contraction: (1/1-SC)). A configuration as in Fig. 19(a) is
replaced by the one in Fig. 19(b).

4 = !
l\ \ 5
c- ces
! l-c - f
(M "
(b)

Fig. 19. (1/L-SC).

The semantic soundness is immediate: In B8, we have to guess an element of |1,
and there is only one choice: 1. This value is reported in the box, but not used.
What matters is the choice of values ce C, just as in 8', so B* ="

4.5. Definition (multiplicative contraction: (®/%®-SC)). A configuration as in Fig.
20(a) is replaced by the one in Fig. 20(b).

/ } t '

A B ol sl ; Loy

4 8 B Al v el A al B B+

) cuT cur CUT
(a) (b}

Fig. 20. (®/%-5C).

The semantic soundness is proved as follows: In 8 we have to guess a pair (x, y),
then report it in the two premises, and then dispatch the components, x in A and
A*, yin B and B'. But this amounts exactly to guessing (in B') x in |A| and y in
| B, etc.

4.6. Definition (exponential contraction (1/ W?-8C)). Aconfiguration asin Fig.21(a)
is replaced by the one in Fig. 21(b), where several weakenings are performed. This
is a typical example where Church-Rosser is violated. Now, if we were allowed to
put several weakenings in the same box (what any reasonable implementation should
do), the problem would at least disappear from this case.
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Fig. 21. {1/ W?-8C).

The semantic soundness is proved as follows: In 8, we are given seguences ¢ (in
?C) and d (in D). We have to guess an element a of |!A|. Now, the element has
to be transferred into the right box, and the general definition says that a = §. Also,
if a =0, the general definition for the left box imposes the requirement that all
elements of the sequence ¢ are void, nothing else. Hence, in B, we only require
¢= 0 and then transfer d to 8,, which is exactly what we do in 8.

4.7. Detinition (exponential contraction {1/ D?-8C)). A configuration as in Fig, 22{a)
is replaced by the one in Fig. 22(b).

Fig. 22. (1/ D?-5C).

The semantic soundness is established as follows: In 8, given the sequence ¢ in
?C, we have to guess 4 point a € |!A|. Now, the dereliction rule imposes that a is
a singleton {z}, and we proceed with z in A*. But, if we enter the box with ¢ and
{z}, this means that ¢, z are reported inside, as can be seen from the ‘unicity remark’
in Definition 3.15(xv). This means that, in fact, we guess a point z in |A|, and
proceed as in g’

4.8. Definition ( exponential contraction (1/C?-5C)). A configuration as in Fig. 23(a)
is replaced by the one in Fig. 23(b). In this contraction, there is a duplication of a

Fig. 23. (1/C?-5C).
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box, and several rules { C?) are used; this rule is responsible for the loss of control
over the normalization time.

The semantic soundness of the rule is established as follows: In 8, we start with
¢ in ?C, and we guess some a in |!A|. For the rule (C?), we have to guess again a
decomposition a=a’w a". We enter the box with ¢, a. In B8’, we have to guess
elements a’ (left) and a” (right) of |A|. But we also have to guess a decomposition
of ¢ as ¢’ ¢". Then we have two boxes to enter: one with ¢', a’ and one with ¢", a”.
Now, the box B, which is used in 8 and recopied twice in 8', is such that if
¢, a’/c", a" belong to B*, so do ¢’ uc¢” and a'u a”. Conversely, if ¢, a’ua”eB*,
then ¢ can be uniquely decomposed as ¢’ v ¢” so that ¢', a’/¢", "< B*. This means
that the successful experiments in both proof-nets are in 1-1 correspondence and
we are done.

4.9. Definition (quantification contraction (A /\/-SC)). Replace a configuration as
in Fig. 24(a) by the one in Fig. 24(b}.

-~ ~
!

s
. 1
{ [3ll:Bxa] J ;
N --afpral AJ-[B/a]

f CUT
(a) {b)
Fig. 24. {A/W-SC).

The semantic soundness is checked as follows: We start with ¢ in € and we have
to guess an element (X, z) in |Aa.A|. Above the rule (\/), we have to guess an
clement f€ COH(X, B) in order to get z'= A[ f/a]'(z), a point in |A[B/a]|. We
also have to check that ¢ and (X, z) are in B*, where B is the left box. Now, the
general functoriality properties (see [5]) make it the same as to verify that ¢, z' is
in B,[ B/ a]*. From this, the soundness of this case fallows.

4.3. Commulative contractions

4.10. Definition. Inorder to state the commutative contractions, we need the concept
of a ghost box. The ghost boxes can be formed for CUT- or @-links (this is just a
geometrical feature), and we discuss them for a CUT-link only. So, if we have such
a link #2-, we can consider the empire eB of B. In eB, there is a frontier, made
of B, of the conclusions of B belonging to eB (in this description, we assume that
the CUT is not in a box, just to simplify everything), and of premises of (®)- and
(C?7)-links such that the ather premise is not in the box. Let us list the frontier of
eB as A, B; we can form a box (the ghost box) by putting eB inside, and the doors
of the box will be A, B. If we replace eB in 8 by this ghost box, we are executing
a materialization.
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4.11. Remarks. (i) Interms of computation, materialization is a very feasible process
since it suffices to start a trip with B" and to set the switches arbitrarily. However,
in the case we enter a rule (%) or (C?) for the first time and from above, the switch
is set such that we move backwards: when we eventually arrive in B,, we have
passed exactly through eB, so there i1s no problem to describe eB very quickly.

(ii) When, in turn, our CUT is in a box, then the hox is made out of one of
several proof-nets arranged together, and the CUT occurs in one of these nets; in
this net, the concept of a ghost box makes sense, and it is in this way that we define
the ghost hox of a nested cut.

(i11) The main point is to prove that materialization produces a sound proof-net;
in fact, we shall establish more, namely that we can simultaneously materialize eB
and eB" as is stated in the following theorem.

4.12. Theorem. The proof-structure obtained by materializing eB and eB* is sound.

Proof. We argue by induction on the number of links outside eBw eB . In the case
of PNO all the difficulties are concentrated, hence, we restrict ourselves to this case.

(i) If the only link outside eB U eB~ is the CUT-link, then the proof splits and
the materialization looks as shown in Fig. 25, which is a proof-net.

L

cuT

Fig. 25.

(ii) If there is a terminal ¥-link outside ¢B . eB", then remove it in order to get
B'. Now, the materialization of 8 is the materialization of 8’ to which we have
added the terminal -link.

(iii) Otherwise, observe that there is a terminal ®- or CUT-link with premises E
and F such that ¢E U eF is maximal and eBu eB' < ¢E (or eF). The reason for
this is that, when we have a terminal ®- or CUT-link such that the empires eC and
e ahove are not such that e’ eD is maximal, then we can conclude the existence
of a conflicting ®-link, as in the Splitting Theorem; now, what is below this conflict
is in neither empires; hence, if all terminal %®-links are in eC v eD, it follows that
there is a terminal ®- or CUT-link below the conflict. We can conclude as in the
Splitting Theorem that eC ueD < eE (or eF). Now, there is a splitting of 3 as
shown in Fig. 26 (case of a tensor-link, eC w eD < eE). From the materialization
in B, it is easy to obtain the materialization in 8. L]

. LA
‘o L B F |
[i l.- & p
YE- ~F7
Tae Tl

Fig. 26.
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It remains to examine the CUT-links which are not covered by the two cases
already considered in the proof of Theorem 4.12. The only possibility is that at least
one premise 1s the auxiliary door of a box.

4.13. Definition (zero commutation (T-CC)). The configuration in Fig. 27(a) is
replaced by the one in Fig. 27(b). To do this, we have proceeded as follows: In a

1 |
el
Cr - ad ol e SR
- CUT ' by
(a) by

Fig. 27. (T-CC).

first time, we have a materialization of the ghost box eA', in a second time, we

have the replacement of the configuration involving both boxes by another one.
The semantic soundness is vacuously satisfied since, due to the presence of T

with its void web, in both cases we never have anything to verify at this stage.

4.14. Definition (additive commutation (&-CC)), The configuration in Fig. 28(a) is
replaced by the one in Fig. 28(b).

!
ol
-DJ_-.--.—_.F:_r
— t
(a)
— _—— e e - _——
-~ “ - | e "\ F !
” I 1
;B oy . et s, ‘penl !
\ o] S | l
A—C~~-D '—-_'JJ- E'R_C—D '-D "El
cuT T
booor
(b}

Fig. 28. (&-CC).

The semantic soundness is established as follows: We are given ¢, e in C, E and
a point in |A & B|, say (0, a). In 8 we have (o guess d € |D|; from this we proceed
by putting (0, a), ¢, d in the left box and after a, ¢, d in $,, we also put d, e in the
ghost box. In ', we proceed in a different order, namely that (0, a), ¢, e is transferred
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to the left box and then looks as a, ¢, e, inside the box. Then we have to guess d € | D|
and then dispatch @, ¢, d in 8,,d, e in e},

Remark: Of course, the ghost box is used only temporarily: after writing the
contractum, one erases it; the fact that the erasing of a ghost box causes no problem
is practically immediate.

4.15. Definition (unit commutation (L-CC)). The configuration in Fig. 29(a) is
replaced by the one in Fig. 29(b).

{a)
n“"—‘;—-_.-JF--I
¢ By eB~ )
— :
ao-8’ tph Lo

CUT
L—A L
t o+

{b)

Fig. 29. (1-CC).

The semantic soundness of this contraction 1s established as follows: In B, we
start with 1€|L|, @ in A, and e<|C|. We then have to guess some b |B|. Once b
has been chosen, these elements are dispatched between the two boxes: b, ¢ in the
ghost box, 1, a, b in the left box, i.e., a, b in 8,. What happens in 8 is almost the
same: 1, a, b is transferred to the box so that it becomes a, C; then we guess d, and
a, b go to B, while b, ¢ go to eB.

4.16. Definition { exponential commutation ( W?-CC)). This case is exactly the same
as the one in Definition 4.15 except that the formula L is replaced by a formula ?D.

4.17. Definition (gquantificative commutation (A\-CC)). The configuration in Fig.
30(a) is replaced by the one in Fig. 30(b).

The soundness is proved as follows: In B8, we start with (X, z)€|Aa.A|, b in B,
C|. From this, we dispatch ¢, d to eC* and (X, z), b, ¢ Lo
Bi. This means that z, b, ¢ is transferred to 8;[X/a]. In B8, starting with the same
data, we transfer them to the interior of the box and they become z, b, d, but 8, has
been replaced by B,[X/a]. Then we guess c<|C|, and z b, ¢ is transferred to
B[ X/a] while ¢, d goes to eC ",

and d in D), we guess ce
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(b)

Fig. 30. (A-CC).

4.18. Definition (exponential commutation (1-CC)). The last case is that of a !-box.
Here, the ghost boxes would be of no use, so there is no general pattern of
commutation. However, we must be able to do something in all possible CUT-
situations. Let us look, however, at the other premise of the CUT: it is of the form
IC. Now, if we cannot do something on that side, this means that !C is neither the
conclusion of an axiom-link nor the auxiliary door of a box; the only possibility is
that !C is the main door of a !-box: the configuration in Fig. 31(a) is replaced by
the one in Fig. 31(h).

L l 4
“?B_.C PPN A

— 28— IC ?CL—Q—EA—-

$ CUT t
{a)
P
LA "' ~ ““
(1, r '
i f !
B.C Vo B
7B IC 70— 7D — A
CUT
— 7B 70— A
t } ¢
(b)

Fig. 31. (1-CC).
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- In order to prove the soundness, consider b, 4, @ in 7B, 7D, 7A; we first have to
guess (in B) an element ¢ €|CJ, and then to dispatch it between the two boxes: on
the left, it becomes b, ¢ on the right ¢, d, a. Assume that a={x,,...,x,}, c=
{2, ..., Z,,}; within the boxes, we have to guess decompositions b=b, - -ub,,
and then consider simultaneously b, z,/ - - + /b,, z,. Further, c=¢,u- - -u Cpy d =
dyu- - +ud, and we have to consider simultaneously ¢,, d,, x,/- - /¢,. d,, x,. Now,
consider b}, - - -, b, defined by bi =|_J{b,; z; € ¢;}. Then the left part of the experiment
amounts (o the same as verifying that b}, ¢,/ - - - /b, ¢, belang to the left box. Now,
if we start with the same initial data in 8, we are first faced with guessing a
decomposition b=bj - LU b,and d=d,u- - -uUd, followed by separately study-
ing b,,d,, x;/ /b, d,, x,. In the case of b, d,, x,, we have to Euess some ¢, in
|C| and then dispatch between the two sides b, ¢, on the left, ¢;, d;, x; on the right,
and the problem is therefore strictly equivalent to the problem of 8.

4.19. Remark. Any binary link with the same geometry as CUT, typically &, can
give rise to commutative contractions; in particular, the analogues of Definitions
4.13-4.18 for ® are easily written.

Our goal is, as stated, strong normalization. It is however quite interesting to give
the Small Normalization Theorem first, which gives a very quick normalization proof
for PN2, provided (!/ C?7-5C) is not used.

4.20. Definition. The size s(B3) of a proof-net 8 is defined by induction on B as
follows:

(i) If B is built from boxes B,,...,B, and formulas A,,..., A, by means of
usual unary or binary links, then s(8)=s(B,) ... s(B,) 2" (in other terms,
formulas are counted to be of size 2).

(ii) If B is a box, then the size of B is defined as follows:

-it Bisa T-box, T, Cy,..., C,, then s(B)=2+n;
- if B comes from 8’ by the schemes for L, W2, A, |, then s(B)=s(8')}+1;
- if B comes from B, 8" by the scheme for &, then 5(8)=s(B")+s(B") +1.

4.21. Lemma. In all contraction rules but (1/ C?-8C), the size sirictly diminishes.

Proof. We have to go through 14 cases. First, observe that s(8)>n if 8 has n
conclusions. In order to prove the lemma, one can make the simplifying hypothesis
that the cut contracted is not inside a box.

- (AC) divides the size by 4;

- in (&/1D-8C), a size (x+y+1) - 2z is replaced by a size x - z;

- in (1/L-SC), a size 2+ (x+1) is replaced by a size x:

- in (®/M-8C), a size x- 2° is replaced by a size x - 2°:

- in (I W?-8C), a size (x+1) - (y+1) - z is replaced by a size (y+n) - z for some

n=X;
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in (1/D?-8C), a size {x+1) - 4z is replaced by a size x- 2z;

in (A/V-8C), a size (x+1) - 4z is replaced by a size x- 2z:

in (T-CC), a size (3+n)- x- y is replaced by a size (2+n+m) - y, with m < x:
- in (&-CC), a size (x +y+1) - z- t is replaced by a size (xz+yz+1)-

-in (L-CC), a size (x+1) - y- z is replaced by a size (xy+1) - z;

in (A-CC), a size (x+1) - y- z is replaced by a size (xy+1) - z;

- in (-CC), a size (x+1} - (y+1) - z is replaced by a size (x- (yv+1)+1)-z

All cases have been treated except trivial variants. O

4.22. Corollary (Small Normalization Theorem). PN2 without (!/ C 7-8C) satisfies
strong normalization.

Proof. Clearly, N(8)=s(8). 0O

4.23. Remarks. (i) In (1/C?-SC), a size (x+1) - 8z becomes (x +1)*- 4z- 2", where
n < x. Suddenly, the size explodes. Is it possible to fix this defect? Obviously not,
because PN2 has, roughly spoken, the same expressive power as the system F, i.e.
the normalization thecorem for F is not provable in PA,, so it would simply be
childish to try to improve the Small Normalization Theorem by toying with the
definition. There is however an open possibility: one can define generalized sizes
(no longer integers), typically in the case of the I-box, so that we still have a
phenomenon of decrease, these gencralized numbers could be something like
ordinals, dilators, ptykes. Such an achievement seems highly probable (but difficult);
it would immediately yield something like an ordinal analysis of PA,.

(ii) To some extent, the Small Normalization Theorem is more important than
its more refined and delicate elder brother! This is because normalization is now
clearly divided into two aspects.

(1) The quick normalization devices which reduce size: These devices must be
seen ds communication devices and our small theorem says that this part works
wonderfully well and quickly in PN2 (for those who may be afraid by the exponen-
tials involved in sizes, remember that there is no necessity, no intention to work
sequentially...). In particular, we could have put nonterminating devices inside
those awful !-boxes; this would not affect the quality of the parallelism, the programs
would simply run forever. But the structure /A would remain sound.

{2) The device (1/ ?C-SC), which can be seen as the execution device of the system:
The Strong Normalization Theorem will prove that this device, together with the
others, leads to terminating algorithms, and this is essential for the expressive power
of PN2 which should be essentially the same as that of F. General parallel systems,
for instance those that run forever, could be obtained by taking different execution
devices, to be put in carefully sealed boxes!

In spite of the defect w.r.t. the Church-Rosser property, the interconvertibility
w.r.t. the communication devices could be seen as a serious candidate for expressing
equivalence of programs.
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We now turn our attention towards the general case; for this we need to establish
some facts about strong normalization relating it to simple normalization.

4.24. Definition. A contraction is standard when it does not erase any symbol CUT
besides the one explicitly considered. Concretely, this means that some parts of the
configuration we replace have to be cut-free, namely:

- in (&/1D-8C), B, must be cut-free,

- in (&/26-8C), B, must be cut-free,

- in (!I/ W?-SC), B, must be cut-free,

-in (T-CC), eA" must be cut-free.

A reduction sequence is standard when made of standard contractions.

4.25. Theorem (Standardization Lemma).> Let 8 be a proof-nel and assume that there
is a standard reduction from B to a cut-free 8'. Then 8 is SN,

The delicate but boring proof is postponed. We immediately jump to the proof
of the Strong Normalization Theorem.

4.26. Theorem (Strong Normalization Theorem). In PN2 all proof-nets are strongly
normalizable.

Proof. The idea is to adapt the technique of ‘candidats de réductibilité’ of [1] to
the case of PN2; in fact, the symmetry of linear negation makes it easier to some
extent. During the proof, the Standardization Lemma (Theorem 4.25) is constantly
used.

4.26.1. Definition. A term of type A is a proof-net 8 together with a distinguished
conclusion which is an occurrence of A. Tn notations, we shall always make the
harmless abuse that consists in considering the distinguished conclusion to be
obvious from the context.

4.26.2. Definition. Let X be a set of terms of type A; we define X* as the set of
those terms « of type A* such that, for all ¢ in X, the proof-net CUT(t, u) (see Fig.
32) is SN

r
-

4
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— -

1
i
/
A___ A
cuT
Fig. 32.
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4.26.3. Proposition. (i) If X #@, then all elements of X* are SN.
(ii} If all elements of X are SN, then X* is nonvoid; it contains in fact the term
A A of type A .

* The proof will be sketched in Section 6.
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Proof. (i): If CUT(¢, u) is SN, then u is SN.

(ii): This proof already uses the Standardization Lemma: CUT(z, u) contr ! by a
standard contraction when « is the axiom link. Hence, if u is SN, there is a standard
reduction from u to a normal form, and therefore, from ¢: but then ¢ is SN, too. O

4.26.4. Definition. A CR (mnd:daf de réductibilité) of type A is a set X of terms of
type A such that
(1) X #¢;
(ii) all terms of X are SN;
(iii) X = X**.

4.26.5. Examples. A typical way to generate a CR of type A is to take the orthogonal
Y* of any nonvoid set Y of SN-terms of type A~. In particular, taking Y to consist
of an axiom link, we obtain the CR SN(A) formed of all SN terms of type A.

4.26.6. Definition. Assume that A[a](wherea=a,,..., a,isasequence of proposi-
tional variables) is a proposition, and let B (=B,,...,B,) be a sequence of
propositions; let X (=X,,..., X,) be a sequence of CR’s of respective types B.

Then we define a CR RED(A[X/a]) of type A[B/a], as follows:
(i) RED(1[X/a])={1}"; RED(T[X/al) =SN(T):
(ii) if A is a;, then RED(A[X/a]) is X;;
(iii) if A is A’ A", then RED(A[X/a]) is defined as the orthogonal of the set
RED(ATX/a])".RED{A’[X/a])" formed of all proof-neis as shown in Fig. 33 with
te RED(A'[X/a])", ue RED(A[X/a])*.

,f’—‘ - -

£t Fu }

\ A \

A‘[Ef#.‘:ﬁll J'\"[B" ].J_
A[E:"a]l

Fig, 33.
(iv) If Sis A"& A", then RED{A[ X/a]) is defined as the orthogonal of the union
of the two sets:
LY(RED(ATX/a]")) and u}RED(ATTX/a]“))

formed of all proof-nets obtained from a term t of A[X/a)’ (respectively A"[X/a]")
by applying (1) (respectively (2®)) (see Fig. 34).

.-\ -

f “t I . u
. A'fgx‘gl_]'* _— [H!_}l
Lt A[ﬁf&} A [H, ]

Fig. 34,

\
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“(v) If A is ?4’, then RED(A[X/a]) is defined as the orthogonal of the set
SRED(A'TX/a]") formed of all terms of type !ATB/a]" of the form shown in Fig.
35.

PN
¢t

i
?t_c - ’A'[Ei“;.:"ill

2c (A’[ﬁfg]il

y

Fig. 35.

(vi) If A is Ab.A’, then RED{A[X/a]) is defined as the orthogonal of the set Z
formed of all terms of type Ab.A“[B/a] of the form shown in Fig. 36 such that,
for some CR Y of type C, re RED(A™[X, Y/a, bl).

4 ,t -‘1
{ r
A[brcran]
Vh.ﬂlI EIE}

Fig. 36.

(vii) All other cases are treated by orthogonality, e.g., RED('A[X/a])=
RED(?A‘[X/a])".

4.26.7. Lemma (Substitution Lemma)
RED(A[C/b][X/a])= RED(A[X, RED(C[X/a])/a, b]).

Proof. This lemma simply states that the definition of reducibility is compatible
with substitution. This is established without difficulty once the formalism has been
understood. Remark that there is here a hidden use of second-order comprehension
(to define a set by RED(C[X/a]). The proof of the Strong Normalization Theorem
is not formalizable in PA, because of the use of the Substitution Lemma with
unbounded C’s. This must be familiar to people who know the original proof for
F [

4.26.8. Definition. A proof-net 8 with conclusions C is said to be reducible when
the following holds: Let a be the list of all free variables of € and let us choose a
sequence of formulas B and a sequence X of CR of types B (same length as a);
select terms ¢ in the CR €[ X/ a] and make several cuts with all formulas of C[ B/a]
as shown in Fig. 37. The result of these operations, called CUT(B[B/a]; ), is SN.

4.26.9. Theorem. All proof-nets of PN2 are reducible.
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Fig. 37,

Proof. We argue by induction on a proof-net 8. Since the substitutions B/a and
X /a play no active role but make everything hard to read (and to write!), we shall
not indicate them, working therefore with RED(C"'), etc. The reader will be able
to make the straightforward reconstruction himself.

Casel: Bis A A~; we have to show that, for any ¢, 1 in RED(A)*, RED(A4),
CUT(B; t, u) is SN. But there is a standard reduction from CUT(8; ¢, u) to CUT(t, u)
which is SN by the definition of orthogonality; by standardization, CUT(8; 1, u) is
SN.

Case 2: § is 1; we have to show that CUT(8; 1) c SN for all t€ RED(L). However
RED(L)={1}""; hence, CUT(B; t)=CUT(B, 1) is SN.

Case 3: B is LT—CJ; choose tc RED(0), uc RED(C*); here a general remark
musl be made: Since RED(0)" = Z*, where Z consists of the axiom-link T 0,
it is possible to replace RED(0) by Z! Hence, ¢ is the axiom-link. Now it is very
easy, using the fact that w are SN, to produce a standard normalization for
CUT(B; t, u).

Case 4: B comes from B’ by the L-box in Fig. 38. Choose t€ REID(1), choose
uc RED(A") and consider CUT(8; 1, #). As we did in Case 3, one can restrict to
t=1, and there is a standard reduction from CUT(g; 1, u) to CUT{B’; #) which is
SN by hypothesis.

Fig,. 38.

Case 5: B comes from B’ by (%) (see Fig. 39). After simplification (this refers
to the remark made in Case 3), we are led to form CUT(3; t®u, v) with t € RED(A*),
uc RED(B"), ve RED(C ). t® u indicates the term obtained from { and u by (®).

'ﬂf -
4 \
;B |
\ A
A=-~B-C

AR B
Fig. 39,
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Now observe that there is a standard reduction sequence from CUT(B: t®u, v) to
CUT(B"; t, u, v), which is SN by the induction hypothesis.

Case 6. B is obtained from 8' and B" by (®) (see Fig. 40). The induction
hypothesis yields that CUT(8"; ¢, #’) is SN for all ' ¢ RED(A")* and '€ RED(C"}",
which means that CUT(g’; u’) e RED(A’). For symmetric reasons, CUT(8"; «")

RED(A"). By tensorization,
CUT(S; o', ") e RED{A").RED(A”")c RED(A'® A")

by biorthogonality. But then CUT(8; u', u", v) is SN for any ve RED{A'® A")*.

Case 7: § is obtained from 8’ by (1@) (see Fig. 41). The induction hypothesis
yields CUT(8'; c)e RED{(A) for any ¢€RED(C)"; then CUT(B"c)e
1'RED(A)= RED(A® B) and we are done.

— -
A
{ A&
C ~=A
AwH

1l®

Fig. 41,

Case B: [ is obtained from B8' by (2B): As Case 7.

Case 9: B is obtained from 8' and 8" by the &-box in Fig. 42. After simplification,
we see that we have to check if CUT(B; ¢, 1L't) and CUT(B; ¢, 1.%u) is SN for any
ce RED(C) ", te RED(A)*, and u € RED(B)"*. Now, the induction hypothesis yields
that 8" is SN, and it is therefore possible to write a standard normalization from
CUT(B; ¢, 1.'1) to CUT(B'; ¢, 1), which is SN by induction hypothesis. For symmetric
reasons, CUT(B"; ¢, 1.°t) is SN.

== =\
OB g By
{ / L
Cu-h Cowb
C — A&B

Fig. 42,

Case 10: B is obtained from B’ by the !-box in Fig. 43. The induction hypothesis
is that CUT(B"; ¢, 1) is SN for all ce RED(?C}* and t in RED(A)* and we want
to conclude that CUT(B: ¢, u} is SN for all  in RED{'A)"*. Now, it is easy to show
that we can make a simplification on the whole sequence ¢, namely that ¢ is of the
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o

Fig. 43,

form !d, for dc RED(C)". But there is a standard reduction from CUT(S: ¢, u) to
CUT(!CUT(B'; ¢}; u) (several (1-CC)). Now, the induction hypothesis says that
CUT(B"; ¢)c RED{A); hence, ICUT(B’; ¢} IRED{A)c RED{!A4).

Case 11: B is obtained from B’ by the weakening box in Fig. 44. We must show
that CUT(S; ¢, !7) is SN for all ce RED(C)" and re RED(A)*. Now t is SN, and
there is a standard reduction from CUT(B; ¢, 1t} to CUT(8"; ¢) plus weakenings,
which is SN by induction hypothesis.

Fig. 44.

Case 12: B is obtained from B’ by the dereliction rule shown in Fig. 45. We must
show that CUT(8; ¢, It) is SN; but it reduces in a standard way to CUT(8"; ¢, 1),
which is SN by induction hypothesis.

—
¢Fonpr
/

c- A

&

—

Fig. 45.

Case 13: B is obtained from 8’ by the contraction rule in Fig. 46. We must show
that CUT(S; ¢, 't) is SN; but it reduces in a standard way to CUT(S; ¢, 't, 1) plus
contractions, which is SN by induction hypothesis.

LT

4 ' Y
¢ B f

{ /
C?A<24

BT
Fig. 46.
Case 14: f3 is obtained from B’ by the A-rule shown in Fig. 47. For the first time, .

we actually use the substitutions: we have to show that CUT(B; ¢, t) is SN for any
¢ RED(C)" and ¢ coming from some u of some type A*[B/a] by the \/-rule, s.t.
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.’T‘j'--‘ “
{ )
\Fl.-..-g‘f
Na.a— ¢
Fig. 47.

ueRED(A[X/a])" for some CR X of type B. Now the induction hypothesis yields
that CUT(B'[B/a]; ¢, u) is SN, and observe the existence of a standard reduction
from CUT(B; ¢, t) to this proof-net.

Case 15: B is obtained from B’ by the \/-rule in Fig. 48. The induction hypothesis
says that CUT(B"; ¢) e RED(A[ B/ a]) for any ¢ in RED(C)". Now, the Substitution
Lemma says that RED(A[B/a])=RED(A[RED(B)/a]); this shows that
CUT(8'; ¢) € Z where Z is the set of existential terms such that RED(Va.A)=Z"":
from Z< Z**, we conclude. [

-~ =

- ~
;B L
s
\ r(B/al.~ c
V-‘i.A
Fig. 43,

Proof of Theorem 4.26 (conclusion). Apply Theorem 4.26.9 to B= X and f=axiom
links. [

5. Some useful translations

5.1. The translation of intuitionistic logic

The intuitionistic symbols A, \/,=>, -, ¥, 3 can be considered as defined in linear
logic. The definitions are as follows:

ArnB=A& B, AvB=(1A)®(1B),
A=B=(1A) -« B, A= (14) — 0,
VxA=AXxA, dxA=Vx!A.

In particular, we see that we could have kept the symbols » and V in linear logic,
pravided we have in mind intuitionistic conjunction and ‘for all’. The translation(.)®
from intuitionistic logic to linear logic is defined by means of the above dictionary,
together with A°= A when A is atomic.

The translation just given shows the unexpected heterogencity of intuitionistic
connectives (in sharp contrast with the translation into modal logic which is very
regular, if nonconstructive). The most shocking point is the translation of negation:
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one would have preferred L instead of 0, i.e., (!A)~ for 1A, However, intuitionistic
negation has always been widely criticized. On the other hand Andrej Stedrov
pointed out to me the formal analogy between these translations and Kleene's ‘slash”,
in particular where the places are determined where a **!” is needed. Even with this
analogy in mind, it is hard to find a leading principle in this translation; for instance,
the translation does not follow the principle of restricting to open facts, as a coarse
analogy with the modal translation would suggest.

The translation {.)" is extended to a translation of proofs. The most efficient one
is a translation of intuitionistic natural deduction (with .4 defined as A=0) into
linear sequent calculus. Here we use a version of linear sequent calculus with
formulas on both sides of “~"": A+ Bisshort fort 4", B,° The translation is defined
by induction on the length of a deduction (d)of (A} B, i.e., of B under the hypotheses
(A): to such a (d) we associate (d)°, a linear proof of 14°— B°.

(i) (d) is the deduction of (8) B consisting of a hypothesis B; then (d)" is

B — B"f_ \
‘B~ BY Dbt

(ii) (d)is a deduction of (A’, A")B’' » B" obtained from a deduction (d’) of (A")B’
and a deduction (d”) of (A")B" by a-introd, then (d)" is

(d1” (a@m?
tA°+ B” A" g
0 T e several EW! 0 oo o several £W!
147, 1A" - B 1A, 1A~ B o
L.

14", 1A~ B & B"

(1) (d) is a deduction of (A)B’ obtained from a deduction (d') of (A)B’ A B"
by the first a-clim; then (d)” is

(d'}‘-" Brﬂ - BFO
!AUI— BJU& Br.ﬂl} Biﬂ& Bnﬂ — B:f_‘!
!AQ' Brﬂ

{1&
CUT.

(iv) {d) ends with the second A-elim: symmetric to (iii).
(v) (d) is a deduction of (A)B'v B”, obtained from (d') of (A4)B’ by the first
a-introd; then (d)° is

(d’}a

A’ B"

[AD — 'B.‘Otl
PUSTIEI A

® The rules are now written as left and right rules; e.g., the rule (&) now becomes (+&) (on the right)
and (£} (on the left} etc.
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- (vi} (d} ends with the second v-introd: symmetric to (v).

(vii) (d) is a deduction of (A, B’, B") D obtained from (e) of (A)C'v C"and (d")
of (B', C')D and (d") of (B", C")D by v-elim, where €' and C” are made of
repetitions of C’ and C" respectively. Then (d)° is

td’ (d)’

!B, 1C* - D° several ¢!, 1B, 1C° - D°  (oieral &Q,
BV, 1C" — Db ar one £W! B po or one {W!
- several W - ——several £W)
( j“ !Brfl !HIIU !-tul] L DO !BIFI !BMI !{.-!U — DU
e 7 — 1
1A° - 1CO@ 1 1B, 1B, 1C°@ 10 - O -

CUT.
1A, \B™ 1B~ Y

(viii) (d)is a deduction of (4) B=>C, obtained from a deduction (d’) of (A, B)C
by =>-introd, where B is made of repetitions of B; then (d)" is
(a9’
'A%, 1B C°
TS 1B O several €C! or on¢ {W!

¢—n
1A° - 1B — VY

(ix} (d) is a deduction of (%', A”)B" obtained from (d’} of (A B’ and (d") of
(A")B'=>B" by =-elim; then (d)) is

(a®
A"+ B
—_—y]
(@ !Arﬁ — !B!U Bh‘O - Bnﬂ ‘f} .
!Arrﬂ — !BFUH B"U !Aﬂ] !BFO e Blr‘ﬂ — BH'D
: CUT.

1A 14" B

(x) (d) is a deduction of (A)B coming from a deduction of (A)0 by the rule

0-elim (we have used the notation 0 for the absurdity of intuitionistic logic); then
(d)? s

[dl"tl

1A~ 0 0~ B (axiom)
149 B°

CUT.

(x1) (d)is a deduction of (A)¥x.B coming from a deduction (d’) of (A)B by the
rule V-introd; then (d)° is
(dy,
1A’ B°
1A% - /\x.BUH\'
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(xii) (d) is a deduction of (4)B[t/x] coming from a deduction (d') of (A)Vx.B
by the rule ¥-elim; then (d)" is

(2" B[t/ x]+ B[t/ x]
1A%~ Ax.B° Ax.B°~ B t/x]
'A°+ B t/x]

(xiii) (d) is a deduction of (A)3x.B obtained from a deduction (d')of (A)B[t/x]
by the rule A-introd; then (d)" is
(d")’
1A%~ B¢/ x]
1A e tY

‘A
CUT.

(xiv) (d) is a deduction of (A, B)I? obtained from (e') of (A)3Ax.C and (e") of
(B, C)D by 3-elim; then (d°) is

1B°, 1C" - D°

'B° 1C"+ D°

4} 0 Q 4] fv

A VxICY 180 VxICh D

1A°, {B°+ D° )

several £C! or one £W!

Remark. If we start with a deduction which is normal (in the strongest sense,
involving commutative conversions), then the construction of (d)" can be slightly
maodified, yielding a normal proof.

Observe that our translation is faithful in the sense that if A” is provable in linear
logic, A is provable in intuitionistic logic. This can be easily justified as follows:
Linear logic satisfies cut-elimination, hence a subformula property. A" is written in
the fragment 0, —, ®, &, !, A, V of linear logic. In particular, writing the rules for
this fragment with two-sided sequents we see that the proof of A® uses only
intuitionistic linear sequents. Now, if we erase all symbols !, and replace
@, &, —, A,V by v, A,=, ¥, 3, then we get a proof of A in intuitionistic logic.

The translation just chosen has been historically spoken the first work on linear
logic, dating back to the end of 1984 for disjunction, and October 1985 for the full
language. The translation is sound, not only for provability, but also w.r.t. the
coherent semantics. Once more, this is the coherent semantics of intuitionistic logic
which suggested to put the hidden linear features on the front stage. Other transla-
tions are possible, for instance one following the idea of sticking to open facts:

A*=1A for A atomic,

(AABY*=A*® B*, (Av B)*= A*@ B*,
(A= B)*=1(A* — B*),  0* -0,

(VxA)* = 1A A*, (FxA)* =/ xA*.



82 LY. Girard

- This boring translation is reminiscent of the modal translation of intuitionistic
logic. This translation is not sound w.r.t. the coherent semantics and this is enough
to show that its interest is limited.

5.2. The translation of the system F

F 1s nothing but a functional notation for second-order propositional natural
deduction, so we can essentially apply the translation of Section 5.1. We concentrate
here on the reduced version of F (variables, =>, ¥), and we make a slightly more
precise definition so that normal terms of F are directly translated as normal
proof-nets.

5.2.1. Types
The types of F are translated as follows:

a=a when a is a variable,
(S=T)"'=18"—T°, (VaT)"=AaT"
The translation has the substitution property: (S[T/a])’= $ [T/ a].

3.2.2. Translation of terms

We distinguish two kinds of terms:

(i) General terms of t[x]: x is a sequence of variables of types S, which are
exactly the free variables of f which is of type T. Such a term will be translated into
a proof-net 1” whose conclusions will be exactly !$°* and T°.

(ii) Terms with a distinguished headvariable y: {[x, y] with x of type S, y of type
H, t of type T y is distinct from all variables in . When we say that y is distinguished,
this only means that we have decided to remark that we are in case (ii), instead of
using the more general procedure case of (i). In that case, ° has the conclusions
8% HY T

Step 1: t=y (so that T = H); then (° is

[

Step 2: t has a headvariable and may be written as u[y(v)/y'], where u[y'] is
already a term with a headvariable. The other variables of u and v are x and x',
some of them being common. Then we form the configuration shown in Fig. 49 (v

- -~ —
e o N - =
/ i ’ \
1 Y i |
Vogrol s o ! ]
- . ,
| ogiel e grol == — sguol 7 o

i'e m U"‘JL
Fig. 49.
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is of type U'=U" so that we must get a conclusion 'U’® U™*), From this, by
using the rule
?S;ﬂl ?S}rﬂi. '
-?Si'ﬂl

c

every lime x| = x/, we obtain the interpretation ",

Step 3: t has a headvariable and may be written as u[u{U'}/y'] for a certain
term u[y’'] (which already has a headvariable ¥’ of type U"[U'/a], y being of type
Aa. U"), We form the configuration in Fig. 50.

{ /
To ~_ ?_sol _ <umefuresalt

Aa LT °I
Fig. 50.

Step 4: t has a headvariable, but we do not want to distinguish it any longer.
Consider the term u[y, x] with a new distinguished headvariable such that 7 is
u[ x;, x]; then form the configuration in Fig. 51. This will be °, except if x; is equal
to some variable of x, in which case one must end with a contraction.

’f T
Vs ‘s
¢ W /
{ '
D
’)UG_l
Fig. 51.

Note: All other steps are steps involving no terms with headvariables.

Step 5: tisu(v), uisoftype T"= T", visoftype T': we now form the configuration
in Fig. 52 to which we apply, if necessary, a certain number of contractions between
25/° and 787" when x| = x!.

. SN
— . &0 \
’ \ ( )
Cw L
1 ’ L L
t / Eo — !TID ‘J-llfll 'I‘IH:I
-
?S“DJ' — ?T|ul § Tite Imre gty
cuT

Fig. 52.
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- Step 6: tis u{U} with u of type Va.T; the corresponding configuration is shown
in Fig. 53.

T f |
'.( u° 1 Tlo{ulo]l TIo[UIo]
\ / —
2stel _pAd e Vared
cuT
Fig. 53.

Step 7. t is Ax.u, with u, x of types T", T'. Let u’ be «° if x occurs in u and
otherwise, let u’ be the result of a W? on 77" applied to u” (see Fig. 54).

- R T
; " \
L /
Elﬂ: :_T_-_I c:l: /Klmp
?TIOJ_ B Tire
Fig. 54.

Step 8: 1 is Va.u, with u of type T, the configuration is given in Fig. 55.
The steps must now be put together to form a correct definition by induction of
the translation ( )°. The details are left to the reader, but, by correctly handling the

case with headvariables, one translates a normal term of F into a cut-free proof-net
of PN2,

5.2.3. Semantic soundness of the translation

The coherent semantics of F has been given in [5]; we also have a coherent
semantics for PN2 (Section 3); the semantic soundness of the translation is that
t™ = ¢* if the symbol * denotes both semantic interpretations.

(1) The first thing to check is that there is a semantic soundness of the translation
of types, namely that T°* = T*. This easily follows from two remarks:

(1) the type constructor ¥ iy exactly the same thing as \.

(i1) semantically speaking, X =Y =X — Y.
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Proof. X =Y is the set of traces of stable functions from X to Y. This coherent
space is defined by

|X=> Y| =X, x| Y]
where X5, is the set of all finite objects of X.

(a,z2)Z(b, ) [ mod X=Y] il (1)aubeX-»:zZit[mod Y],
(2YaubeX and a# bz #1,

Now, observe !X; we have |!X|= X;,.; moreover, aZb [mod!X]iff aube X in
other terms, | X= Y|=|!X| x|Y] and

(a, z)Z(b, t) [mod X=Y] iff (1) aZh[mod !x]-zZt [mod Y],
(2)a~b[mod !X]->z"¢[mod Y].

This clearly established that X=Y = !X — Y (end of proof).

(2) The semantic soundness of the interpretation of term is based on the ideas
already introduced in the pons asinorum (Section 1V); checking all the cases here
would be a pure loss of time.

5.2.4. Syntactic soundness of the translation

This is another issue, albeit of slightly less importance than the semantic soundness.
The semantic soundness is enough to ensure that there is no loss of expressive power
between F and PN2. (There is no essential gain either: the Normalization Theorem
for PN2 can be carried out in PA;). However, a syntactic relation between normaliz-
ation in F and PN2 would be welcome. In fact, when f =/ u in F, one can find a
' such that ° =/ " in PN? and u' differs from u° by a different order of use of the
rules (7). This problem is due to the fact that, in F (and systems based on
A-abstraction), the identification of variables is indeed made just before the abstrac-
tion, while PN2 is more refined and gives a specific order for the identification, This
is a quality of PN2: a proof-net of PN2 contains additional information which the
theory usually ignores (the order of the contractions), but which is very relevant in
practice (e.g., for retaining the substitution as long as possible} and so traditionally
belongs to the sphere of ‘bricolage’ (i.e., handicraft).

The verification of the syntactic soundness of the translation is boring and without
surprise.

5.3. Translation of current data in PN2

Since we know that current data types can be translated in F and that I translates
in PN2, we can, by transitivity, translate integers, booleans, trees, lists, etc. into
PN2. However, PN2 has subtler handling of the types and we often find a better
translation, not transiting through F as will be shown in the following subsections.
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5.3.1. Booleans
The best is to choose the definition bool = 1® 1, with

1 1
s =——1@ ALSE = ——2(P).
TRUE boollo’ FALSE bool ®

The instruction 1 8 THEN B' ELsE 8" is defined by the configuration in Fig. 56,
where 8 and B’ have the same conclusions C. It is immediate that 1+ TRUE THEN
B' ELsE 8" =/ B’ and IF FALSE THEN B' ELSE B"=/B". There are however two
strategies possible for normalizing such instructions.

Pl - N T - =

“
—— - bOOlL- bool

cuT

Fig. sa.

(i) The lazy strategy consists in not using the commutative conversions (&-CC).
The 1F-THEN-ELSK instruction is viewed as a sealed box from the viewpoint of 38’
and B”. The only way to get the box opened is to wait until the main door is opened
(cut on TRUE or FaLSE). This strategy is particularly interesting in the case we are
normalizing a proof-net whose conclusions involve neither ® nor \/ since we are
sure that all such boxes will eventually be opened by the main door. In terms of
parallelism, such a box can be viewed as a moment when one has to wait (the
communication through C is temporarily interrupted) (and maybe this waiting time
can be used to do other tasks).

(ii) The general strategy consists in entering the boxes even by the auxiliary doors:
this causes a duplication of certain tasks, with the unpleasant feature that if the
main door is eventually opened, half of what has been done may be erased. But if
we have indications that the main door may never open, this strategy may be of
some use.

5.3.2. Integers

In F integers are translated as Va.a=>(a=>a)=a. The straightforward translation
of F into PN2 would yield three 1”5, including a nested one! It turns out that,
among the three implications used in this type, the first two can be taken as linear.
We therefore define int as Aa.a—((a—a)=a). Equivalently, int=
Aa.a— ({{a—a)—a), and this is isomorphic to Aa.l(a < a)— (a— a). For
instance, the number “3 can be represented in F (natural deduction) as shown in
Fig. 57(a). In PN2, the representation of ““3" looks as shown in Fig. 57(b).
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{a a) =9a

ay |
a-=pila ) Ppa)

¥1
Ya.a »(la =pa) a)

Fig. 57(a). The number “'3” represented in the system F (natural deduction).

—z T2 =l )
pen L ivwan AN SR

! ?0————T~20
?a ® at) (e = a-}

B 70

?{a m al) a

aJ_ ?lam aJ-) 7 a

:al- 7 (?lam aJ-) 5 a)

e f\a.(aJ- ¥ (?lam aJ-) % al

Fig. 57(b). The number “'3" represented in PN2.

The functional notation for “3” in F is Ya.Ax"Ay“"%y(y(a))). There are other
possible representations of **3"" in PN2: before the first %-rule, we can use a different
combination of the rules (C'7) and maybe some rules ( W?).

Consider all possible proof-nets with int as conclusion; the end is necessarily as
in the described example a A-box, then a ®-link whose premises are a* and
a®a")® a, which in turn follows from a ®-link applied to @ and Aa®a™*). Now,
there are several possibilities: this (a@a”) may arise by several combinations of
(W?2), (C?), and (D?). Above the combination of these rules there are several
premises a®a™, and above them premises a, a*. These premises are linked together
by axiom-links, and are also linked to the formulas a and a* mentioned much
earlier. The only possible configuration, in terms of proof-nets is the one shown in
Fig. 58 and the number of axiom-links determines which integer we are speaking
of: n+1 axiom-links are needed to represent n. For instance, Fig. 57(b) was using
four axiom-links, and therefore represents ‘3., But any other variation on this
picture (with extra (W?), different order for the rules (C?)) would yield a term
with the same semantics.
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L

1= /i

= rarw — a "

a

B

Fig. 58.

Let us explain the interpretation of the proof-net **3"; for this, the best is to return
to the pons asinorum (Section IV). Specify a coherent space X in order to interpret
a in the inner part of the box. Now, X'% (HXBX)®X) means
X — (1X — X)— X), and should be viewed as the set of all linear maps from X
to (X — X)— X, Then, X — X)— X is (X — X)=>X and should be seen as
the set of all stable maps from X — X to X. Summing up, what is inside the box
describes, for a = X, a binary stable function mapping X, X — X into X, and linear
in the first argument. This function is defined by F(x, £} = f(f(f(x))), as the semantic
computation easily shows. More generally, all proof-nets which represent n are
semantically identical: on X, they correspond to the function F(x, Fry=r"(x).

This is very close to the more familiar representation of integers in F: the main
difference is that the argument f is linear. It is possible to stick to ‘f linear’ because
S" is still linear. But the function associating /™ with f is never linear, but for n =1,
Now, look at Fig. 59; the diagram represents the successor function, which linearly

b

——---—1 =

amal
e

'{a -0 a) aJ- ?(amaJ-:l am at)
H — l"?
a ({a — a) = a)J- la ® aJ-‘f a

2 ¥
fa -0 {a = a) #a)l aj- fa -0 al » a

1l|1'-]- v g '

a -o ((a -0 a) 2a)

maps int into int; if one applies SUCC to a repressentation 7 of the integer n, by
means of the configuration in Fig. 60, then, after normalization, one gets a representa-
tion n+1 of the next integer.

As usual, int allows definitions by primitive recursion: typically, from a proof-net
B with A as conclusion and from B' with A — A as conclusion, one can form
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s
e . } E :
A} \ 7 I | 1
\ SuUcc 1 int int int
. /-’ J_i
int —o it {int —cint)
CuT
Fig. 60,

REC(B, B’) with the conclusion int — A (sce Fig. 61). (In fact, there is no need that
A and A — A should be the unique conclusions of B or B’; arbitrary other con-
clusions are welcome in B8 and additional ?-conclusions can be accepted in 8.)

—

P
s B
]
i

f

J i
/-‘ A -0 A I—'-“
8y L!(A—OF\.?- AJ‘
i

A (1{pa o A} -0 A

. lg
(A —o (1{A =0 A) =0 A)

1 ITtJ‘ A

int -0 A
Fig. 61.

When we apply REC(B, 8') to 7, by the configuration in Fig. 62(a), this reduces
to the configuration in Fig. 62(b) (n occurrences of 8% this proof-net is “* B’ applied

n times to 87).

TN
f=
o= \ l‘n ;
£ \ ) i I
sUCC ) ‘int al A
. ) | B
int - A {int —0 A)
CUT
Fig. 62(a).
PN o na
fo 0 - -
v i l O —I I (0
\
YWl TR S N A oalb )
.|ﬂ \ J —-—-———I B 7 T B oy )}
(A —ch) Ao f (A =o A A0 A .. A= A) A -0 A
CUT CuT cuT A

Fig. 62(b). A" applied n times 10 8™
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-The problem is that, in practice, we do not necessarily have linear functions to
start with when making recursion. However, what about a recursion with 8 as a
proof of A, 8" as a proof of A=> A, i.e., !A — A? This can be reduced to the previous
case: from the configuration in Fig. 63 (here, auxiliary conclusions can be accepted

Y ]
- -
) ! |
LA A | R /
!
1 \ /
(1A —o A) A — A
t
K ?AJ‘ cutl A
ol 1A
R
"ho—o 1A
Fig. 63.

too, but only of the ?-form). Then, what we want can be expressed by derelicting
REC(y, ¥') as shown in Fig. 64.

]

) D?

RECE?/.]"} int oAl
B

int —o !4 (int o 1AL

i r‘etJ- A CcUT

Fig, 64,

Exercise. (i) Show the existence of a proof-net whose conclusion is int — Yint and
such that when applied to an integer 7, it yields !A; i.e., it is put into a -box.

(i1) Conclude that the same functions from N to N are representable in PN2 as
of type int — int and of type int=>int.

5.3.3. Lists, trees
We cun take more or less the usual translations while being careful to use linear
implications everytime = is not actually needed. The details would be too much here.

5.4. Interpretation of classical logic

Of course, there is the 1 -translation of Godel, which reduces the problem to
the one already solved in Section 5.1. However, the ——-translation has a terrible
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defect, namely using intuitionistic negation which is the only citicizable intuitionistic
connective. But Godel’s translation is still working if, instead of 7 A, one uses
((A=>F)=>F) where F is any formula which is not provable. Here we shall use L
for F. Formulas of the form ({A= 1)=>1) are equivalent to ?!A; i.e., in topolinear
terms, they are closed facts, equal to the closure of their interior. Let us call a fact
regular when it is equal to the closure of its interior, i.e., to the closure of some
closed fact. We have the following properties.

(i) If A is regular, then ?(A") is regular.

(ii) If A and B areregular,then A% Bisregular: A® B=T"A® N"NB="!ADB)
where !A@ |B is open.

From this, the principles of the translation are immediate:

A*="A4 when A is atomic

(AvB)"=A"® B'  (1A) =2A4""), (VxA) = MAxXA™.

The interpretation of classical disjunction is particularly simple. This justifies our
claim that par is the constructive contents of classical disjunction.

Now, the regular subsets of a topolinear space form a complete boolean algebra
and from this, it will be possible to justify all classical laws translated by ()*. In
particular, to some extent, we get a semantics of proofs for classical logic. But the
translation used lacks the purity obtained in the intuitionistic case. This is due to
the fact that the equivalence 7?A"— A" is used too often.

5.5. Translation of cul-free classical logic

Il we turn our attention towards cut-free classical logic, the situation changes
radically, in the sense that a convincing interpretation inside linear logic is possible.
The interpretation is based on the familiar three-valued idea of giving independent
meanings to positive and negative occurrences of formulas (see [3]).

By induction on the formula A, we define pA and nA:

pA=nA=A when A is atomic

pA=(nA), n 1 A={pA),

pAv B=(pA)®(pB), nAv B=1(nA)%® (nB),
pA s B="YpA)® U pB), nAn B=(nA) & (nB),
pA=B=(nA) ®(pB), nA=> B =N pA)— (nB),
PYXA=Ax2pA), nvxA = Ax.nA,

paAxA =\ x.pA, ndxA =V x.InA

The reader will toy a little with the definition to see that this definition is built
on strong symmetries, unlike the less satisfactory translation in Section 5.4. In fact,
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the situation is the same between the very good translation ( )° and the less satisfac-
tory translation ()*, both considered in Section 5.1. But here we have to give up
the cut-rule.

Now, with each proof in cut-free classical logic of a sequent A ~ B, one associates
a proof of the sequent !nA — ?pB in linear logic in a more or less straightforward
way. This paper has already been too long, and a reader not already dead at this
point will have no trouble in finding out the details. In particular, due the cut-
elimination theorem, there is a very nice and natural semantics of proofs of full classical
logic.

The cut-rule has a very ambiguous status: it can be seen as the general scheme:
pA— !nA, ie., n(A=A). This scheme, although wrong, is conservative over
sequents of the farm !nB+ 7pC, i.e., over formulas of the form ?pA4, whose main
feature seems to be the absence of 1"

Conjecture and question. It should be possible to find a formulation of cut-elimina-
tion as a general conservativity result over a fragment of linear logic, e.g., the
fragment free from !. The cut-elimination procedure would appear as the effective
way of eliminating the conservative principles (which should be the formulas
n(A=>A) or something more general). Such a program, if properly carried out, would
give a full constructive content to classical logic.

3.6. The Approximation Theorem

In the introduction we have already mentioned that linear logic was able to control
the length of disjunctions in Herbrand’s theorem. Let us now use what we know,
in particular, the translation of classical logic just given. To simplify the matter, we
shall work with a prenex formula 3xVy3:zV7 Rxyzt with R quantifier-free. The
p-translation of such a formula is \VxAy?\V/zAt ?8xyzt with § quantifier-free and
I-free.

Now, if our formula is provable in classical logic, the ? of its p-translation, i.e.,
VxAy?zAt 28xyzt will be provable in linear logic.

Now, consider the connectives ?, defined by

TWA=(LPA)R(LDA)® - F(LDA) (ntimes).

The Approximation Thcorem (see below) says that we can replace each ? by
approximants ?,; in particular, ?,\/xAy %,V z At 28xyzt (in the quantifier-free part,
we have kept ?). This formula clearly expresses that we had a midsequent with at
most » - m formulas or, equivalently, a Herbrand disjunction of length at most n - m.
It also says something about the intimate structure of this Herbrand disjunction
(the n and the m).

This example clearly shows how linear logic can be used to control the length
(and also) the siructure of Herbrand disjunctions. Now, the approximation theorem
we were speaking about is just the mathematical contents of our slogan: usual logic
is obtained from linear logic (without modalities) by a passage to limit.
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5.1. Definition (approximants). The connectives | and ? are approximated by the
connectives !, and 7, (n#0):

1L A=(1& A)®- - -@(1 & A) (ntimes),
2A=(LEA)®---R(LDPA) (ntimes).

§.2. Theorem (Approximation Theorem). Let A be a theorem of linear logic;, with
each occurrence of | in A, assign an integer #0; then it is possible to assign integers
#0 to all occurrences of 7 in such a way that if B denotes the result of replacing each
occurrence of ! (respectively ?} by |, (respectively ?,) where n is the integer assigned
{o it, then B is still a theorem of linear logic.

Proof. One can formulate the exact analogue for a sequent —A and we prove the
result by induction on a cut-free proof of ~A in linear sequent calculus. We content
ourselves with a few interesting cases:

(i) One can assume that the axioms A, A" are restricted to the atomic case
and so, no problem.

(ii) If the last rule is (!): from A, 7B infer 1A, ?B, then we already obtained
—A', 7B’ (approximation A’ of A, B' of B, and a sequence n). Now, one easily gets
1, 7,B' and so,t 1& A', ?,B". Let k be the integer associated with the first !in !A;
we get =LA 7B

(iii) If the last rule is (D?): from + ?A, ?A, B infer — ?A, B and if we have already
approximations - ?,A’, 2,,A", B, we can first ensure A= A" by increasing the respec-
tive ?-assignments. Then let A" be the result; we then form =7, A" B

{iv) If the last rule is (&): from A, C and —B, C infer+A & B, C, then we have
approximants —A', €' and —B', C"; by increasing the ?-assignments in €' and ",
we get C" and —A' & B', C" is still provable.

(v) We have gone through the main steps: The rule (D?) would involve a 7,
and the rule (W?) a 9, (which we have excluded, so a 7,, too).

The crucial fact that one can always replace 7, by 7,, when n <_m is more or less
immediate. In a similar way, !,, can be replaced by !, when n<m. [

6. Work in progress: slices

There are several directions of work in progress, ¢.g., the theory of totality (solved
by saying that an element of a coherent space X is total with the phase p), which
have not reached maturity and which have therefore been omitted from this paper,
which is already a bit long. However, the presentation of slices has been finally
decided, for two reasons: _

(i) this is the only immediate approach we know to the boring standardization
theorem;
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- (ii) it presents the absolute limit for a parallelization of the syntax, i.e., the
removal of all boxes but !-ones.
The present stage of the theory is a list of definitions with no theorem .. ..

6.1. Definition. A slice is a proof-structure making use of (1) all links and axioms
already introduced, (2) !-boxes (the contents of such boxes are sets of slices all
ending with ?B, A), and (3) unary rules:

A A B

1
/\a.AA’ A&B8%  Aam

2&.

6.2. Definition. The slicing of a proof-net 8 is a nonempty set of slices with the
same conclusions as S.

(1) Slicing of a hox: the !-box built from 8 slices into the set consisting of just
one !-box; the contents of this box is the slicing of 8. Boxes as shown in Fig. 65(a)
slice into the disconnected structures of Fig. 65(b), where the B,’s are the slices of

A6

Fig. 65(a).
) ( 5)
Fig. 63(b).

B. A box of the type shown in Fig. 66(a) slices into the structures of Fig. 66(b),
where the 8.’s and B)’s are the respective slices of 8 and B'. Finally, a box as in

7 7D o d
( 8, ( 8"} r.;i\) {r g
A W t . j
C-A C~B Co—A C—B
—_— 1k - 28&
'— C — A &B A&B A&B
Fig. 66(a). Fig. 66(b).

Fig. 67(a) slices into the structures of Fig. 67(b) where the 8,’s are the slices of B.
An axiom LT—CJ (seen as a box) slices into the disconnected structure T C,
(2) If B is a proof-net built from boxes B,,...,B, by means of links, say

B(B,,...,B,), then the slices of B are all B(8%, ..., 8%) for all slices B, ..., Bk

of By,...,B, respectively,
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f —
{ Bi \
\ !
c—a
E‘.'ﬂa-A“‘"" Aa.A
Fig. 67({a)}. . Fig. 67(h).

6.3. Remarks. (i) The slicing is the ‘development’ of a proof-net by ‘distributivity’.
Each slice is in itself logically incorrect, but it is expected that the total family of
slices has a logical meaning. However, there is no characterization of sets of slices
which are the slices of a proof-net. Moreover, we do not even know whether or not
identifying proof-nets with the same slices could lead to logical atrocitics; for
instance, is it possible to define the coherent semantics of a set of slices?

~ (ii) The slicing does not work for !-boxes; this is because the modalities ! and
7 are the only nonlinear operations of linear logic. However, if we were working
with ! as an infinite tensorization ¢J1 & A, then it would be possible to slice, but
we would get a nondenumerable family of slices! A more reasonable approach
would be to make finite developments based on 14 =(1& A)®!A so that we never
go to the ultimate, nondenumerable slicing, but generate it continuously. This idea
is of interest because it could serve, without changing anything essential to PNZ,
for expressing nonterminating processes.

(iii) We shall now try to define the normalization procedure on the slices directly;
however, the rule (T-CC), which involves the erasing of a ghost-box, is difficult to
handle in those terms and this rule is therefore not considered in what we are doing.
Strictly speaking, we shall get a proof of standardization without this rule, but there
is so little to add to take care of this rule.... The fact that we are forced to make
‘bricolage’ on such details is an illustration of the difficulties that arise from the
absence of a real understanding of slices.

6.4. Definition (contraction of a slice). A slice B contracts into a set B’ of slices
(very often consisting of one slice) as follows:
(1) (A): Axiom-contraction, like (AC).
(2) (1&/1@®): Replace a configuration as in Fig. 68(a) by the one in Fig. 68(b).
(3) (2&/2®): Symmetric to (2).

1 |
A Al ; ‘
_— 1% ——1e
A& B AJ— » sl A Al
CUT cuT
(a) {b)

Fig. 68.
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(4} (1&/2@): If in B a configuration occurs as in Fig. 69, then B contr {} (the void
set of slices).

(5) (2&/1®): Symmetric to (4).
(6) (®/ ): As (®/-SC).
(7) (1/L) a configuration

1

L
CUT (no premises above 1 or L)

in B is simply cancelled.

cuT
Fig. 70.

(8) (!/ W?) a configuration as in Fig. 70 (no premise above ?C) is replaced by

?B.
T

(9) (Y/DM): If B contains the configuration as in Fig. 71(a) and X is made of
slices 3; (with conclusions ?B, A), then 3 contracts to the set made of the slices in
Fig. 71(b).

¥ e

X C-l { Bj Ij 4
B —1C ?l_m l"—’_? —C el
t e ' cwor

{a) (b)
Fig. 71.

(10) (I/C7): As (!/C'?—SC)_
(11) (A/V): If in B occurs

i i
Ala]  A*[B]
Aa A VaA*

CUT ’
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then one contracts it by replacing a by B everywhere, and then by replacing the
pattern by the cut

1 i
A[B]  A‘[B]
cur

(12) (!): Adaptation of (1-CC) to slices, details omitted.

6.5. Remark (Church- Rosser property). Using Definition 6.4, one gets a notion of
reduction for sets of slices. This concept is Church-Rosser, as one can easily check.

6.6. Remark (standardization property). If, in the definition of contraction, we
restrict cases (3) and (4) to the case where 8 cannot be normalized further, and
case (R) to the case where the elements of X cannot be normalized further, we
obtain the notion of standard contraction from which we derive the notion of
standard reduction. The standardization property says that if a set of slices has a
standard normalization into a set of slices which cannot be normalized further, then
all normalization sequences starting from it are finite. This is easy to prove from
the Church-Rosser property and the fact that the erasure is well-controlled in the
standard case.

6.7. Remark (standardization of proof-nets). If B =/ B', then sl{g8) =/s1(8’), where
sl(.) stands for the slicing (provided (T-CC) has not been used). This lies in the
fact that the commutation rules (&-CC), ( -CC), ( L-CC), ( W?-CC) do nothing on
the slicings. Now, this fact can easily be used to transfer standardization to proof-nets.
One must work a little more to consider (T-CC) but there are no real problems.

V. Two years of linear logic: selection from the garbage collector

This short historical note is here to explain the successive states of linear logic
and, in particular, to mention possibilities that have been discarded for reasons that
may seem excessive to further researchers.

V.1. The first glimpses

Linear logic first appeared after the author had been challenged by Berry and
Curien to extend the coherent semantics (at that time: qualitative semantics) to the
sum of types, their claim being that it was necessary to reintroduce complications
that are typical for Scott domains. The answer is reproduced in an appendix of [4],
and (except for the notations which are absent), one can recognize (semantically)
the decomposition of the type A=>B as !A — Band Av B as 'A@!B. Incidentally,
the answer was found because of the insistence on interpreting all known rules for
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type sum, including so-called ‘commutative rules’; commutative rules wete inter-
preted by remarking that eliminations were linear in their main premise and so, it
was sufficient to ‘linearize’ the treatment of the sum. By the way, observe that the
claim that ‘eliminations are linear’ sound deliciously obsolete now since, by the
existence of the involutive mil, there 1s no real distinetion between introduction and
elimination!

V.2. The quantitative attempt

After this isolated remark, nothing happened before October 1985; the subject
came back to life during a working session in Torino. At that moment, the quantitative
semantics was considered by the author as more promising because more weird.
The quantitative semantics was showing the decomposition in a very conspicuous
way, e.g., A= B=Int(A).B, suggesting to consider separately Int and ., i.e., ‘of
course’ and ‘entails’. The decompositions in the case of qualitative domains (coherent
spaces) were less obvious.

The first formalism for linear logic was therefore a [unctional language essentially
based on —, !, @, @, and second-order quantification, in which it was possible to
make arbitrary sums (superpositions} of terms of the same type and in particular
the void sum 0 of any type. Commutation rules of the sum with formation schemes
expressed the linearity of everything but l-introduction and terms could be normal-
ized as sums of primitive ones. This decomposition in sum has been given up when
moving to the coherent semantics, though it was a very nice feature of the calculus.
In particular, it was possible to decompose a term ¢ as &,+¢,, with £, the normal
part of ¢, t, the part still to be executed. Also, at that time, it was possible to write
an equation of the style !A=1+ A.'A and to treat normalization as a process of
Taylor expansion (this formula being reminiscent of f(dx) = f{(0)+dx.f'(0), some-
thing like that . ..). This approach had the clear advantage of making the execution
of a program never end, except in trivial cases, and this is an aspect of parallelism
that has been (perhaps temporarily) lost in the formalism we have chosen in this
reference version. This approach was given up because of the lack of any logical
justification, 1.¢., because it was not a proof-system. For instance, the system was
not making any difference between @ and &, or accepted void terms. The coherent
semantics was then introduced more and more seriously, and the logical approach
became more prominent.

V.3. The intuitionistic attempt

As the logical framework was clarifying itself, the formulation remained strictly
intuitionistic; at that moment I made attempts (with Mascari) to work out an
implementation of linear sequent calculus; although the formalism was intuitionistic,
the communication between sequents stayed furiously symmetric. From this moment
on (January 1986), the following things appeared:

- the well-hidden connectives nil, par, why-not;
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- the coherent semantics (restriction to binary qualitative domains to get an involu-
tive negation) in its definite version,
- the first attempt for proof-nets.

If there are features of the quantitative attempt that we mourn, then the giving
up of the intuitionistic framework is apparently completely positive. The only
inconvenience is the abandonment of the functional notation which is so easy to
understand; but, ‘il faut souffrir pour étre belle’.

V.4. Recent developments

One of the most irritating questions was the question of totality: in two words,
not every element of a coherent space is noble, e.g., most of the time, we like to
exclude the empty set from the possible semantics of our terms. For this we have
to speak of total elements, which look like the potential proofs of their type; in [5],
the situation has been clarified, but in an intuitionistic framework. The newly
discovered ‘classical’ features of linear logic made it very complicated because one
would have necessarily arrived at something like: ‘given two types which are linear
negations of one another, one of the types is empty (nothing total) while the other
is full {everything is total)’. The solution found in April ‘86 was ‘totality with phases’
and led to the Tarskian semantics of phases of August ’86. Before the phase semantics,
several others were tried, without complete success, and, for instance, a functional
interpretation of the classical case within the intuitionistic one (with the advantage
of getting rid of problems of totality) was worked out and then dumped.

Another difficult question was the way to formulate proofs: sequent calculus was
appropriate, but since there is no nice normalization in sequent calculus, we got
into trouble. This is the reason why, before July '86, when the fundamental results
on proof-nets were obtained, the following interesting solution was considered:
compute directly with the semantics. The only thing one has to be sure of is that
the objects we look for are finite enough and this offers no essential difficulty. Even
now, this approach retains part of its attraction.

A rule was under discussion for a while, namely the rule of MIX, which can be
formulated as

HA t-B
HA B

The rule says that C® D — C %% D, which seems natural, and can be derived from
1 — 1 ® 1. Its adjunction would not change linear logic too much, however, there
was a negative feeling about the rule, essentially the idea that - A, B means that A
and B do communicate, The situation was clarified after the phase semantics
appeared: semantically speaking, MIX is the requirement that L is closed under
product. There is no clear reason to require this (without requiring 1€ 1, which
would be a bit too much) and MIX is now no longer under serious discussion. One
of the arguments for MIX is that, without it, the type of communication considered
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in proof-nets is very totalitarian: everything communicates with everything, while
MIX could accept more liberal solutions, typically two non-interconnected proof-
nets etc. However, what we said is true as long as L is not used in proof-nets since
it is only for formal reasons that L can communicate upwards. In particular, two
separate proof-nets  and 8’ can be put together by using L, the only price to pay
being that another conclusion (1 (0 1) has been added.

But what has been under discussion most and has still not been clarified is the
exact formalism for ! (and 7). The question is of great interest because behind it,
the implementation of beta-conversion lies; we devote the rest of this note to give
a panorama of the main lines that have been considered.

V.5. The exponentials

Already in the well-known case of lambda-calculus, there are two traditions:

- the tradition of identifying the variables, which comes from beta-conversion, when

we substitute u for all occurrences of x;

- the tradition coming from the implementation, which tries to repress or control
substitution.

The first tradition rests on safe logical grounds, whereas the second one is a kind

of bricolage with hazardous justifications.

In the first tradition, a term ([ x, y] will by identification yield the term [ x, x]
which would have also resulted from the consideration of [y, x]. This is why the
modelling of beta-conversion uses spaces of finite coherent sets {which can be seen
in the definition of !X'): we use 4 space of repetitions, but we make identifications
between (x, y} and (y, x). After many hesitations, we have eventually chosen this
definition, but it is far from being perfect:

(1) Nowhere has it been said that we should model the implicative types by plain
graphs (which is done with this solution). On the other hand, modelling more subtle
distinctions (for instance, distinguishing between the function coming from t[x, y]
and the one coming from [y, x]) would give a more serious basis to the second
tradition.

(2) The consideration of the space of sets has a bad consequence on the formal
behaviour of our semantics: functorially speaking, we lose preservation of kernels,
which seems to indicate that a theoretical mistake has been made.

Besides the variant retained in this reference paper, several others have been
comsidered to remedy criticisms (1) and (2):

(i) As long as linear logic was resting on quantitative ideas, the principle
(inspired on the way Krivine handled beta-conversion by restricting substitution to
headvariables, and on the fact that a term is linear in its headvariable) suggested
to use a linear ‘first-order development’, based on the identification between !4 and
1+ A!A. The operations of identification could be seen as formal derivation or
formal primitive. The interest of this approach was to propose, at the theoretical
level, to replace brutal beta-conversion by iterated linear conversions.
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(i) When the quantitative approach turned out to be insufficient, the author
tried to preserve this idea by means of !A~ 1 & A® !|A. Unfortunately, this principle
is not enough to justify contraction, even if written in a form inspired on inductive
definitions (projective definitions). From this attempt a variant remained, due to
Lafont, where !A was defined as a projective definition, and satisfies 'A~
1& A&(!A®!A). This idea can be modelled in terms of coherent spaces and leads
to considering certain trees instead of sets.

(ii) Another possibility seriously considered is the infinitary approach: 'A =
&(1& A), the tensorization being made on @ copies. Here we get quite a nice
theory, but we have to take care of the heavy apparatus of infinite proof-nets. For
implementation we also have to restore a finitary calculus, i.e., to do some bricolage
again. Here the semantics involves finite sequences with holes, e.g., (x,, X3, x;).

The last two variants model what we have called the second tradition; i.e., they
model strategies of progressive substitutions. Also, they are free from the defect we
have mentioned w.r.t. kernels. However,

(3) -the isomorphism (A & B)~!A®!B is no longer valid (it would be valid if
we were considering multisets instead of sets);

(4) both variants do not succeed in catching the idea of first-order development.
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