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Abstract

�
Oui, c’est imbécile ce que je dis ! Seulement je ne sais pas comment concilier tout ça.

Il est sûr que je ne me sens libre que parce que j’ai fait mes classes et que je ne sors de la
fugue que parce que je la sais. �
Claude-Achille Debussy
Entretiens avec Ernest Guiraud, ∼ 1890.

This paper is the first of a new series : ten years ago I wrote [15], a programmative paper
that launched the program of Geometry of Interaction. This program has now found its
natural limits, i.e. it must be technically and methodologically revisited because of recent
progress —e.g. the localization of time in logic and the development of what is known as
Game Semantics. This paper expresses more a maturation than a revision of the old pro-
gram.
Traditionally syntax and semantics live in completely distinct worlds, one finite and acces-
sible, the other infinite and abstract. However, the spirit of game interpretation is quite
different, since proofs and refutations (tests) are represented by players which are homoge-
neous in nature. Therefore the old dualism is replaced with a monism. . . and we are led to

consider the opposition between syntax and semantics as an obsolete legacy of the XIXth

century : in particular the traditional logical issues of logic —completeness and soundness—
should be completely revisited.
The question at stake is the question of meaning, and meaning means meaning, not a substi-
tute like use or interpretation. My thesis is that the meaning of logical rules is to be found
in the well-hidden geometrical structure of the rules themselves : typically, negation should
not be interpreted by

�
NO � , but by the exchange between Player and Opponent.

This opens a a new field of discussion : Gödel’s theorem forbids in principle any internal
justification, and Tarski’s explanation of truth presupposes a meta-world in which the prin-
ciples of logic already make sense. . . i.e. the educated tradition backs a transcendental view
of logic. But when we approach the evading meaning of operations, we discover certain
internal harmonies of logic which can be seen as a plea for a sort of immanentism more in

∗. The main technical novelty behind this paper, i.e. the localization of time in logic was found during my
stay in the Certosa of Pontignano, Siena, March-April 1997, a stay partly founded by the group G.N.S.A.G.A.
of the Italian Consiglio Nazionale delle Ricerche ; I am especially grateful to Aldo Ursini who invited me.
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the spirit of usual mathematics. In other terms Gödel’s theorem is not the end of any foun-
dational reflection about logic : we should only replace a theory of the why with a theory of
the how.
Another way to present the program is to seek a convincing explanation of the most myste-
rious discovery of Gentzen, the subformula property, see Annex B, which is a purely internal
completeness result (in the original sense of

�
Nothing is missing � ). And —by the way—

we could say that we interpret Gentzen by Gentzen since the game interpretation also orig-
inates in Gentzen’s work. . . The answer (see [19] for precise details) is a universal game, in
which only certain kinds of strategies, called designs are considered. Logic comes in when
a player decides (in accordance with his opponent) to limit his designs, i.e. to behave in a
certain way : logical formulas are therefore interpreted by behaviors —a behavior being a
set of designs equal to its biorthogonal.
A last point : the text is by no means a philosophical discussion, not to speak of the scientific
implementation of a philosophical viewpoint in the style of —say— Engels’s Dialektik der
Natur. . . It is has been a long time since philosophy has stopped interacting with logic, and
our approximate use of a few philosophical concepts can only be metaphorical.

1 The old boulevard

Syntax is about language and semantics (from ση̃µα, sign) is about the interpretation of
signs, an activity that includes

1. Divination from the bowels of animals, astrology, chiromancy, etc.

2. The job of translation :
�

Traduttore traditore � .

3. The search for meaning, which can be a mere illusion and is therefore likely to degenerate
into item 1.

Technically speaking we are given on one hand a formal language (syntax) including formal
rules (and axioms, which are rules without premises) enabling us to derive distinguished
formulas, called theorems ; on the other hand, we are given a class of algebraic structures
(semantics) including distinguished value(s), called truth(s). Syntax is interpreted in the
semantics, with two desirable properties :

I Soundness : theorems are interpreted by truths

I Completeness : a formula whose interpretation is always a truth is a theorem.

The ite missa est of many papers reads like : A is provable in L iff A is true in any model of L.
The archetype is classical propositional logic (syntax) interpreted in the Boolean algebra F2,
the only truth being the value 1. Should it be the only case, we would presumably not write
this paper. . . the problem is that we have many 1 reasons to depart from classical logic, and
that the alternative rules have always been justified by a completeness/soundness argument
w.r.t. some class of structure. A real problem of meaning, in the sense of understanding
what we are doing, mathematically, philosophically, sociologically etc. is posed : the implicit
answer coming from the methodology of completeness/soundness is :

�
The meaning of logical rules is to be found in preservation of truth. �

1. Too many indeed : only some of these reasons are good, but we don’t know which ones.
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The opposition proof/truth therefore organizes logic along one of those boulevards (form vs.
contents, observation vs. world, soul vs. body, ideas 2 vs. matter etc.) so typical of Western

thought up to the beginning of the XXth century.

The development of physics in the XXth century indeed took another direction :

1. Without contradicting in principle the deterministic paradigm à la Laplace, the theory
of chaos denies any actual possibility of predicting —say— the output of the roulette.

2. The theory of relativity refuses the objectivity of some fundamental intuitions, such as
time : time is now the quantification of causality w.r.t. some observer.

3. Quantum physics expels us from a paradise in which we can separate the observer from
the phenomenon. . . without replacing it by a clear alternative.

The situation in logic is quite different ; the old boulevard is still there, although it lost part
of its pregnancy :

1. Without questioning the objectivity of mathematical truth, incompleteness denies the
actual possibility of mechanically solving —say— a well-chosen diophantine equation.

2. Intuitionism places the subject 3 at the center of mathematical activity : a proof of an
existential statement ∃nφ[n] should induce an algorithm enabling us to extract an actual
witness n.

3. The experience of (what is usually called) game semantics and/or linear logic suggests
an even more radical departure from the familiar paradigm. . . which is the very point of
this paper.

Our working hypothesis is that the emergence of new logical artefacts must induce a change
of viewpoint 4. I don’t claim to achieve this here and if some of my propositions contradict
one another, it might be ascribed to the peculiar period we are living : we have enough
knowledge to depart from the old world but we don’t yet know enough to produce a well-
organized alternative. . . or maybe the situation is similar to that of quantum physics, i.e.
the new world, although the right one, is definitely less comfortable than its predecessor.
Since we started this introduction with the alleged motto of the tradition, let us propose
a motto for the alleged new wave. Our claim is that the opposition syntax/semantics has
lost its pregnancy : in particular we shall carefully distinguish between several uses of the
expression

�
semantics � , which are far to correspond to the search for meaning : we shall

conclude that, as we proceed towards the intimate meaning of logical operations, we are led
to give up traditional semantics in favor of something which is closer to syntax. What we
sum up in the provocative statement :

�
The meaning of logical rules is to be found in the rules themselves. �

The problem will be to justify this motto, more precisely to justify it on non-trivial grounds,
since this can be interpreted as a gesticulation, see below. Here we should perhaps think
of traditional syllogistic which was essentially concerned with itself : the explanation of
the figures (e.g. BARBARA, DISAMIS etc.) by their inner interactions is indeed the best
explanation we can give of the meaning of these rules 5.

2. Even energy vs. matter, see e.g. Lenin’s Materialism and Empiriocriticism, 1908.
3. Brouwer used the expression

�
Creative Subject � .

4. To be also read as ideology : the interest for consistency proofs, predicative correctness, etc., is a purely
ideological expression of the old paradigm ; a new paradigm needs a new ideology.
5. See the work of Abrusci, [2], relating syllogisms and non-commutative proof-nets, to convince one that
there was something in the tradition.
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2 The semantics of � semantics �

Behind the expression semantics, we distinguished divination, translation and perhaps mean-
ing, which have their technical analogues :

2.1 Gesticulation

This is what happens when one produce a semantics just for the sake of producing a se-
mantics. For a long time this was a trade mark of so-called philosophical logic : somebody
produces a new operation, say ♦ (read as Broccoli) with some axiom, carefully chosen to be
original, i.e. of no interest, say (A♦B)⇒ ((A♦A)♦B), the Broccoli axiom, and then proves
completeness and soundness w.r.t. all structures equipped with an operation ♥ enjoying
a♥b 6 (a♥a)♥b 6. Some parts of theoretical computer science have produced the absolute
masterpieces of the trade, which —after all— have a paradoxical value : we can conclude
from the semantics that the syntax under modelization is bullshit 7.
Gesticulation is surely not the major trend of semantics, but it has a certain importance,
since aborted attempts at the search for meaning may end into gesticulation. In this respect,
it will be our main enemy —prior to Tarskism, which is nothing but educated conservatism.

2.2 Treason

By this we mean the interpretation of logic in a model, preferably not the intended one :
these devious interpretations are the very salt of model theory, and there is nothing to object
to this noble activity. . . Semantics becomes a successful tool ; we can only object that this
attitude is explicitly opposite to the search of meaning.

2.3 Tarskism

So when does semantics give meaning to rules ? Frege warned us —long time ago— that one
must distinguish Sinn (meaning) from Bedeutung (denotation, i.e. standard semantics) : if
t = u, then the two terms have the same interpretation, but we state this equality because
t and u have different meanings, nobody being interested in t = t.
However there is a popular prejudice saying that there is something in Tarski’s notion of
truth : meaning might be located in the standard (i.e. not a devious one as above) inter-
pretation, and we are back to the starting motto. Let us look at it : A ∧B is true when A
is true and B is true, ¬A is true when A is not true. . . and in the same spirit A♦B is true
when A is true Broccoli B is true if Broccoli happens to make sense to us. Truth therefore
commutes to all operations, i.e. the truth of A is expressed by A. To understand what is
wrong here, let’s have a look at a neighboring area : there might still be linguists which
explain the French sentence

�
Guillaume est étudiant � by means of somebody called Bill,

which happens to be a student. . . what a brilliant idea 8.
In fact the notion of truth à la Tarski 9 avoids complete triviality by the use of the magical ex-

6. Hint : interpret A,B,♦,⇒ by a, b,♥,6.
7. This is not a gratuitous joke : certain

�
logics � (non-monotonic, fuzzy, leap year, etc.) cannot be

submitted to this minimal test for want of a decent syntax, i.e. of any deductive system. . . like a car
without engine cannot fail a crash test. Paralogicians solves the problem of adequation between syntax and
semantics by calling the semantics

�
syntax � , whereas our gesticulators stay within reasonable bounds

when they call the syntax
�

semantics � .
8. Treason is more interesting, e.g. interpret

�
étudiant � by

�
Taliban � .

9. Foreshadowed by the notion of
�

vérité de La Palisse � , whose prototype is
�

Un quart d’heure avant
sa mort il était encore en vie � .
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pression
�

meta � : we presuppose the existence of a meta-world, in which logical operations
already make sense ; the world of discourse can therefore be interpreted in the meta-world,
typically the truth of A becomes

�
meta-A � , and we can in turn explain

�
meta-A � by

�
meta-meta-A � . . . This is close to popular parapsychological explanations (e.g. in the

movie
�

2001 � , where monkeys —us— have been educated by a galactical civilization) :
the apparition of intelligence is explained by means of a meta-intelligence. . . QED. We are
facing a transcendental explanation of logic

�
The rules of logic have been given to us by

Tarski, which in turn got them from Mr. Metatarski � , something like
�

Physical particles
act in this way because they must obey the laws of physics � .
The abuse of the expression

�
meta � has completely distorted the relation of logicians to

their own field. . . What to think of (educated) logicians who speak of
�

truth in the stan-
dard model � instead of plain truth (analyse the expression

�
standard � ) or

�
intuitive

integers � to mean plain integers. . . not to speak of this habit of concluding a completely
trivial construction by

�
But you know, it is meta � , the universally accepted excuse for the

want of idea. We do not want to question the technical value of the distinction expressed
by

�
meta � , which is useful. . . but only its depth 10 : if everything useful were important,

then we would spend our life speaking of soap and other hygienic artefacts.

3 Syntax

3.1 Against realism

If the truth analysis of A hardly says anything beyond A, this suggests that the truth of
A does not make sense, being nothing more than a paraphrases of A. On the other hand,
the syntactical properties of A —in particular the conditions under which A may or may
not be derived— form a highly non-trivial interpretation for A. In fact everything is there,
including classical models : a model of ¬A is nothing but a branch in a fair proof-search
tree for A. It is therefore legitimate, both technically and

�
philosophically � to say that

everything is located in syntax, i.e. that the ultimate interpretation is syntactical : after
all, whatever we do in mathematics, whatever are our fantasies when finding our way, we
end with the production of signs that can —in principle— be reduced to pure syntax.

3.2 Consistency

The first person to realize this was Hilbert : his formalist explanation of logic only cares for
consistency, i.e. the fact that the system will never collapse. This is a worthwhile effort in
the direction of an immanent approach to logic : logical rules must be understood in terms
of their inner harmony.
The traditional opposition between transcendence and immanence reads as follows in logic :

1. The fact that we must go outside a system to speak of this system (common sense 11

backed by Gödel’s incompleteness theorem, 1931) is the irreducible transcendental part,
the notorious

�
meta � , a sort of Pascal’s bet.

2. The fact that the laws of logic cannot be arbitrarily imposed from outside, i.e. that God
himself cannot tamper with logic : one should develop criterions enabling us to judge
logic from its internal structure.

10. See annex B.3 to see how the notion of truth etc. can be technically exploited.
11. Something like

�
A hyperopic cannot fix his own glasses � .
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The situation is indeed extremely intricate. In spite of its spectacular appeal, the limitation
expressed by Gödel’s theorem is not that deep, since we cannot anyway imagine a justifica-
tion ex nihilo 12. The real problem is with the criterions that we use to test our principles, for
instance who told us that consistency is important, who is the judge of internal harmony ?
Either you say

�
God � or

�
It shows ! � , and I do think that the second explanation is the

only possible one, in spite of its obvious limitations.
There is yet another problem, not to be confused with the limitations coming from incom-
pleteness. We basically propose an interactive 13 vision of logic. As we shall see, the notion
of interaction between a strategy for A and a strategy for its negation seems more basic
than the truth of A. . . but how can we explain the fact that we eventually seek theorems
about games, whose main property is to be true ? Basta cos̀ı, that’s enough with pure
methodology : any further discussion would either be technically circular, or enter into a
classical philosophical debate —and we prefer not to argue with Mr. Hegel.

3.3 The great fear

The failure of Hilbert’s program (Gödel’s incompleteness theorem, 1931) expresses the in-
herent difficulty of his formalism : the consistency of L requires

�
more � than L. My

position on this kind of issue has just been explained : let us concentrate on the internal
structure of logic and ignore the aspect

�
meta � , i.e. that we must go outside L to speak

about L : for 70 years people have been obsessed by this question, and nothing came out of
it. . . By the way, science also progresses by deciding that questions on which no progress is
made are of no interest 14.
Let me develop this point : the obsession of (impossible) foundations is typical of logic. To
ascribe it to the very nature of the logical activity is incorrect : similar questions occur in
physics, e.g.

�
What happened before the origin � , with a simple alternative, either invoke

some ersatz of God, or ignore the question. . . and physicists obviously favor the latter solu-
tion, since astrophysics does progress. The real answer might be psychological, people with
foundational anguish choosing rather logic than astrophysics : certain obsolete predications

�
We protect you against lurking contradictions � still find enough zelators ; on the other

hand we live on a sort of wandering body with a ball of fire in its center, but nobody would
buy an insurance against the explosion of Earth.

3.4 Algebraic completeness

The internal value of consistency is almost empty, think of all those consistent axioms which
define (by completeness) algebraic structures that, hopefully, nobody will ever use : internal
harmony of an axiomatic cannot be reduced to the existence of a model 15. If we now
remember that consistency comes

�
from outside � , Hilbert’s idea turns into a plea for

transcendence.
. . . Unless we replace consistency with something richer. The obvious candidate for an
inner interpretation is to interpret A by the set A• of those hypotheses B which entail

12. Except in poetry, see Igitur where Mallarmé imagined a self-creation from emptiness ending into an
ultimate throw of the dice, abolishing chance :

�
Vous mathématiciens expirâtes � .

13. The right word should be dialectic, but it has been so heavily prostituted that we simply avoid it !
14. Most people —including smart guys, remember Kepler— believe in the influence of stars, but science
gave up for want of any tangible progress.
15. An example of harmony taken from algebra is associativity : even Lie algebras have their form of
association, the Jacobi identity.
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it 16. The idea passes successfully the test of classical completeness 17, the sets A• forming
a Boolean algebra : if we quotient this algebra by an ultrafilter, we are back to the usual
F2-interpretation, which is considered as technically more interesting 18, but if we do not
quotient, completeness is obtained w.r.t. a single well-chosen model. But as it is, without the
quotient, it also works for many other logical systems, yielding Kripke models or topological
models for intuitionistic logic, phase semantics 19 for linear logic. . . Are we approaching the
evading meaning of logical operations, or are we developing a new kind of gesticulation ?
The answer is so and so. . .
Indeed if I take logic L, I can usually define a notion of L-model : then the set of all A• can
be equipped with a structure of L-model, the free L-model,

�
free � being one way to state

completeness w.r.t. this peculiar structure. This applies to the logic of Broccoli, based on
the Broccoli axiom, and we can therefore construct the free Broccolo with its tautological
completeness, a shame !
Wait a minute ! Who decided that completeness is so important ? It might again be one of
those misconceptions 20 of (educated) logicians, and by the way it is. The theorem is seldom
used, i.e. it hardly happens that we are given a theory, that we prove its consistency and
then conclude that we have a model. . . It goes the other way around, we have the model, and
it validates our syntax, i.e. we use soundness. Does this mean that completeness is useless ?
Not quite, since it ensures that, in order to perform our favorite activity —treason—, we can
stay inside L-models. The fact that the peculiar L-model used in completeness is an ad hoc
free structure becomes less dramatic, since it is not the guy that we shall start with. From
this remark we once for all (esp. in the program to be developed in section 5) seek trivial
completeness results, non-trivial completeness being bad taste ; but we are also faced with
the paradox that it might be highly non-trivial to discover which kind of structure might
naturally (see below) harbor the trivial free L-model 21.
Indeed soundness is difficult to satisfy, at least on non-contrived grounds. To understand this
point, take phase semantics, see annex C : the data are a commutative monoid M together
with an arbitrary set ⊥ ⊂ M , and completeness is achieved by means of the monoid M of
contexts, ⊥ being the set of those contexts which are provable in linear logic ; this is an
unbelievably complex set, see [24], already NP-complete in the multiplicative case (result
of Kanovitch). But an arbitrary pair (M,⊥) validates the laws of linear logic, and the
situation is as follows : a simple and natural class in which we can find a completely ad
hoc universal element 22. If we are now unhappy with linear logic and want to add some
principle, then the same pattern will still hold, with the essential difference that we shall be
forced to require that this additional principle holds in our semantical spaces. . . and we can
see in annex C.4 that additional principles may behave well or behave bad, witness the fate
of the unfortunate Broccoli axiom : in other terms the algebraic semantics, which interprets
logic in terms of its provability is not that lax. Here, a simple criterion —whether or not
a property of atomic facts x⊥⊥ transfers to arbitrary facts— separates the wheat from the
tares.
To come back to linear logic, the surprising thing is that its logical rules can be justified from

16. In sequent calculus, see Annex B, A• is the set of all contexts Γ such that − Γ, A is provable.
17. Whatever might be its limitations, classical logic remains The Logic, just as the catholic church remains
The Church.
18. Although the point in Paul Cohen’s forcing is precisely to

�
delay � this quotienting.

19. See annex C for basic definitions and properties.
20. When using this word, it is impossible not to think of Kreisel’s

�
current misconceptions � .

21. Remember the Pierre Ménard of Borges, who becomes the author of the Quichotte as the result of a
non-trivial reconstruction.
22. By the way this is a genuine example of what our grandfathers —e.g. Poincaré— used to call impred-
icativity, which consists in defining something in terms of a set to which it belongs : provability defines a
complex structure belonging to a set with a simple definition.
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a very natural structure, a commutative monoid. We could however argue that somewhere we
enforced commutativity and associativity by our choice. . . in fact nobody would seriously
question associativity, but commutativity can and must be questioned. And again, our

�
immanentism � is comforted by what happens : if we take a general (non-commutative)

M and an arbitrary ⊥, then we get a mess, in which we eventually lose. . . associativity of
the logical conjunction, see F.1. Now, if we require cyclicity, i.e. xy ∈ ⊥ ⇒ yx ∈ ⊥, we
get a very natural system, expounded as cyclic linear logic by Yetter [28]. The fact that
cyclicity is natural should be obvious to persons with a basic mathematical culture, think
of Tr(uv) = Tr(vu).
Concretely the point behind the

�
naturality � of soundness is that one should be able to

produce models in a fluent way : this is one of the key differences with gesticulation. And
this is why phase semantics has often been useful to prove complexity results about logic,
since it is easy to convert an abstract machine into a phase model, see e.g. the work of Yves
Lafont, [22].

4 The monist duality

4.1 Proofs and tests

The immanent justice of Annex C.4 that fired Broccoli is important, i.e. we are now sure
that if Mr. Metatarski had been crazy and had accepted —say the Broccoli axiom— as a
�

fundamental intuition � of the (meta-) universe, we would have detected the bug, in spite
of preservation of truth. This means that our motto can be given a non-trivial sense, but
we hardly got more.
Now, when we examine the (trivial) completeness argument, we see that what plays the
essential part is orthogonality :

Γ ⊥ ∆ ⇔ − Γ,∆ is provable

Formulas interact through provability, and this gives rise to a complete interpretation. How-
ever, the algorithmic contents of cut-elimination favors the notion of proof, for instance,
Booleans are represented by means of A ∨ B (or A ⊕ B), with exactly two cut-free proofs,
see Annex B : but although orthogonality based on provability can distinguish this formula
from many other ones, it will never separate its two proofs. We need a (separating) duality
involving proofs, see Annex A.3, and we shall start with a duality between proofs and tests.
We now explain the notion of proof by means of the notion of test : for this we revisit the
semantics of proofs developed around 1930 by Heyting and Kolmogoroff :

1. According to Heyting, a proof π of the conjunction A ∧B consists in the data of a proof
π1 of A and a proof π2 of B. If I want to test π = (π1, π2), a would-be proof of A ∧ B,
I need to test both components : if π passes all tests, those on A as well as those on B,
then π is a proof of the conjunction. We conclude that a test for A∧B is a test for A or
a test for B. Observe the ESSENTIAL point that the notion of test is subtler than the
classical notion of refutation (counter-model) : a countermodel refutes A or B, i.e. may
refute both, whereas the test attacks A (left) or B (right), but not both of them. . . In
particular a test for A∧A is a pair (τ, i), where τ is a test for A to be applied against π1

if i = 1, against π2 if i = 2.

2. This must be related to Heyting’s semantics of proofs of the disjunction : a proof of A∨B
is a pair (π, i) with either i = 1 and π is a proof of A or i = 2 and π is a proof of B. If
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I want to test a would-be proof of A ∨ B, I have to prepare two tests, one in case (π, i)
pretends to be a proof of A (i = 1) one in case it pretends to be a proof of B (i = 2) : a
test for A ∨B is therefore a pair (τ1, τ2) of a test for A and a test for B : this looks like
the semantics of proofs of a conjunction.

3. Heyting’s semantics of proofs of implication says that a proof π of A ⇒ B is a function
from proofs of A to proofs of B ; a test for such a proof therefore consists in the data of
a proof π′ of A (the argument of function π) and a test for B, to check that π(π ′) is a
proof of B. We see that testing an implication is like proving a conjunction.

We can summarize our remarks by means of the (temporary) symbol At for tests on A :

(A ∧B)t = At ∨Bt (A ∨B)t = At ∧Bt (A⇒ B)t = A ∧Bt

and these formulas are reminiscent of the familiar De Morgan laws of classical logic :

¬(A ∧B) = ¬A ∨ ¬B ¬(A ∨B) = ¬A ∧ ¬B ¬(A⇒ B) = A ∧ ¬B

This analogy suggest an identification between At and ¬A, together with a duality based
on the analogy :

test for A ∼ proof of ¬A

If this works, then a test will appear as a generalized proof, a sort of
�

paraproof � . But
this means that we are now establishing a duality between homogeneous objects, what we
call a monist duality.

4.2 The symmetrization of intuitionistic logic

This approach fails in the intuitionistic case, for which is was tailored, since negation is too
badly behaved : for instance this connective is not involutive (i.e. ¬¬A is not equivalent
to A). This is not because intuitionists defined the wrong negation, this the result of a
geometrical limitation : the only meaning of negation is the symmetry around the sym-
bol − of sequent calculus, and its involutivity would mean that the left and right zones
are isomorphic. . . but on the right-hand side only one formula is allowed, whereas on the
left hand side we can use an arbitrary number of formulas, and we can therefore use the
�

structural rules � of contraction and weakening :

Γ, B,B − A
Γ, B − A

Γ − A
Γ, B − A

The rules for negation enable a formula A to transit from right to left and
�

benefit � from
structural rules under the disguise of ¬A, before coming back to right : but it is now ¬¬A,
the double negation betraying its excursion to the left. Concretely double negation enables
one to combine several attempts at proving A, typically two attempts at the excluded
middle B ∨ ¬B to prove the double negation ¬¬(B ∨ ¬B). By the way, classical logic
which symmetrically admits several formulas to the right of − (as well as the corresponding
structural rules) differs from intuitionistic logic in the dispense of the transit to left, and
therefore of the writing of the prefix ¬¬ ; its non-constructivity, i.e. the failure of the
disjunction property, see Annex B, comes from the fact that a disjunction A∨B is obtained
as a mixture of attempts to get A and to get B, an imbroglio impossible to unwind in general.
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Our identifications suggest a symmetrization of intuitionistic logic ; one formula to the left
would be too drastic, hence we must, like in classical logic, admit several formulas to the
right, i.e. sequents Γ − ∆. The danger is to rediscover boiling water, i.e. classical logic
which admits no (standard) constructive interpretation, in particular no separating duality.
But we can also consider that the restriction

�
one formula to the right � is nothing but a

hypocritical way to forbid right structural rules. . . hence we can also restore symmetry by
forbidding structural rules on both sides. The resulting symmetrized intuitionistic logic is
linear logic 23.
Linear logic is indeed an enforcement of the paradigm of semantics of proofs : a proof of an
implication is now a linear function, in a sense close to linear algebra, see Annex D. This
shift of viewpoint is a strong restriction on implication, now called linear implication, with
a new symbol A −◦ B. Linear negation, noted A⊥, is obtained by analogy with the dual
space in linear algebra, and is involutive. In analogy with linear algebra which admits two
products, linear logic admits two conjunctions, & (with, a direct sum, which corresponds to
intuitionistic conjunction) and ⊗ (times, a tensor product). Involutive negation enables one
to access, through duality, to two disjunctions :

A⊕B = (A⊥ &B⊥)⊥ A

&

B = (A⊥ ⊗B⊥)⊥

respectively called plus 24 et par. The principles A−◦A⊗A and A⊗B−◦A, which correspond
to the two structural rules are interpreted by non-linear functions (the former is quadratic,
the latter is affine) and are therefore wrong ; the connective

�
! � (of course), built in analogy

with the symmetric tensor algebra, is introduced to compensate for the want of structural
rules. Intuitionistic implication becomes a defined connective :

A⇒ B = (!A)−◦B

the original equation from which linear logic was extracted.
But let us come back to tests : linear negation A⊥ must correspond to tests on A. A test
for A & B is a test for A or a test for B, i.e. (A & B)⊥ = A⊥ ⊕ B⊥, whereas a test for
A⊗B is a linear function from A to B⊥, i.e. (A⊗B)⊥ = A⊥

&

B⊥ = A−◦B⊥, so that the
identity function from A to A is a test for A ⊗ A⊥ (see footnote 25 for its game-theoretic
interpretation). The two conjunctions are tested in a different way : in the first case only one
component is tested, whereas in the second case the two components are put into

�
contact �

by the test. There are therefore two utilizations of conjunction (and dually of disjunction),
and this diversity is legalized by the splitting of connectives. In particular there is a big
difference between the two

� ∧ � in

(A ∨B)t = At ∧Bt (A⇒ B)t = A ∧Bt

Moreover, in the first case, the test for At is here for at most a single use, whereas in the
second case, the proof of A can be used as many times as needed : linear logic would write
!A in this case, i.e. (A ⇒ B)⊥ = !A ⊗ B. These subtle points were overlooked in our
discussion of the intuitionistic case ; in fact the impossibility of staying inside intuitionism
can be attributed to the need to be careful about multiple uses of tests : this original feature
of linear logic is known as resource-sensitivity.

23. The symmetric character of linear and classical logics makes it possible to put everything to the right :
this is a significant simplification of the calculi, and it is the choice we made in Annex B.
24. Linear logic can also be modelized in Banach spaces, see [17] ; the difference between & and ⊕ is
expressed by distinct norms, `∞ and `1. Exponentials are obtained through analytic functions on the unit
ball, in particular !X is the space of kernels of the sort Cauchy integral.
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4.3 Games

But still remains the problem of the correctness of the monist duality between A et A⊥ : it
cannot be phrased proofs of A/proofs of A⊥ in the literal sense, since it is impossible that
both a formula and its negation are provable : since duality abhors a vacuum, we arrive at
the conclusion that tests cannot be reduced to plain logical proofs. To stress the essential
unity (monism) of the interpretation, we now change our expression

�
test � into paraproof,

i.e. a test for A is a paraproof of A⊥.
What could be the status of those lurking paraproofs ? Here game theory provides us with
a major intuition (what follows is not a precise technical definition, since games may differ
on many technical details, and we do not want to commit ourselves).
Two players (I sometimes called Player and II

�
Opponent � ) compete, and we shall adopt

the viewpoint of I. We can assume that both players follow strategies and if I and II play
according to respective strategies σ and τ , the result is a play στ . A play has at most one
winner, I or II. Among the strategies σ for I we can look for winning ones, i.e. those for
which στ is won by I whatever τ is played by II. This yields the following dictionary :

Rule of game = Formula
Strategy = Paraproof
Winning strategy = Proof
στ = Result of test τ applied to σ

With this interpretation, logical connectives correspond to forms of socialization of games,
i.e. possible ways to combine them and produce new games : typically linear negation is
the interchange between players I and II. If A and B are games, then A & B is played as
follows : first II chooses one of the two games A or B, then the play proceeds according to
this choice as a play in A or a play in B ; we see that a strategy for II is a strategy for A or
a strategy for B, whereas a strategy for I is a pair of strategies etc. In the cotensor A

&

B,
II will combine a strategy for A and a strategy for B, since I will be allowed to switch from
one game to the other : typically, in the case of A⊥

&

A (i.e. A−◦A), the Opponent II uses
both a strategy σ for A and a strategy τ for A⊥, (which is a Player’s strategy for A) ; then I
has an excellent strategy, which consists in playing σ against τ , by a simple import/export
of moves. . . in this way the principle A−◦ A is justified 25 : this copycat strategy based on
imitation is indeed an implementation of the identity map.
The idea is therefore very appealing ; but, as soon as we want to formalize it, we are forced
to enter into endless questions : temporality of the board —who plays first, do players
alternate, are plays finite or infinite ?—, the nature of the board —numbers, space ?—,
the nature of gain —possibility of a draw, numerical gain i.e. money ?—, the nature of
the strategies —e.g. memory-free—, to see that the question is not that simple. All extant
notions, e.g. the games of Blass [5] validate the laws of linear logic, but also other laws that
are sometimes completely unacceptable, e.g. classically wrong.

4.4 The school of Lorenzen

It is only now that one starts to realize that Lorenzen [26] had —around 1960— his own
prefiguration of this program. His school remained indeed very marginal, mainly illustrated
by his student Lorenz [25], with some tardive work by Felscher [8] in the mid 80’s ; con-
trarily to intuitionism which managed to keep a live tradition and to have some influence in

25. This amounts to play against Kasparov (with the Whites) and Karpov (with the Blacks : negation
exchanges black and white) : when Kasparov plays, I recopy his move in the play against Karpov and
vice versa. I cannot lose both plays ! With a reasonable notion of gain, this is indeed a winning strategy.
Moreover, it is a typical logical approach, i.e. it is independent from the actual rules of Chess.
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the revival of intuitionistic ideas, this school completely disappeared, so we don’t have any
feeling from the inside.
It seems that the program was connected to the idea of a dialectic interpretation of intu-
itionistic logic : cut-free proofs are seen as dialogues between a proponent which produces
right logical rules (answers) and an opponent that produces left logical rules (questions). As
we just explained, the symmetry between players is incompatible with intuitionistic logic,
hence the position was not quite comfortable ; one can also guess that Lorenzen might have
been doubly marginal, as doing intuitionism in Germany and as taking a dialectic approach
to intuitionism. Moreover the technical achievements remain modest : for instance Felscher
had not the slightest sense of compositionality of strategies, which should be central in such
an enterprise (it is the semantic content of cut-elimination). By the way Hugo Herbelin has
tried to understand Felscher’s work in non-bureaucratical terms, and individualized the use
of specific moves for ternary operations like A ∧ B ⇒ C and (A ⇒ B) ⇒ C, but not for
their 4-ary analogues : this technicality induces completely different treatments of —say—
(A ∧B) ∧ C ⇒ D and A ∧ (B ∧ C)⇒ D, i.e. produces a non-associative conjunction !
Although the technical record of the school seems rather bleak, it would be unfair not to
acknowledge the fact that Lorenzen had understood part of the picture before us ; other
parts of the same picture were hidden in the Curry-Howard isomorphism, in denotational
semantics. . . but his troup vanished before any junction could be established.

5 Methodological commitments

Our goal is therefore to develop an interpretation in the spirit of game semantics and to
prove the adequation of this interpretation w.r.t. linear logic. Technically speaking this
adequation takes, as usual, the form of a dyptic completeness/soundness, although the
spirit is very different. The idea is basically to abstract enough from syntax (getting rid of
irrelevant bureaucracy, e.g. brackets, see the discussion in [15]) so as to get a geometrical
object which is a game. We should arrive at some place in-between where the distinction
syntax/semantics vanishes.
For what follows, we assume that formulas A, proofs π, are interpreted by means of games
|A| and strategies |π|.

5.1 Full completeness

Completeness w.r.t. games should be stated as follows : if σ is a winning strategy for the
game |A|, then there is a proof π of A such that σ = |π|.
By the way Gentzen is not only responsible for sequent calculus, but also for the game
interpretation of logic. . . In his immature first consistency proof, [10, 11] of arithmetic
(1936), he interprets proofs by strategies in a game : instead of just saying that A is true,
the strategy gives an interactive way to check its truth against any opponent. It is irrelevant
to notice that in reductionist terms this

�
proof � (strictly) contains the flat justification

of the rules by their truth. . . one should only remember that Gentzen managed to give
a non-tautological —i.e. non-Tarskian— meaning to formulas : for instance there can be
several strategies for the same formula, whereas there is only one truth value. However, his
approach was far astray from a systematic and well-understood explanation of logic in terms
of games, and we have seen what happened to the school of Lorenzen.
Now if we want to be serious, the first thing is to see whether this completeness statement
is reasonable. I claim that completeness should be restricted to the case where A is a closed
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Π1 formula, see Annex A.1. I give two reasons that seem to be beyond discussion :

1. It must be technically possible to define the truth of A as the existence of a winning
strategy. Then full completeness implies ordinary completeness, hence A must be Π1.

2. Take for instance a closed Σ1 formula A. Its proofs depend on the (higher-order) logical
system under consider ; since each proof induces a winning strategy and none of these
higher-order systems can exhaust all possibilities, completeness fails. The situation is
different when A is Π1, since, by the subformula property, see Annex B, all the proofs are
�

already there � , an internal completeness.

Indeed, the subformula property only applies to cut-free proofs. Hence we end with the
following reformulation of completeness :

If A is a closed Π1 formula and σ is a winning strategy for the game |A|, then there is a
cut-free proof π of A such that σ = |π|.

5.2 Paraproofs and paralogisms

As we said, completeness must be trivial, the non-trivial efforts being concentrated on sound-
ness. This basically means that we shall try to find a very simple, natural, geometrical. . .
notion of game, and that we shall shamelessly disguise proofs as such games and get com-
pleteness without efforts. Proofs will yield winning strategies, but what about general
strategies ? They must also come from syntax. This leads to the following extraordinary
conclusion : paraproofs must be witnessed in the syntax, and there is only one way to do so,
namely to admit MISTAKES of logic. In other terms, paraproofs are just proofs in a larger
system, in which some paralogisms are admitted. But not any crazy principle will access the
dubious honor to be admitted as a paralogism : certain crucial properties must be satisfied,
namely :

1. Cut-elimination still holds.

2. Paralogisms produce
�

enough � paraproofs.

The first commitment comes from the fact that cut-elimination will play a prominent role, so
we should look for principles that preserve cut-elimination. The second condition explains
the absolute need to have some real paraproofs : after all our game interpretation will
represent the interplay between I, who tries to prove A and II, who tries to prove A⊥ ;
without paralogisms, this cannot work, since at least one of the two guys cannot even pretend
(A and not A⊥ cannot be both provable, and in general none of them is provable). One
typical paralogism that respects cut-elimination is the axiom − Γ, for any sequent Γ (in
terms of games, it is the move

�
I give up � ) and it is definitely incorrect. However, this

move is not that strange, if we think of proof-search : starting from the conclusion, we try
to prove − A, and at some moment, we might give up, and why shouldn’t we give a status
to this aborted proof ? But this might not be enough, as shown by the following example :
I tries to prove −?A⊗?B, hence II tries to prove −!A⊥

&

!B⊥, which amounts to proving
−!A⊥, !B⊥. . . but there is no rule with this conclusion, but the paralogism

�
Give up � ; if

II can only give up, then I will win −?A⊗?B without any effort. There are two possible
paralogisms that II might use to respond, namely weakening (premise−!A⊥ or−!B⊥) or mix
(premises −!A⊥ and −!B⊥). Both of them are compatible with cut-elimination, although
their geometrical behavior is different : weakening induces an irreversible destruction of
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information, whereas mix destroys the connexity of the underlying geometrical pattern.
There is a third possibility, namely to replace linear logic with an affine version allowing
weakening, in which case

�
Give up � would be the only paralogism 26. Only the complete

achievement of the program —i.e. a non-contrived soundness— can decide between these
three alternatives, and by the way observe that our methodology, in case the third possibility
makes it, would force us to conclude that linear logic is wrong, i.e. should be replaced with
its affine variant. . . Unpleasant issue, but if we are not ready to accept such consequences,
then we are not earnestly seeking the ultimate meaning of logic.
Our motto is fully justified by what we just explained. But it is slightly provocative, since
we mean something more, i.e. that rules have a geometrical meaning : this will be the main
concern in the search for soundness, which is highly non-trivial. Perhaps one should amend
it into :

The meaning of logical is hidden in the rules themselves.

5.3 Soundness

Soundness reads simply as :

If π is a paraproof of A, then |π| is a strategy for the game |A| ; moreover if π is a proof,
i.e. uses no paralogism, then |π| is winning.

We must find a natural notion which harbors the more or less trivial game induced by syntax,
the difficulty being to satisfy both requirements, natural notions having a tendency to shun
the trivial game.

5.4 Geometry of interaction

Indeed this program originates in the analysis of the correctness criterion for proof-nets of
[12], done in [13], see Annex E. The question was to handle a new kind of parallel syntax,
but this seemingly syntactical question received a purely geometrical answer : at that very
moment, I understood that the interpretation of the rules is hidden in syntax. . . well-hidden
indeed.
Under some mild hypotheses, a cut-free proof of a purely multiplicative formula A (using
literals p, p⊥, q, q⊥, . . . and the connectives ⊗, &

), makes use of axioms linking each occur-
rence of a literal p with an occurrence of its negation p⊥. This linkage, which is the only
actual information contained in the proof, can be seen as a permutation σ of the literals
of A, enjoying σ2 = 1. On the other hand, a switching S of the proof-net induces another
permutation τS of the same proof-net, and the correctness condition can be rephrased as
�
στS cyclic for all S � . It is possible to consider the τS as paraproofs of A⊥, it is also

possible to distinguish winning ones etc. and the correctness theorem of [12] can be read
as a full completeness result —together with a natural soundness— for multiplicative linear
logic, the basic orthogonality being defined by :

σ⊥τ ⇔ στ is cyclic

Annex E.7 presents this result in a simplified form, permutations being replaced with par-
titions.

26. Paralogisms other than
�

Give up � have the property of making your opponent lose, at the price of
your own victory : this is rather mean, like the notorious gardener’s dog that does not eat salads, but bites
you if you try. I therefore propose to call them

�
Dog’s moves � .
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Generalizing this result was very tantalizing, and the problem was indeed posed —perhaps
in cryptic terms— in [15], as the program of Geometry of Interaction (GoI, 1987). The main
difficulty was to accommodate exponentials ; for this purpose, permutations were replaced
with unitary operators on Hilbert space. This worked quite well, see e.g. [14], and had
even some rather non-trivial applications in theoretical computer science ; in particular it
is deeply related to the game interpretation of Abramsky & al. used to solve the question
of full abstraction, see [1]. But definitely this is not the answer : σ, τ become operators, the
orthogonality being defined as :

σ⊥τ ⇔ στ is nilpotent

Indeed nilpotency is quite different from cyclicity, and there is no longer any way to separate
the wheats from the tares, i.e. to define a reasonable notion of winner.
I eventually arrived (through other considerations, see below) at the conclusion that time
was the great absent of GoI. One possible reconciliation is that the operators of GoI should
be presented as inductive limits of finite dimensional ones, the process of inductive limit
being precisely this neglected time.

5.5 Coherent semantics

There is an alternative approach, based on coherent semantics, see Annex D. Coherent
semantics is the original interpretation of linear logic, in the sense that linear logic was
extracted from it. The basic paradigm is that formula A becomes a coherent space |A| (i.e.
a graph) and that a proof π of A becomes a clique |π| @ |A|. Since |A⊥| is the complementary
graph, proofs of A⊥ become anticliques of |A|. The problem is that many cliques (typically
the empty one) of |A| cannot represent a proof : we must therefore find a notion of winning
clique. This is why we can try to enhance our coherent spaces with totality (CST), see
Annex D.5.
What follows is essential —at least to anybody interested in the problem— : I will open
my toolbox and list the seminal counterexamples on which I worked for years. They are all
located in the multiplicative/additive world, and are therefore extremely simple ; each of
them presents a different facet of the question 27.

5.5.1 Tensor/False

The formula A ⊗ ⊥ is problematic. In fact it is enough to consider the formulas generated
from 1,⊥ by means of ⊗, &

to stumble on a serious problem : all these spaces are isomorphic
CST, but not if we also consider a notion of gain, see D.5. If we choose 0− 1-gain, then our
atoms will obey to classical logic, if we choose a gain in Z, then 1,⊥,⊗, &

will receive the
interpretations 1, 0, x+y−1, x+y, an interpretation known to be incomplete (counterexample
of Fleury, 1988 : ⊥ ⊗ (1

&

1)). In fact the gain space should be endowed with a structure
of phase space, a bad start indeed, if we want to avoid gesticulation.

5.5.2 Tensor/True

The consideration of the additive neutrals is a nightmare, because duality abhors a vacuum.
The dual of A⊗> is A−◦0, and as explained in the Annex, a total element in A−◦0 should
map total elements of A to total elements of 0, which is impossible, unless A has no total
element. But if A −◦ 0 has no total element, then any clique in A ⊗ > (there is only one,

27. These problems are not creations of linear logic : they already exist in intuitionistic logic, typically the
case Tensor/true below deals with the familiar degeneracy of intuitionistic negation.
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the empty set) is total and winning. In other terms, as soon as A has some total element,
i.e. some paraproof, A⊗> should be provable. . . nonsense !

5.5.3 Plus/True

Consider now A⊕> ; its dual is A⊥ & 0, and from the definition of the totality in a
�

& � ,
the dual has no total element. As a consequence, every clique in A⊕> is total and winning.
Completeness fails here too, although not that dramatically : we can identify two cliques
which cannot be separated by the Opponent, and things start to get fixed. . . with a lingering
problem : we can no longer distinguish between the two proofs of 1⊕>.

5.5.4 The Gustave function

This fantastic counterexample is due to G. Berry ∼ 1978. It is a contribution to the theory
of sequentiality : the precise semantical definition of what is a sequential function is the
algorithmic analogue of our concern for full completeness. The Gustave function takes three
Booleans arguments and returns a completely irrelevant output. The equations are the
following

G(true, false, z) = a
G(x, true, false) = b
G(false, y, true) = c
G(true, true, true) = d
G(false, false, false) = e

(the last two equations have been added to Gustave’s definition to make the function total).
The algorithm thus defined is not sequential, i.e. when we compute G, we have no first
question to ask about the input (e.g.

�
Give me the first argument � : in case y = true,

z = false, then the first argument is irrelevant). Of course, if one replaces the second
equation with

G(true, true, false) = b
G(false, true, false) = b

then sequentiality is restored.
Let us transform these equations into a problem of linear logic : any function of boolean
arguments can be made linear by changing its input space from Bool to 1 & Bool, and
remember that Bool can be taken as 1 ⊕ 1. We can therefore see the function as a linear
function defined on the ternary tensor power of 1 & (1⊕ 1). The output is irrelevant. The
Gustave function is transformed into an equivalent counterexample, with a purely logical
content : Let A,B,C be three CST, and consider the CST
D = (A⊕ (B &C))

&

(A⊕ (B &C))

&

(A⊕ (B &C)). As a coherent space, it contains an
isomorphic copy of the

�
& � of five CST, namely, B

&

C

&

A,A

&

B

&

C,
C

&

A

&

B,B

&

B

&

B,C

&

C

&

C. Now if I take a total clique in each of these CST, then
their

�
union � is easily shown to be a total clique in D, moreover, in case my cliques are

winning, their union is winning too. But this clique cannot correspond to any proof, since
we cannot find a last rule ending with the sequent − A⊕ (B&C), A⊕ (B&C), A⊕ (B&C)
which would correspond to such a clique : indeed six ⊕-rules might apply, corresponding to
the removal of one of the three A or one of the three B & C, but our clique needs these six
guys.
In fact, Berry studied another counterexample, the parallel or of Plotkin

P (true, y) = a
P (x, true) = a

which can be interpreted as a subset of (A ⊕ B)

&

(A ⊕ B), the union of a clique in
A

&

B and a clique in B

&

A ; but the union is not a clique, and this example is killed by
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coherent spaces 28. The case of Gustave is much more delicate : Ehrhard found a beautiful
generalization of coherent spaces, hypercoherences, [7], which manages to kill Gustave’s
function, but it seems that this is not the right way to full completeness.

5.6 Time

Monastic life helps to put things together ; after weeks of meditation (on this problem) I
realized that the completeness argument would anyway be trivial. So what is the main diffi-
culty ? Essentially to construct the proof π such that σ = |π|, and this essentially amounts
at finding the last rule of π : if property P ensures the existence of a last rule and if the
premises of the rule inherit property P, then we can iterate, and we are left with a more
tractable problem, namely to show that an existing would-be proof is a proof. The two sem-
inal examples of Berry are indeed failures of the same principle, the last rule : the parallel
or is the case of a sequent − A ⊕ B,A′ ⊕ B′, the Gustave function being that of a sequent
− A⊕B,A′⊕B′, A′′⊕B′′ (renaming B&C as B, etc.). The property which fails is the pos-
sibility to simplify one of the

� ⊕ � into one of its components : this corresponds to a logical
rule for

� ⊕ � , six possibilities for Gustave, four possibilities for parallel or. By the way, the
four possibilities of the parallel or are analogous to the Whitman property of lattices : if
a∧b 6 c∨d, then either a 6 c∨d or b 6 c∨d or a∧b 6 c or a∧b 6 d. The Gustave function
shows that the ternary analogue of the Whitman property : if (a ∧ b).(c ∧ d) 6 e ∨ f , then
a.(c∧d) 6 e∨f or b.(c∧d) 6 e∨f or (a∧b).c 6 e∨f or (a∧b).d 6 e∨f or (a∧b).(c∧d) 6 e
or (a ∧ b).(c ∧ d) 6 f is independent from the binary case.
What is the general pattern ? The solution is linked to a splitting of the connectives in two
halves, the positive ones, here 0,1,⊕,⊗ and the negative ones, >,⊥,&, &

. This seems to
be a graphical joke : indeed the graphism was chosen early in 1986 —with the benediction
of Yves Lafont— so as to individualize two groups, one written in an algebraic style, the
other in a logical style, the symbol (.)⊥ for negation belonging to both of them. The main
advantage of this notation is to mnemonize the canonical isomorphisms of Annex D, e.g.
distributivity. But there is a more general explanation for all these isomorphisms : connec-
tives of the same polarity do associate, see Annex F, in a sense which basically covers the
isomorphisms of Annex D.
Association was first discovered by Andreoli (the only extant producer of software based
on linear logic), under the name of focalization, [4], which explains (in terms of logic pro-
gramming, i.e. proof-search) the algorithmic contents of the biorthogonal. In fact double
orthogonals are prominent in most of our semantical artefacts, phase semantics, CST, game
semantics etc. A definition with too many of them is unmanageable, hence one needs to
reduce their number ; for instance, associativity of

� ⊗ � comes from the possibility of sim-
plifying (A⊗B⊥⊥)⊥⊥ into (A⊗B)⊥⊥, see Annex F.1. If we remove biorthogonals from our
basic definitions, we see that our operations split according to two polarities, the positive
ones satisfying Φ(X⊥⊥) ⊂ Φ(X)⊥⊥ 29. The only place where biorthogonals are actually
needed is when we apply a negative operation after a positive one : this is the basic scansion
of time in logic. A logical step therefore appears as a cluster of positive operations following
a cluster of negative operations ; in fact we should rather count two steps here, namely
Opponent’s move followed by Player’s move.
Looking back at the basic counterexamples of last subsection, one can see that they are
indeed all due to an alternation of polarity, e.g. ⊥ followed by ⊗, i.e. in all these cases time
is guilty.
The pregnancy of time forced me to depart from the synthetic viewpoint of geometry of

28. Originally by Berry’s notion of stability.
29. In the Banach space interpretation, positive means `1-norm, negative means `∞-norm.
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interaction, in particular Hilbert space operators. This regression is surely not definitive,
after all GoI is the conceptualization of a previous combinatorial experience.

5.7 Hypersequentialization

As a consequence of Andreoli’s focalization we can modify the rules so as to iteratively apply
—either the maximum negative cluster of rules (this is a mechanical step corresponding to
the time when the Opponent will move in the actual play) —or a maximal positive cluster
of rules (which is by no ways mechanical, creativity is here at work : this corresponds to
a Player’s move.) If we stick to this principle, we see that the positive and negative steps
alternate and that sequents always contain at most one negative formula. Indeed something
outstanding happens : cut-elimination can be performed without any permutation of rules,
unbelievable ! . . . especially if one remembers that the plague of sequent calculus, the reason
why Natural Deduction, Proof-nets etc. were introduced, is to minimize permutations of
rules, see Annex E. Now we got our ultimate syntactical object : those hypersequentialized
proofs.

5.8 Deconstruction is achieved

We achieved our
�

deconstruction � 30 of proofs. A (para-) proof is a proof in the hyperse-
quentialized calculus, i.e. —starting from the conclusion— a succession of (clusters) of rules,
maybe never ending, i.e. infinite. We now have to reconstruct everything from this basic
artefact, i.e. to proceed with the synthesis. This will involve a translation of everything into
pure combinatorics, in a way keeping syntax astray.
Our (para-) proofs will become strategies, and strategy σ will be seen as the set of all plays
στ , when τ varies through all strategies for II. So what is play ? If σ, τ stand for (para-)
proofs of − A and − A⊥, then the play must have something to do with the paraproof
of the empty sequent

� − � obtained by cut. Indeed, if we start to eliminate cuts in this
sequent, starting from the conclusion, we produce a sequence of operations which, due to
the alternation of polarities in σ and τ , looks like the alternate moves of two players.
Here something must be made to avoid gesticulation : uniform decisions must be taken as
to the games. For instance, we decide that all plays are finite, since the notion of gain is
problematic in the infinite case (concretely this means that the rule

�
Give up � plays a

prominent role). Also the notion of gain must be defined once for all : a player loses when
he gives up or makes a dog’s move (hence most of plays are indeed draws), and dog’s moves
must be defined in a geometrical way, e.g. as the destruction of connectedness.
How do we recognize the would-be strategies ? Simply by building a universal (sort of)
coherent space : two plays are coherent (from the viewpoint of I) when II is responsible
for the fact that they differ : coherence will therefore enforce the existence of a uniform
first move. Orthogonality will be defined as σ ∩ τ 6= ∅. By the way, these strategies are not
general strategies, and a new word should be found : I propose

�
design � , a design for I

and a design for II inducing a dispute.
In fact we have produced a single universal game, so we are not quite explaining formulas
by games. If I and II use the full range of possibilities nothing can work : orthogonality
cannot be respected (technically speaking, σ ∩ τ = ∅, which actually means that the two
designs have produced an infinite dispute). We define a behavior as a set of designs equal
to its biorthogonal, i.e. a behavior for I is defined as the orthogonal of a behavior for II
and vice-versa. This means that the two players have somewhere agreed not to use the

30. Less emphatically : our analysis.
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atomic weapon. What does this actually mean, besides the mathematical definition ? The
only analogy I can find comes from real life : the possibilities for human behavior are quite
wild, however, in social life, people tend to restrict their possibilities, indeed to adapt to the
external milieu (i.e. the orthogonal) which in turn reacts differently. . . In real life there is no
winning strategy, i.e. the Princess’s driver decides to drive with 2.3 grams of alcool because
he thinks that no cop will dare to check him, but after all it is only wishful thinking ; there
are even people who play losing strategies. By the way, in real games, behaviors play an
essential role : for instance if you play against a beginner, you may try dirty tricks, that you
would not dare against a master. I think that we should accept the existence of behaviors
as a primitive fact, and logic as a way to analyze them, rather than behaviors a a way to
comply with logical principles.
Coming back to the interpretation of plays as cut-elimination, one actually sees that only a
finite terminal part of the proofs is visible at each step, which has two possible interpreta-
tions :

1. Either it is quite true that I am building the proof step by step ; after performing stage
p, my opponent will test my last move, and I will answer with a new move. This is the
viewpoint of interactive proof-search : if the starting configuration is − A & B, II first
chooses between − A⊥ and − B⊥ ; assuming that II chose the latter and that B is
positive, then I will proceed with trying to prove − B, and A is definitely forgotten.

2. Or the proof is known in advance, but it is made of nested boxes ; my opponent cannot
understand my box at depth p+ 1 before I opened the box of depth p containing it. The
original cut is between σ (ending with − A & B) and τ (ending with − A⊥ ⊕ B⊥), and
II is asked to open his box : in the box there is − B⊥, and I obeys, perinde ac cadaver,
and replaces his sequent with − B. . . he must now in turn open a box etc.

These interpretations can as well represent (interactive) proof-search or cut-elimination ; by
the way, for the first time, the two main readings of Gentzen’s theorem are reconciled.

6 Conclusion

At which moment should we consider our program as achieved ? It is a question of math-
ematical taste, depending on the level of abstraction we are seeking. A first level of inter-
pretation, purely combinatorial, is on its way, see [19] : what is still missing seems to be
more technical than conceptual. It is enough to achieve our main goal, i.e. an operational
interpretation of logic, where the basic rules are

�
physical � modifications of a geometrical

structure. The old logical artefacts subsist as comments on the behavior of this process :
truth is now the possibility of winning and proof the way to achieve it ; as to logical oper-
ations, they are no longer primarily defined as operations on truth, but as manipulations
of games, which can be forgetfully interpreted on truth values. But the extant material is
clearly too phenomenological (i.e. too explicit). Therefore there is still something essential
to achieve after this step, some kind of revisited GoI.
We already mentioned that the earnest way to proceed is to accept that eventually linear
logic itself could be modified, e.g. by the adjunction of the weakening rule ; after all the
focus on linear logic is mainly due to the fact that it is the most general extant logical
system, and that solving a problem in this case induces a solution for the other systems.
But shall we find a unique interpretation, or are there several kinds of games that can solve
our problem (inducing of course several logics), in other terms, shall we conclude to the
existence of a unique logic ?
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1. One could think that cyclic linear logic is based on a different paradigm, because of non-
commutativity. But recent work of Ruet [27] and Abrusci, ending with a collaboration
Abrusci-Ruet, see [3], has shown that cyclic linear logic is compatible with usual linear
logic, i.e. that both a commutative and a non-commutative tensor may coexist. Surely
this non-commutative logic will deserve another geometrical explanation, but eventually
the unity will not be violated.

2. The existence of an alternative version of the exponentials, [16], might suggest that at
some moment there might be a definite schism. It might also happen that only the light
exponentials are eventually accepted. . . which would mean that the logical rules that are
behind classical logic are definitely wrong. Very unlikely indeed, although exciting, since
the alternative version (light linear logic) is polytime-complete.

3. The technical trick of hypersequentialization avoids the nightmare of commutation of
rules, i.e. the possibility of non-alternating moves. But the asynchronous proof-nets were
successful in the restricted multiplicative case. . . Hence something radical might explain
the mismatch. We are perhaps explaining a sequential logic, and there might as well be a
parallel logic —without temporality— ; these two logics would agree on the multiplicative
part, and differ on other connectives. Of course such a hypothetical non-sequential logic
would have non-sequential proofs etc. : we should not try to imitate what we are doing
in the sequential case to investigate this possibility, and typically we could accept the
Gustave function. . . I think that the ghost of an alternative parallel logic might vanish if
we succeed to depart from the game intuition, in which a strict alternation of moves is
so important.

Although we claim that the opposition syntax/semantics is obsolete, we are still focusing
on soundness/completeness results. This can be read as the emergence of a new kind of
semantics (something in between traditional syntax and semantics), a radically new view-
point, in between (educated) Tarskism and (illiterate) gesticulation : whereas the former
still believes in the pregnancy of the old distinction observer/world, the latter were never
able to technically master it. In between Scylla and Charybdis lies the meaning of logical
rules.

APPENDIX

The annexes expound known material, with a certain number of novel features. The most
interesting are about time (Annex F), the phase semantics criterion which discrimitates
between good and bad schemes (Annex C.4). and a baby-size realization of the program
done in Annex E.7. The notion of CST of Annex D.5 is only introduced in view of the
main discussion ; the presentation of completeness/incompleteness is rather different from
the traditional approach, so it might be of some interest.
I had to make a choice as to formalism, since three logical systems (not to speak of non-
commutative logic) should be presented. I decided to systematically present, when possible,
the linear logic aspect, which after all makes sense, since linear logic is more general. For
similar reasons, I decided to present a simplified syntax, exploiting the symmetry left/right of
sequent calculus. As a consequence, intuitionistic logic (which does not enjoy the symmetry
and needs a two-sided calculus) cannot be presented. Also the discussion in the main text
of the symmetrization of intutionistic logic is not well-documented, since it speak of left
and right parts of sequents, whereas our Annex anticipates on the result of the discussion. . .
Apart from this, I think that the text is really self-contained, i.e. that the Appendix contains
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the crucial technical information in a sufficiently detailed way. (I didn’t develop the C∗

algebraic version of GoI, just because it belongs to a spirit from which I am forced to depart
for at least a while. . . but the interpretation of GoI in terms of wires, multiplexing, etc. is
expounded in some details.)

A Completeness vs. incompleteness

A.1 Completeness

In logic, completeness has several technical meanings, which implement the idea that
�

Noth-
ing is missing � : never forget it !
The basic result is due to Gödel (1930) and is about classical predicate logic : formulas are
built from atomic propositions P (t1, . . . , tn) and their negations ¬P (t1, . . . , tn) by means of
the connectives ∧,∨ and the first-order quantifiers ∀x, ∃x. And the theorem states that if
A is closed and true in any model, then A is provable : classical logic catches all universal
truths.
However when we say that A is closed, we only mean that it has no free variable. . . how-
ever the predicate symbols P (. . .) are in some sense variables. If we now move to second
order logic, we can definitely close A by prefixing it with second order quantifications on
predicates, e.g. ∀PA. Indeed we can speak of the (plain) truth of the universal closure of
A, which is nothing but the truth of A for all possible P , i.e. the truth of A in all models.
Completeness can therefore be written as

If A is a closed Π1 formula, and A is true, then A is provable.

By Π1 (resp. Σ1), I mean that all second order quantifiers in A are universal (resp. existen-
tial), and by

�
closed � I mean definitely closed.

A.2 Incompleteness

Now, let us turn our attention towards incompleteness : Gödel produces one formula (in fact
two formulas, since the theorem is in two parts : the first formula is

�
I am not provable � ,

the second one is
�

The theory in which I am working is consistent � ), and both express the
unprovability of an explicit formula inside a well-defined system. Such an expression can be
reduced (through painful and ad hoc encodings) to the form ∀nφ[n], quantification being on
the set of integers (encoding all possible proofs) and φ being (morally) without quantifiers.
Now the set of integers can be defined à la Dedekind, as the smallest set containing 0 and
closed under successor :

n ∈ N ⇔ ∀P ((P (0) ∧ ∀x(P (x)⇒ P (x+ 1))⇒ P (n))

which is Π1 ; this formula, when used negatively (i.e. on the left hand of an implication)
becomes Σ1 : indeed, Gödel’s formula is Σ1. Now its property is to be true, but not provable.
In other terms, in his famous result of 1931, Gödel proved a sort of converse to completeness :

Completeness fails outside Π1.

Since Σ1 and Π1 are exchanged by negation, another way to look at completeness is to
say that provability does not commute with negation : if A is Π1 but not provable, we
cannot conclude that ¬A is provable. Certain mistakes of logic are due to the obstination at
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producing a system in which provability commutes to negation : this has been a complete
disaster, witness the fate of the unfortunate non-monotonic

�
logics � : there provability

does commute to negation, but there is no longer any notion of proof. . . The theme of
commutation of provability with other connectives, esp. disjunction and existence, had a
different posterity, see below.
From the soundness of L, I can deduce the consistency of L (soundness is always a technical
variation on

�
A provable implies A true � , hence as soon as something cannot be true, we

get consistency). As a consequence, the soundness for L needs a
�

strong system � , typically
the soundness of second-order logic cannot be proved inside second-order logic.

A.3 About separation

The traditional way of proving completeness is by a fair proof-search : this means that we
try to prove A by a systematic cumulative search, which is possible in the classical case.
This is completely inefficient, but it works in theory : only two things might happen, either
one ends with a proof, or the search never stops, in which case any infinite branch defines a
countermodel. This vaguley looks like a duality, and it is, but it is not a real duality between
proofs and countermodels, since they are exclusive of each other : either A has a proof, or
it has a countermodel, but soundness makes it impossible to have both. In other terms, we
cannot separate two proofs by countermodels, since duality abhors a vacuum. The notion of
test developed in the main text is a less brutal notion of refutation, for which the opponent
might coexist with the player.

B Sequent calculus

Sequent calculus was invented by Gentzen in 1934, [9, 11]. Before explaining the result and
its consequences, we shall first define the (adaptation of the) calculus in the case of linear
logic.

B.1 Linear sequent calculus

In order to present the calculus, we shall adopt the following notational conventions : for-
mulas are written from literals p, q, r, p⊥, q⊥, r⊥, etc., and constants 1, ⊥, >, 0 by means
of the connectives ⊗,

&

, &, ⊕ (binary), !, ? (unary), and the quantifiers ∀x, ∃x. Negation
is defined by De Morgan equations, and linear implication is also a defined connective :

1⊥ := ⊥
>⊥ := 0

(p)⊥ := p⊥

(A⊗B)⊥ := A⊥

&

B⊥

(A&B)⊥ := A⊥ ⊕B⊥
(!A)⊥ := ?A⊥

(∀xA)⊥ := ∃xA⊥

⊥⊥ := 1

0⊥ := >
(p⊥)⊥ := p

(A

&

B)⊥ := A⊥ ⊗B⊥
(A⊕B)⊥ := A⊥ &B⊥

(?A)⊥ := !A⊥

(∃xA)⊥ := ∀xA⊥

A−◦B := A⊥

&

B

The connectives ⊗,

&

, −◦, together with the neutral elements 1 (w.r.t. ⊗) and ⊥ (w.r.t.

&

)
are called multiplicatives ; the connectives & and ⊕, together with the neutral elements >
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(w.r.t. &) and 0 (w.r.t⊕) are called additives ; the connectives ! and ? are called exponentials.
The notation has been chosen for its mnemonic virtues : we can remember from the notation
that ⊗ is multiplicative and conjunctive, with neutral 1, ⊕ is additive and disjunctive, with
neutral 0, that

&

is disjunctive with neutral ⊥, and that & is conjunctive with neutral > ;
the distributivity of ⊗ over ⊕ is also suggested by our notation ; this notation is related to
polarities, see Annex F.
A sequent is an expression − ∆, where ∆ is a finite sequence of formulas ; the intended
meaning of− A1, . . . , An is A1

&

. . .

&

An. We use the comma for concatenation ; very often
we single out one formula in a sequent, e.g. − Γ, A, and Γ is therefore seen as a context.
The rules of the calculus are the following :

Identity / Negation

(identity)
− A,A⊥

− Γ, A − A⊥,∆
(cut)

− Γ,∆

Structure

− Γ
(exchange : Γ′ is a permutation of Γ)

− Γ′

Logic

(one)
− 1

− Γ
(false)

− Γ,⊥

− Γ, A − B,∆
(times)

− Γ, A⊗B,∆
− Γ, A,B

(par)
− Γ, A

&

B

(true)
− Γ,> (no rule for zero)

− Γ, A − Γ, B
(with)

− Γ, A&B

− Γ, A
(left plus)

− Γ, A⊕B
− Γ, B

(right plus)
− Γ, A⊕B

−?Γ, A
(of course)

−?Γ, !A

− Γ
(weakening)

− Γ, ?A

− Γ, A
(dereliction)

− Γ, ?A

− Γ, ?A, ?A
(contraction)

− Γ, ?A

− Γ, A
(for all : x is not

free in Γ)− Γ, ∀xA
− Γ, A[t/x]

(there is)
− Γ, ∃xA
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B.2 The Hauptsatz in the classical case

Classical logic has almost the same rules, except that ! and ? are replaced with the identity,
i.e. erased, to the effect that dereliction and of course disappear, whereas weakening and
contraction —which no longer mention ?— emigrate to the structural group. The presence
of the structural rules causes a collapse, i.e. ⊗ and & which differ only through structural
manipulations are identified (notation ∧), and similarly

&

= ⊕ = ∨.
The replacement of formulas by sequents − ∆ enabled Gentzen to almost reconcile two
completely opposite approaches, i.e. intelligence and mechanism 31. This is because the
system is built around a specific rule, the cut-rule, which has an unbelievable duplicity :

I It basically expresses the transitivity of implication and therefore corresponds to 90 % of a
real proof, which consists in putting together lemma after or above lemma. . . Remember
that lemmas concentrate the use of intelligence, and that it may take years to find the
right sequence of (perhaps easy) lemmas that will make your way to the theorem. The
other rules are practically never used 32.

I The Hauptsatz paradoxically states that the cut-rule can be eliminated, i.e. that we can
prove the same theorem without intelligence. One would then conclude that a machine can
do it, and it is a matter of fact that the subformula property induces a drastic limitation
of the search space. This limitation is so drastic that it is almost a decision procedure for
logic : such a procedure cannot exist, but the search for cut-free proofs is efficient enough

to serve as a basis for logic programming, popularized 15 years ago by the Japanese 5th

generation program.

The subformula property —which is also valid in the intuitionistic and linear cases— is
indeed a completeness property : cut-free proofs od A can be localized inside a fixed system
(the rules for the subformulas of A), i.e. nothing is missing. This is still the case if we
extend the system into a second-order logic, as soon as we restrict to Π1 formulas. But cut-
elimination for Σ1 formulas does not yield any subformula property, and various extensions
of the calculus will therefore produce various sets of Σ1 theorems : the system is no longer
complete.

B.3 The reflection schema

An immediate by-product of the incompleteness theorem is the impossibility of defining a
truth predicate in arithmetic, a result known as Tarski’s theorem. However, there is no
objection as to the definition of a bounded truth predicate, e.g.. a formula Tr1540[x], which
represents, in a faithful way the truth of any formula A with less than 1540 logical connectives
and quantifiers. Combining this with the Hauptsatz and the subformula property, Kreisel &
Levy [20] were able to prove the following scheme inside Peano’s arithmetic

ThmT(dA[y]e)⇒ A[y]

Here T is classical predicate calculus (immediate extension : T is a finitely axiomatized
subsystem of Peano’s arithmetic), A[x] is a given formula, depending on a free variable x,

and dA[y]e is the Gödel number (numerical encoding) of the closed formula A in which

31. If you want man and computer.
32. The use of indirect arguments is the basic feature of thought : imagining that I still remember how to
compute a product, then instead 61× 21778945321, I will choose 21778945321× 61, i.e. use commutativity
as a lemma. . . and by the way the usual algorithm for multiplication in base 10 relies on a lemma.
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the variable x has been replaced by the closed term

y times︷ ︸︸ ︷
1 + 1 + . . .+ 1, and ThmT represents

provability in T. The proof consists in formally applying cut-elimination, then using a
bounded truth predicate limited to subformulas of A, to formalize the trivial fact that
logical rules preserve truth.
Application : Peano’s arithmetic cannot be finitely axiomatized. In general the result is
very helpful to produce inner formalizations.
Of course this illustrates the technical interest of something as flat as truth ; it is to be
observed that we could do the same with intuitionistic logic, i.e. with Heyting’s arithmetic,
and for linear logic, should a reasonable linear arithmetic be introduced. But it does not
work for the arithmetic of Broccoli, since the Broccoli axiom does not enjoy cut-elimination :
in other terms truth seems only to make sense because of cut-elimination and we are back
to our basic claim of an inner completeness expressed by the subformula property rather
than an external completeness based on preservation of truth.

B.4 The Hauptsatz in the intuitionistic case

The original version of sequent calculus uses double-sided sequents Γ − ∆ ; in the classical
and linear cases, the perfect symmetry between left and right makes it unecessary to use
both sides : instead of Γ − ∆, write − Γ⊥,∆, with no noticeable change, but for drastic
slimming of the calculus. However this cannot be done for intuitionistic logic, which is
based on asymmetric sequents Γ − A (which mean that the conjunction of the formulas of Γ
implies A). Weakening and contraction are permitted on the left, but not on the right, since
the limitation to one formula makes them obsolete. This limitation enables one to formulate
the disjunction property, which is specific of intuitionistic —and now linear— logic : if I
prove a disjunction A ∨B, then I prove A or I prove B. In fact, although the result can be
expected from Brouwer’s considerations concerning the excluded middle A∨¬A, it is again
a summit of duplicity :

1. In real life, nobody (except perhaps in cryptography) would state A∨B if he has a proof
of B. . . the proposition is empty from the viewpoint of sociology : all proofs of A∨B are
indirect, i.e. we state the disjunction for want of a more precise statement.

2. But if we apply the famous algorithm underlying the proof of the Hauptsatz, we end with
one of those unbelievable cut-free proofs, which explicitly contains a proof of A or a proof
of B.

Technically speaking, the disjunction property in —say linear logic— is obtain as follows :
in a cut-free proof of A ⊕ B the last rule must be one of the ⊕-rules. Intuitionistic logic
managed to make provability commute with disjunction. . . linear logic too, but only for
disjunction ⊕,

&

behaving more like a classical disjunction. By the way, the existential
quantifier has a similar existence property 33.
This phenomenon explains why intuitionistic logic is constructive : proofs induce algorithms
that can construct actual answers. In fact this constructivity can be developed into a full
algorithmic interpretation. Typically the choice between A and B can serve to encode a
Boolean answer (yes/no). Now, if I am given a proof π of C − A∨B, and if I can encode a
certain datum a by a proof µa of − C, then the Hauptsatz applied to the proof of − A ∨B

33. It is not always the case that somebody who knows that φ[37] would never state ∃nφ[n], think of regular
prime numbers : the primary fact is that not all prime numbers are regular, i.e. that methods based on
regularity will not apply in general.
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obtained by cutting π with λa induces a Boolean output π(λa). The Hauptsatz is indeed the
starting point of an integrated paradigm of functional programming.
Gentzen’s result has therefore two posterities, that can be summarized as proof-search (sub-
formula property) and proof-normalization (exploitation of the disjunction property by the
algorithm of cut-elimination) ; but only proof-normalization has a sophisticated theory 34.

B.5 Non-commutative logic

Cyclic linear logic is obtained by restricting the exchange rule to circular permutations,
keeping the rules as they are. But one should careful when defining negation, typically
(A ⊗ B)⊥ = B⊥

&

A⊥, which is reminiscent of (uv)∗ = v∗u∗. Exponentials cannot be
accommodated in this system, since commutativity plays an essential role here
(!(A&B) '!A⊗!B forces some commutativity). The work in progress of Abrusci and Ruet
[3] enables one to reconcile commutativity and non-commutativity and should therefore
accommodate exponentials.

C Phase semantics

C.1 Phase spaces

A phase space is a pair (M,⊥), where M is a commutative monoid (usually written mul-
tiplicatively) and ⊥ is a subset of M . Given two subsets X and Y of M , one can define
X −◦Y := {m ∈M ; mX ⊂ Y }. In particular, we can define for each subset X of M its or-
thogonal X⊥ := X−◦⊥. A fact is any subset of M equal to its biorthogonal, or equivalently
any subset of the form Y ⊥. It is immediate that X −◦ Y is a fact as soon as Y is a fact.

C.2 Connectives

There are some basic ways of constructing facts, e.g. basic facts such as ⊥ = 1⊥ or opera-
tions sending facts to facts, typically X⊥, called (linear) negation, or X −◦ Y , called linear
implication. The most important ones are listed below :

1. times : X ⊗ Y := (X.Y )⊥⊥ = {mn ; m ∈ X ∧ n ∈ Y }⊥⊥

2. par : X

&

Y := (X⊥.Y ⊥)⊥

3. one : 1 := {1}⊥⊥, where 1 is the neutral element of M

4. plus : X ⊕ Y := (X ∪ Y )⊥⊥

5. with : X & Y := X ∩ Y

6. zero : 0 := ∅⊥⊥

7. true : > := M

8. of course : !X := (X ∩ I)⊥⊥, where I is the set of idempotents of M which belong to 1

9. why not : ?X := (X⊥ ∩ I)⊥

34. One of the main features of our approach is to reconcile cut-elimination with (interactive) proof-search.
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The interpretation of the exponentials ! and ? is an improvement of the original definition
of [12] which was ad hoc : X ∩ I replaces a sort of topological interior X◦.
Propositional linear logic is the logical system whose connectives are precisely the operations
just introduced.

C.3 Soundness and completeness

Formulas are interpreted by facts, and a fact will be considered as true when it contains the
neutral element 1. Then, it is easily seen that this semantics is sound and complete :

Theorem 1

A formula A of linear logic is provable iff for any interpretation (involving a phase
space (M,⊥)), the interpretation A• of A contains the neutral element 1.

Proof. — Soundness is proved by a straightforward induction. Completeness involves
the building of a specific phase space. In fact we can take as M the monoid of con-
texts (i.e. multisets of formulas 35), whose neutral element is the empty context, and
we define ⊥ := {Γ ; − Γ provable}. The proof proceeds by showing that the sets
A• := {Γ ; − Γ, A provable} are facts. More precisely, one can prove (using the identity
group) that A⊥• = A•⊥. It is then quite easy to prove that A• is indeed the value of A
in a given model : this amounts to prove commutations of the style (A ⊗ B)• = A• ⊗ B•
(these proofs are simplified by the fact that in any De Morgan pair ⊗/ &

,⊕/&, !/? one com-
mutation implies the other, hence we can choose the friendlier commutation). Therefore, if
1 ∈ A•, it follows that − A is provable. 2

C.4 Naturality

We shall submit three additional principles, namely weakening, contraction, and Broccoli to
the same test, and see what happens. Indeed, our only commitment is to fire a particular
consistent scheme, so we shall modify Broccoli into a stronger version in which ♦ = ⊗, and
which is sometimes called

�
reverse contraction � .

The test will be as follows : we shall consider those phase spaces enjoying the three principles
when the parameters are atomic facts a⊥⊥ and see whether or not the same property holds
for any fact 36.

C.4.1 Weakening

Weakening is A⊗B −◦A ; we impose it for atomic facts a⊥⊥, b⊥⊥, i.e. we restrict to those
models such that 1 ∈ a⊥⊥ ⊗ b⊥⊥ −◦ a⊥⊥. Now 1⊥⊥ is easily shown to be neutral w.r.t.
tensor, hence we get 1 ∈ b⊥⊥ −◦ 1⊥⊥, which is the same as b⊥⊥ ⊂ 1⊥⊥, which in turn is
the same as ⊥ ⊂ b⊥. In other terms our condition is equivalent to saying that ⊥ is an
ideal, i.e. a ∈ ⊥ ⇒ ab ∈ ⊥. Now consider general fact A,B ; if a ∈ A, b ∈ B, c ∈ B⊥,
then bc ∈ ⊥, and since ⊥ is an ideal, abc ∈ ⊥. We just proved that A.B ⊂ B⊥⊥, hence
A⊗B = (A.B)⊥⊥ ⊂ B⊥⊥ = B. Weakening makes it !

35. We ignore the multiplicity of formulas ?Γ, so that I is the set of contexts ?Γ
36. Requiring a property for all atomic facts is a first-order statement, whereas its analogue for arbitrary
facts is second-order. The test is a reduction of second-order to first-order which is in accordance with the
general spirit of the subformula property, and more generally of cut-elimination. By the way it would be
interesting to make the connection between the test and cut-elimination more precise.
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C.4.2 Contraction

Contraction is A −◦ A ⊗ A ; we impose it for atomic facts a⊥⊥, i.e. we restrict to those
models such that 1 ∈ a⊥⊥ −◦ a⊥⊥ ⊗ a⊥⊥. This is easily simplified into a ∈ a⊥⊥ ⊗ a⊥⊥.
Now an essential property, see proposition 3 is that X⊥⊥ ⊗ Y ⊥⊥ ⊂ (X.Y )⊥⊥, and we can
simplify our equation into a ∈ a2⊥⊥, which is the same as a2⊥ ⊂ a⊥ : we eventually find
the condition a2b ∈ ⊥ ⇒ ab ∈ ⊥. Now consider a general fact A ; if a ∈ A, then a2 ∈ A.A.
But if b ∈ (A.A)⊥, a2b ∈ ⊥, so we can conclude from the specificities of ⊥ that ab ∈ ⊥ :
this proves that a ∈ (A.A)⊥⊥ = A ⊗ A. Hence A ⊂ A ⊗ A and contraction makes it ! By
the way the combination weakening + contraction —i.e. classical logic— makes it too.

C.4.3 Broccoli

Broccoli is A⊗A−◦A ; we impose it for atomic facts a⊥⊥, i.e. we restrict to those models such
that 1 ∈ a⊥⊥ ⊗ a⊥⊥ −◦ a⊥⊥. This is immediately transformed into (again use proposition
3) a2⊥⊥ ⊂ a⊥⊥, i.e. into a⊥ ⊂ a2⊥, which is the principle ab ∈ ⊥ ⇒ a2b ∈ ⊥. Now
consider a general fact A ; we would like to prove that A ⊗ A ⊂ A, which is equivalent to
A⊥ ⊂ (A.A)⊥. In order to achieve this, we must show that if b is orthogonal to all a ∈ A
then it is orthogonal to all products a.a′, with a, a′ ∈ A. For this one would need something
like ab ∈ ⊥ ∧ a′b ∈ ⊥ ⇒ aa′b ∈ ⊥, but we only got it when a = a′. From this it is easy to
build a counterexample, and this is why Broccoli does not make it.

D Coherent spaces

D.1 Coherent spaces

Definition 1

A coherent space is a reflexive undirected graph. In other terms it consists of a set
|X| of atoms together with a compatibility or coherence relation between atoms, noted
x _̂ y or x _̂ y [mod X] if there is any ambiguity as to X.

A clique a in X (notation a @ X) is a subset a of X made of pairwise coherent atoms :
a @ X iff ∀x ∀y (x ∈ a ∧ y ∈ a ⇒ x _̂ y).

Besides coherence we can also introduce

I strict coherence : x _ y iff x _̂ y and x 6= y,

I incoherence : x _̂ y iff ¬(x _ y),

I strict incoherence : x ^ y iff ¬(x _̂ y).

Any of these four relations can serve as a definition of coherent space. Observe fact that _̂
is the negation of _ and not of _̂ ; this is due to reflexivity.

Definition 2

Given a coherent space X, its linear negation X⊥ is defined by

I |X⊥| = |X|,
I x _̂ y [mod X⊥] iff x _̂ y [mod X].

In other terms, linear negation is nothing but the exchange of coherence and incoherence ;
It is obviously involutive : X⊥⊥ = X.
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Definition 3

Given two coherent spaces X and Y , the multiplicative connectives ⊗,

&

, −◦ define a
new coherent space Z with |Z| = |X| ⊗ |Y | ; coherence is defined by

I (x, y) _̂ (x′, y′) [mod X ⊗ Y ] iff

x _̂ x′ [mod X] and y _̂ y′ [mod Y ],

I (x, y) _ (x′, y′) [mod X

&

Y ] iff

x _ x′ [mod X] or y _ y′ [mod Y ],

I (x, y) _ (x′, y′) [mod X −◦ Y ] iff

x _̂ x′ [mod X] implies y _ y′ [mod Y ].

Observe that ⊗ is defined in terms of _̂ but

&

and −◦ in terms of _. A lot of useful
isomorphisms can be obtained

1. De Morgan equalities : (X⊗Y )⊥ = X⊥

&

Y ⊥ ; (X

&

Y )⊥ = X⊥⊗Y ⊥ ; X−◦Y = X⊥

&

Y ;

2. commutativity isomorphisms : X⊗Y ' Y ⊗X ; X

&

Y ' Y &

X ; X−◦Y ' Y ⊥−◦X⊥ ;

3. associativity isomorphisms : X⊗(Y ⊗Z) ' (X⊗Y )⊗Z ; X

&

(Y

&

Z) ' (X

&

Y )

&

Z ;
X −◦ (Y −◦ Z) ' (X ⊗ Y )−◦ Z ; X −◦ (Y

&

Z) ' (X −◦ Y )

&

Z.

Definition 4

Up to isomorphism there is a unique coherent space consisting of one atom 0, this
space is self dual, i.e. equal to its linear negation. However the algebraic isomorphism
between this space and its dual is logically meaningless, and we shall, depending on
the context, use the notation 1 or the notation ⊥ for this space, with the convention
that 1⊥ = ⊥, ⊥⊥ = 1.

This space is neutral w.r.t. multiplicatives, namely X ⊗ 1 ' X, X
&⊥ ' X, 1−◦X ' X,

X −◦ ⊥ ' X⊥. This notational distinction is mere preciosity ; one of the main drawbacks
of denotational semantics is that it interprets logically irrelevant properties . . . but nobody
is perfect.

Definition 5

Given two coherent spaces X and Y the additive connectives & and ⊕, define a new
coherent space Z with |Z| = |X|+ |Y | (= |X|⊗{0} ∪ |Y |⊗ {1}) ; coherence is defined
by

I (x, 0) _̂ (x′, 0) [mod Z] iff x _̂ x′ [mod X],

I (y, 1) _̂ (y′, 1) [mod Z] iff y _̂ y′ [mod Y ],

I (x, 0) _ (y, 1) [mod X & Y ],

I (x, 0) ^ (y, 1) [mod X ⊕ Y ].

A lot of useful isomorphisms are immediately obtained :

I De Morgan equalities : (X & Y )⊥ = X⊥ ⊕ Y ⊥ ; (X ⊕ Y )⊥ = X⊥ & Y ⊥ ;

I commutativity isomorphisms : X & Y ' Y &X ; X ⊕ Y ' Y ⊕X ;

I associativity isomorphisms : X & (Y &Z) ' (X &Y ) &Z ; X ⊕ (Y ⊕Z) ' (X ⊕Y )⊕Z ;
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I distributivity isomorphisms : X ⊗ (Y ⊕ Z) ' (X ⊗ Y )⊕ (X ⊗ Z) ;
X

&

(Y & Z) ' (X

&

Y ) & (X

&

Z) ; X −◦ (Y & Z) ' (X −◦ Y ) & (X −◦ Z) ;
(X ⊕ Y )−◦ Z ' (X −◦ Z) & (Y −◦ Z).

The other distributivities fail ; for instanceX⊗(Y &Z) is not isomorphic to (X⊗Y )&(X⊗Z).

Definition 6

There is a unique coherent space with no atom. Although this space is also self dual,
we shall use distinct notations for it and its negation : > and 0.

These spaces are neutral w.r.t. additives : X ⊕ 0 ' X, X & > ' X, and absorbing w.r.t.
multiplicatives X ⊗ 0 ' 0, X

&> ' >, 0−◦X ' >, X −◦ > ' >.

Definition 7

If X is a coherent space, then !X is defined as follows :

I |!X| = Xfin, where Xfin is the set of all finite cliques of X

I a _̂ b⇔ a ∪ b @ X

The space ?X is defined as (!(X⊥))⊥, so as to satisfy the De Morgan equalities :
(!X)⊥ =?(X⊥) ; (?X)⊥ =!(X⊥).

Among remarkable isomorphisms let us mention the exponentiation isomorphisms :
!(X & Y ) ' (!X) ⊗ (!Y ) ; ?(X ⊕ Y ) ' (?X)

&

(?Y ), together with the “particular cases”
!> ' 1 ; ?0 ' ⊥.

D.2 Interpretation of linear logic

The main notion of linear logic is that of a linear map

Definition 8

Let X and Y be coherent spaces ; a linear map from X to Y consists in a function F
such that

1. if a @ X then F (a) @ Y ,

2. if
⋃
bi = a @ X then F (a) =

⋃
F (bi),

3. if a ∪ b @ X, then F (a ∩ b) = F (a) ∩ F (b).

These conditions can be rephrased as the preservation of disjoint unions.

Proposition 1

There is a 1-1 correspondence between linear maps from X to Y and cliques in X−◦Y ;
more precisely

I to any linear F from X to Y , associate Tr(F ) @ X −◦ Y (the trace of F )

Tr(F ) = {(x, y) ; y ∈ F ({x}) },

I to any A @ X −◦ Y associate a linear function A(·) from X to Y

if a @ X, then A(a) = {y ; ∃x ∈ a (x, y) ∈ A}.
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Proof. — The proofs that Tr(A(·)) = A and Tr(F )(·) = F are left to the reader. 2

Since X −◦ Y ' Y ⊥ −◦ X⊥, a linear map from X to Y induces an adjoint map from Y ⊥

to X⊥. Equivalently, a clique in the coherent space X

&

Y can be seen either as a linear
function from X⊥ into Y , or as a linear function from Y ⊥ into X. More generally a clique
in X1

&

. . .

&

Xn can be seen as a multilinear map from X1
⊥, . . . , X̂i, . . . , Xn

⊥ to Xi by
deciding to focus on some Xi.
Now a proof π of a sequent − A1, . . . , An will be interpreted as a clique in the space
|A1|

&

. . .

&|An|, and therefore, as a a multilinear function, modulo an appropriate fo-
calization. The fact that we can choose the focus is very useful : we always focus on the
formula which is introduced by the rule, and we are basically led to interpret logical rules
as pointwise operations on multilinear functions, for instance :

Definition 9

1. If a @ X, b @ Y , then a⊗ b = {(x, y);x ∈ a, y ∈ b} is a clique in X ⊗Y . This clique
is the essential ingredient in the rule of ⊗.

2. With an appropriate focalization, the rule of

&

reduces to the formation of the
trace of a linear function.

3. If a @ X, b @ Y , then l(a) = {(x, 0);x ∈ a} and r(b) = {(y, 1); y ∈ b} is a clique in
X ⊕ Y . These cliques are the essential ingredients in the rules of ⊕.

4. If a @ X, b @ Y , then then a & b = {(x, 0);x ∈ a} ∪ {(y, 1); y ∈ b} is a clique in
X & Y . This clique is the essential ingredient in the rule of &.

5. If a @ X, !a = {u;u ∈ Xfin, u ⊂ a} is a clique in !X. This clique is the essential
ingredients in the rule of !, but one must be careful.

Modulo focalization, the identity axiom corresponds to the identity map, and the cut-rule to
composition. The main result is the invariance of the interpretation under cut-elimination,
which the moral content of proposition 1.

D.3 The bridge with intuitionism

Coherent semantics was originally developed as a semantics of intuitionistic logic.

Definition 10

Let X and Y be coherent spaces ; a stable map from X to Y is a function F such that

1. if a @ X then F (a) @ Y ,

2. assume that a =
⋃
bi, where bi is directed with respect to inclusion, then

F (a) =
⋃
F (bi),

3. if a ∪ b @ X, then F (a ∩ b) = F (a) ∩ F (b).

Stability i.e. condition (3), is due to Berry, although he formulated it for more complicated
spaces : indeed the parallel or (see subsection 5.5.4) is not a stable function.

Definition 11

Let X and Y be coherent spaces ; then we define the coherent space X ⇒ Y as follows :

I |X ⇒ Y | = Xfin × |Y |,
I (a, y) _̂ (a′, y′) iff (1) and (2) hold :

1. a ∪ a′ @ X ⇒ y _̂ y′,
2. a ∪ a′ @ X ∧ a 6= a′ ⇒ y _ y′.
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Proposition 2

There is a 1-1 correspondence between stable maps from X to Y and cliques in X ⇒ Y ;
more precisely

1. to any stable F from X to Y , associate Tr(F ) @ X ⇒ Y

Tr(F ) = {(a, y) ; a @ X ∧ y ∈ F (a) ∧ ∀a′ ⊂ a (y ∈ F (a′)⇒ a′ = a)}

2. to any A @ X ⇒ Y , associate a stable function A( · ) from X to Y

if a @ X, then A(a) = {y ; ∃b ⊂ a ((b, y) ∈ A)}.

Proof. — The essential ingredient is the normal form theorem below. 2

Theorem 2

Let F be a stable function from X to Y , let a @ X, let y ∈ F (a) ; then

1. there exists a0 ⊂ a, a0 finite, such that y ∈ F (a0),

2. if a0 is chosen minimal w.r.t. inclusion, then it is unique.

Proof. — (1) follows from a =
⋃
ai, the directed union of its finite subsets ;

z ∈ F (
⋃
ai) =

⋃
F (ai) hence z ∈ F (ai) for some i.

(2) : given two solutions a0, a1 included in a, we get z ∈ F (a0) ∩ F (a1) = F (a0 ∩ a1) ; if
a0 is minimal w.r.t. inclusion, this forces a0 ∩ a1 = a0, hence a0 ⊂ a1. 2

This establishes the basic bridge with linear logic, since X ⇒ Y is strictly the same thing
as !X −◦ Y . Linear logic was indeed extracted from this factorization —an illustration that
semantics may have a real feedback on syntax. In fact one can translate intuitionistic logic
into linear logic as follows :

p∗ := p (p atomic),

(A⇒ B)∗ := !A∗ −◦B∗,
(A ∧B)∗ := A∗ &B∗,

(∀xA)∗ := ∀xA∗,
(A ∨B)∗ := !A∗⊕!B∗,

(∃xA)∗ := ∃x !A∗,

(¬A)∗ := !A∗ −◦ 0.

and prove the following result: Γ − A is intuitionistically provable iff !Γ∗ − A∗ (i.e.
−?Γ∗⊥, A∗) is linearly provable. The possibility of such a faithful translation is of course a
major evidence for linear logic, since it links it with intuitionistic logic in a strong sense. In
particular linear logic can at least be accepted as a way of analyzing intuitionistic logic. As
an exercise, one should try to prove the isomorphism (X ∧ Y ) ⇒ Z ' X ⇒ (Y ⇒ Z) by
translating everything in linear logic and applying the isomorphisms listed in the opening
subsection.

D.4 Exponentials and comonoids

Let us come back to exponentials ; the space !X is equipped with two maps :
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c ∈!X −◦ (!X⊗!X) w ∈!X −◦ 1

corresponding to contraction and weakening. We can see these two maps as defining a
structure of comonoid : intuitively this means the contraction map behaves like a commuta-
tive/associative law and that the weakening map behaves like its neutral element. The only
difference with a usual monoid is that the arrows are in the wrong direction. A comonoid
is therefore a triple (X, c, w) satisfying conditions of (co)-associativity, commutativity and
neutrality. ?X, which is the dual of a comonoid, is not a monoid (since ⊗ dualizes as

&

),
we say that it is a Par-monoid.

D.5 Totality

It is possible to prove a real completeness theorem w.r.t. coherent spaces, see [18]. We shall
here present an oversimplification of this result, by means of coherent spaces with totality
(CST), which are well-suited for our main discussion.

Definition 12

Let X be a coherent space ; a clique a @ X is said to be orthogonal to an anticlique
b @ Y when they do intersect (in which case the intersection consist of one point) ;
notation a⊥b. A CST is a pair (X, T ), where T is a set of cliques of X equal to its
biorthogonal. In particular (X⊥, T ⊥) is a CST.

All constructions of coherent spaces can be accommodated into constructions of CST : the
underlying coherent spaces are as above.

Definition 13

1. There is only one total element in 1, namely the clique {0}.
2. Using definition 9, the tensor product of (X, T ) and (Y,U) is (X ⊗ Y, (T ⊗ U)⊥⊥).

3. There is no total element in 0.

4. Using definition 9, the direct sum of (X, T ) and (Y,U) is (X ⊕ Y, (l(T )∪ r(U))⊥⊥).

The other operations can be obtained by orthogonality ; observe that :

1. There is only one total element in ⊥, namely the clique {0}.

2. A clique F in a linear implication is total when it maps total elements to total elements.

3. A clique in a
�

& � is total when both projections are total.

It is not difficult to now prove that all cliques constructed in the interpretation of linear
logic are total (again, focalize !). However there are total cliques which do not come from a
proof, e.g. the unique clique of ⊥. Those cliques should therefore correspond to paraproofs,
but how to distinguish proofs from general paraproofs ? The paper [18] parametrizes the
construction, coherent spaces being replaced by

�
free modules over a Par-monoid P � , with

the result that orthogonality yields a clique in P, and there might be so many of these cliques
that everything works fine. Indeed one can see − Γ, A as something like γ.a, the context
γ being treated like a scalar, and the cut-rule as a bilinear form. But this result, although
non-trivial, had no feedback on anything, and we should admit that it might still contain
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some gesticulation, mainly due to this awfully abstract
�

Par-monoid � .
A more naive answer (that we only mention for the sake of the main discussion) would be to
attach to each atom a the result r(a) of the corresponding play, in particular, when forming
the negation, the result n would be changed into 1− n, winning corresponding to the value
1. This incorrect idea has the good taste to propose a full solution to our problem, namely :

I Game = CST

I Play = atom

I Strategy = total clique

I Composition of strategies : the unique atom in σ ∩ τ
I Output of the play = r(σ ∩ τ)

This pattern is technically incorrect, as we can see from the main discussion ; but it has the
immense virtue to be simple, and —hopefully— not too far from the solution.

E Proof-nets

Proof-nets are a sort of parallel syntax primarily developed in the pure multiplicative case.

E.1 Proof-structures

Definition 14

A link L is an expression
P1, . . . , Pn

Q1, . . . , Qm
L

involving n formulas (the premises of L) P1, . . . , Pn and m formulas (the conclusions
of L) Q1, . . . , Qm ; we sall use the following links :

ID −links : 0 premise 2 conclusions : A,A⊥

CUT −links : 2 premises : A,A⊥ 0 conclusion
⊗ −links : 2 premises : A,B 1 conclusion : A⊗B

&−links : 2 premises : A,B 1 conclusion : A

&

B

The premises of ⊗, &

-links are ordered : this means that we can distinguish a left
premise (here A) and a right premise (here B). On the other hand the premises of a
CUT -link and the conclusions of an ID-link are unordered.

(axiom link)

A A⊥

(cut link)

A A⊥

A B
(times link)

A⊗B
A B

(par link)
A

&

B

Remark. — Due to multiple occurrences, one should never speak of formulas, but of occurrences,
which is extremely awkward. We adopt once for all the convention that all our formulas are
distinct (for instance by adding extra indices). In particular ID,⊗, &

-links are determined by
their conclusion(s), and a CUT -link is determined by its premises.
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Definition 15

A proof-structure Θ consists of :

I A set of formulas (see the previous remark) ;

I A set of links ; each of these links takes its premise(s) and conclusion(s) among the
formulas of Θ.

such that each formula is the the premise of at most one link and the conclusion of
exactly one link ; the formulas which are not premises of some link are called the
conclusions of Θ.

E.2 Sequentialization

To any proof of − Γ in linear (multiplicative) sequent calculus we associate a proof-structure
with as conclusions the formulas of Γ. More precisely :

1. To the identity axiom associate an axiom link.

2. Do not interpret the exchange rule (this rule does not affect conclusions ; however, if we
insist on writing a proof-structure on a plane, the effect of the rule can be seen as intro-
ducing crossings between axiom links ; planar proof-structures will therefore correspond
to proofs in some non-commutative variants of linear logic).

3. If a proof-structure Θ ending with Γ, A and B has been associated to a proof π of
− Γ, A,B and if one now applies a “par” rule to this proof to get a proof π ′ of − Γ, A

&

B ,
then the structure Θ′ associated to π′ will be obtained from Θ by linking A and B via a
par link : therefore A and B are no longer conclusions, and a new conclusion A

&

B is
created.

4. If π1 is a proof of − Γ, A and π2 is a proof of − B,∆ to which proof-structures Θ1

and Θ2 have been associated, then the proof π′ obtained from π1 and π2 by means of a
times rule is interpreted by means of the proof structure Θ obtained from Θ1 and Θ2 by
linking A and B together via a times link. Therefore A and B are no longer conclusions
and a new conclusion A⊗B is created.

5. If π1 is a proof of − Γ, A and π2 is a proof of − A⊥,∆ to which proof-structures Θ1

and Θ2 have been associated, then the proof π′ obtained from π1 and π2 by means of a
cut rule is interpreted by means of the proof structure Θ obtained from Θ1 and Θ2 by
linking A and A⊥ together via a cut link. Therefore A and A⊥ are no longer conclusions.

Definition 16

A proof-structure Θ is sequentializable when it is associated to a proof of sequent
calculus. This proof is called a sequentialization of Θ and is not unique : permutations
of rules will produce the same structure.

Anyway, the main problem is to find a sequentialisation theorem ; this means to give an
intrinsic characterization of sequentializable proof-structures.
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E.3 Proof-nets

Definition 17

A switching S of a proof-structure Θ consists in the selection of a choice S(L) ∈ {l, r}
for all

&

-links of ϕS(Θ).

Definition 18

Let S be a switching of a proof-structure Θ ; we define the graph ΘS as follows :

I The vertices of ΘS are the formulas of Θ ;

I For all ID-links of ϕS(Θ), we draw an edge between the conclusions ;

I For all CUT -links of ϕS(Θ), we draw an edge between the premises ;

I For all ⊗-links of ϕS(Θ), we draw an edge between the left premise and the conclu-
sion, and between the right premise and the conclusion ;

I For all

&

-links L of ϕS(Θ), we draw an edge between the premise (left or right)
selected by S(L) and the conclusion.

Definition 19

A proof-structure Θ is said to be a proof-net when for all switchings S, the graph ΘS
is connected and acyclic.

We immediately get the

Theorem 3

If Θ is sequentializable, then Θ is a proof-net.

Proof. — The proof is straightforward and uninteresting. 2

E.4 The sequentialization theorem

Theorem 4

Proof-nets are sequentializable.

This is a non-trivial result, first proved in [12] ; what we have indeed presented here is a
simplified version of the criterion, due to Danos and Regnier, [6].

E.5 Cut-elimination for proof-nets

The crucial test for the new syntax is the possibility to handle syntactical manipulations
directly at the level of proof-nets (therefore completely ignoring sequent calculus). When
we meet a cut link

A A⊥

we look at links whose conclusions are A and A⊥ :
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(1) One of these links is an axiom link, typically :

A
...

...
A⊥A⊥

such a configuration can be replaced by

...
A⊥

...

however the graphism is misleading, since it cannot be excluded that the two occurrences of
A⊥ in the original net are the same ! But this would correspond to a configuration

A A⊥

and such configurations are excluded by the correctness criterion.

(2) If both formulas are conclusions of logical links for ⊗ and

&

, typically

B ⊗ C
B C B⊥ C⊥

B⊥

&

C⊥

...
...

...
...

then we can replace it by

B C

...
...

...

B⊥ C⊥

...

and it is a very interesting exercise to show that the new structure still enjoys the correctness
criterion. This cut-elimination procedure has very nice features :

1. It enjoys a Church-Rosser property, i.e. it is deterministic

2. It is linear in time : simply observe that the proof-net shrinks with any application of
steps (1) and (2) ; this linearity is the start of a line of applications to computational
complexity, typically [16].

3. The treatment of the multiplicative fragment is purely local ; in fact all cut-links can be
simultaneously eliminated. This must have something to do with parallelism and by the
way Yves Lafont developed his interaction nets as a kind of parallel machine working like
proof-nets [21, 23].
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E.6 Geometry of interaction

By far the best explanation of the identity links can be taken from electronics. Think of a
sequent Γ as the interface of some electronic equipment, this interface being made of plugs of
various forms A1, . . . , An ; the negation corresponds to the complementarity between male
and female plugs. Now a proof of Γ can be seen as any equipment with interface Γ. For
instance the axiom link is such a unit and it exists in everyday life as the extension cord :

A⊥ A

Now, the cut link is well explained as a plugging :

. . . ∆. . .

A A⊥

Γ

The main property of the extension cord is that

. . .Γ

behaves like

. . .Γ

It seems that the ultimate, deep meaning of cut-elimination is located there. Moreover
observe that common sense would forbid self-plugging of an extension cord :

which would correspond, in terms of proof-nets to the incestuous configuration :

A A⊥

which is not acknowledged as a proof-net ; in fact in some sense the ultimate meaning of
the correctness criterion (theorem 4) is to forbid such a configuration (and also disconnected
ones).
This analogy with plugs is the starting point of Geometry of interaction. Can we push our
electronic analogy so as to accommodate the other links ?
Let us first precise the nature of our (imaginary) plugs ; there are usually several pins
in a plug. We shall restrict ourselves to one-pin plugs ; this does not contradict the fact
that there may be a huge variety of plugs, and that the only allowed plugging is between
complementary ones, labelled A and A⊥.
The interpretation of the rules for ⊗ and

&

both use the following well-known fact : two
pins can be reduced to one (typical example : stereophonic broadcast), which is called
multiplexing.
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I ⊗-rule : from units π, λ with respective interfaces − Γ, A and − ∆, B , we can built
a new one by merging plugs A and B into another one (labelled A ⊗ B) by means of a
multiplexer.

Γ
π A

A⊗B
Bλ

∆

I

&

-rule : from a unit µ with an interface − C,D,Λ , we can built a new one by merging
plugs C and D into a new one (labelled C

&

D) by means of a multiplexer :

C

D µ

. .

. . . Λ

C

&

D

.

To understand what happens, let us assume that C = A⊥, D = B⊥ ; then
A⊥

&

B⊥ = (A⊗B)⊥, so there is the possibility of plugging. We therefore obtain

. . .

. . . Λ

A⊥

µB⊥
A⊥

&

B⊥A⊗B

Γ
π A

λ B
∆

But the configuration

is equivalent to (if the muliplexers are the same)

and therefore our plugging can be mimicked by two pluggings

B⊥λ B µ

. . .

. . . Λ

A⊥π A
Γ

∆
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Moreover, if we remember that coding is based on a development by means of Fourier series
(which involves the Hilbert space) everything that was done can be formulated in terms of
operator algebras : multiplexing can be interpreted by means of an isometry x⊕y ; p(x) +
q(y) of H⊕H into H, equivalently by means of two partial isometries p∗p = q∗q = 1, p∗q =
q∗p = 0. In fact the operator algebra semantics enables us to go beyond multiplicatives and
quantifiers, since the interpretation also works for exponentials. We shall not go into this,
which requires at least some elementary background in functional analysis ; however, we can
hardly resist mentioning the formula for cut-elimination

EX(u, σ) := (1− σ2)u(1− σu)−1(1− σ2)

which gives the interpretation of the elimination of cuts (represented by σ) in a proof rep-
resented by u. Termination of the process is interpreted as the nilpotency of σu, and the
part u(1− σu)−1 is a candidate for the execution. See [14], for more details.
Let us end this subsection with yet another refutation of weakening and contraction :

1. If we have a unit with interface − Γ, it would be wrong to add another plug A ; such a
plug (since we know nothing about the inside of the unit) must be a mock plug, with no
actual connection with the unit . . . Imagine a plug on which it is written “danger, 220V”,
you expect to get some result if you plug something with it : here nothing will happen !

2. If we have a unit with a repetitive interface − Γ, A,A, it would be wrong to merge them
into a single one : in real life, we have such a situation with the stereophonic output plugs
of an amplifier, which have exactly the same specification. There is no way to merge these
two plugs into one and still respect the specification. More precisely, one can try to plug
a single loudspeaker to the two outputs plugs simultaneously ; maybe it works, maybe it
explodes, but anyway the behavior of such an experimental plugging is not covered by
the guarantee . . .

E.7 Proof-nets and duality

The correctness criterion, i.e. theorem 4 can indeed be seen as the closest prefiguration
of our program. So assuming that we have a proof-structure Θ, i.e. a would-be proof of
a single formula A, without cut, and assuming that we are given a switching S of Θ, we
shall produce a paraproof of − A⊥. As usual, we start with the conclusion, until we reach
axioms. The formulas occurring in the sequents of our paraproof will be the negations of
the formulas of Θ. The (non)-deterministic algorithm is as follows (sequents are considered
up to order, i.e. modulo exchange) :

1. If I get a sequent − Γ, B

&

C, and if B⊥, C⊥ occur in Θ, then I can apply a

&

-rule, with
the sequent − Γ, B, C as premise.

2. If I get a sequent − Γ, B ⊗ C, and if B⊥, C⊥ occur in Θ as the premises of a

&

-link L,
then I can apply a ⊗-rule whose premises are

I − Γ, B and − C if S(L) = l

I − B and − Γ, C if S(L) = r

3. Otherwise − Γ is accepted as an axiom (paralogism
�

Give up � )

Such a paraproof can be represented as a proof-structure, which is exactly as a usual one,
but for the fact that arbitrary axioms (i.e. links with no premises and the formulas of Γ as
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conclusions) are used to represent the axiom − Γ ; except for this detail, this proof-structure
is indeed a (para-) proof-net, which is indeed uniquely determined by S.
Now, remember our concern

1. Cut-elimination still holds.

2. Paralogisms produce
�

enough � paraproofs.

As to (1), I can perform a cut between my proof-net of A and my paraproof-net of A⊥ and
perform cut-elimination in this paraproof-net, up to the moment where all ⊗ and

&

-links have been eliminated. Geometrically I end with a connected and acyclic structure,
containing only axioms and cuts. This corresponds to the necessity of the criterion, theorem
3.
As to (2), if I consider those paraproof-nets coming from switchings, then the sufficiency of
the criterion, theorem 4 enables one to sequentialize my proof-net. Indeed the switchings
should be seen as a dense subset of paraproofs.
The homogeneity between proofs and paraproofs is total and proofs are distinguished by the
fact of using legal axioms (this can be given a geometrical explanation too, but I hope that
I did enough to illustrate the idea).
This interpretation is asynchronous, i.e. it is enough to consider the result of the cut-
elimination, which is a connected and acyclic graph. Everything can be reformulated in
terms of partitions and duality of partitions, see [6].

E.8 Non-commutativity

If we draw a proof-net on a sheet, we shall observe crossings between axiom links. This is due
to the rule of exchange, which expresses commutativity. But if we forbid exchange (indeed we
can accept circular exchange), then the proofs become planar. Abrusci has recently found an
alternative criterion which does not mention planarity. This criterion is homogeneous with
my original criterion for proof-nets, and this is why it works simultaneously for commutative
and non-commutative logics, which are therefore compatible, [3]. My original criterion was
formulated in terms of permutations (indeed partitions are forgetfully obtained as the cycles
of the permutations). This indicates where to look in order to be non-commutative.
. . . But partitions or permutations or operators, etc. will never make it, since we cannot
abolish time !

F Time

Here we shall be concerned with logical time. Something must be clear to start with, namely
that time cannot be located in the bleak bureaucracy known as temporal

�
logics � : time

is about dynamics, not kinematics. . . But it is more difficult to find its precise location. We
shall below interpret time as a failure of association, i.e. as a mismatch between connectives.
In fact the crucial point is the proof of associativity of the Tensor :

F.1 Associativity

We first prove a lemma :
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Proposition 3

If X,Y are arbitrary subsets of M , then (X.Y ⊥⊥) ⊂ (X.Y )⊥⊥.

Proof. — Let x ∈ X, b ∈ Y ⊥⊥, z ∈ (X.Y )⊥ : we want to show that xbz ∈ ⊥. For this take
y ∈ Y and observe that zxy ∈ ⊥, which shows that zx ∈ Y ⊥, from which bzx ∈ ⊥. 2

Associativity easily follows : A⊗(B⊗C) = (A.(B.C)⊥⊥)⊥⊥ = (A.(B.C))⊥⊥ = (A.B).C))⊥⊥ =
((A.B)⊥⊥.C)⊥⊥ = (A⊗B)⊗ C.
By the way, our argument is still valid in the absence of commutativity, provided ⊥ is cyclic,
i.e. xy ∈ ⊥ ⇒ yx ∈ ⊥. In general, one can define two orthogonals, X⊥ = {x;xX ⊂ ⊥} and
X> = {x;Xx ⊂ ⊥}, and cyclicity equals them. In the absence of cyclicity, we get left and
right facts, right facts being those X of the form Y >, i.e. X = X⊥>. If we define the tensor
as (X.Y )⊥>, then we cannot prove our lemma any longer, i.e. associativity fails : the same
proof works, but we cannot finally replace bzx with xbz.

F.2 Positivity

Imagine now that we want to prove that ⊗ distributes over ⊕, a crucial property ; we shall
prove a similar lemma for ⊕ :

(X ∪ Y ⊥⊥) ⊂ (X ∪ Y )⊥⊥

from which associativity can be reduced to X.(Y ∪ Z) = X.Y ∪X.Z.
Say that a monotonous function Φ from ℘(M) to itself is positive when it enjoys
Φ(X⊥⊥) ⊂ Φ(X)⊥⊥. Then union and product are binary positive functions. By the way all
0-ary functions (i.e. all sets) enjoy the 0−ary analogue, X ⊂ X⊥⊥, in particular ∅ and {1}.
The property of positive operations, is that when performing a cluster of such operations,
we do not need any biorthogonal, but the final one, typically instead of Ψ(Φ(X⊥⊥)⊥⊥)⊥⊥,
we can content ourselves with the simpler Ψ(Φ(X))⊥⊥. This is the technical meaning of the
associativity (in the general sense of association) of positive operations. In terms of time, a
step is definitely performed when we alternate polarities, i.e. perform a negative operation
after a positive one. This is reflected in our approach (the hypersequentialized calculus) in
which the basic rules are clusters of rules of the same polarity.

F.3 Negativity

A negative function is just a monotonous function mapping facts to facts. So are & = ∩ and

&

, and so are the constants ⊥ and > = M . Negative operations associate too, the only
difference being that the biorthogonals must be performed first. Now if we iteratively apply
positive and negative operations, the only moment when we really need the biorthogonal is
when a positive operation Ψ is followed by a negative one Φ : . . .Φ(Ψ(. . .)⊥⊥) . . .. The need
for double orthogonal causes the failure of associativity between the two groups, typically,
in spite of the distributivities between ∩ and ∪, there is no distributivity between & and ⊕ :
X ∩ (Y ∪ Z)⊥⊥ cannot be simplified.

F.4 Association

Jean-Marc Andreoli [4] was the first person to stress this distinction. In terms of proof-
search, the connectives ⊥,>,&, &

are invertible : this means that when we meet a formula
starting with one of these connectives in a sequent, we can decide that the last rule is THE
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(unique) rule for this connective, e.g. if we meet − Γ, A

&

B, we can decide that the last
rule is the

&

-rule with the premise − Γ, A,B.
�

We can decide � means that, whatever we
do, we are bound to use this rule later, and that this will change nothing 37. Andreoli called
these connectives asynchronous, because of their indifference to time. Observe that negative
operations associate, simply make a cluster of all negative operations iteratively available.
Given any sequent, we can deterministically reduce its provability (indeed its proofs) to the
provability of other sequents made of positive formulas.
In this way, we can easily justify the associativity of the

&

, or its distributivity over & :
the sequents to which one can reduce − Γ, A

&

(B & C) and − Γ, (A

&

B) & (A

&

C) are
the same, namely − Γ, A,B and − Γ, A, C.
By the way, we established (through duality) the distributivity of ⊗ over ⊕, by invertibility,
and there must be a dual property. The positive connectives are far from being invertible :
there is no rule for O, the rule for 1 only works in presence of an empty context, and the rules
for ⊗ and ⊕, seen from below, i.e. from the viewpoint of proof-search, are very problematic

1. If we decide to apply the ⊗-rule to get the conclusion − Γ, A⊗B, then we have to guess
a splitting of Γ into Γ′,Γ”, Γ′ going with A, and Γ” going with B.

2. If we decide to apply the ⊕-rule to get the conclusion − Γ, A⊕B, then we have to decide
between A and B.

3. The problem is not only that when deciding to apply a rule we are forced to make choices :
deciding to apply a rule at all is already a commitment : given − A⊗B,C ⊕D, we must
choose between the ⊗ and the ⊕, since in general only one of them can be performed.

Andreoli’s observation, known as focalization, does not fix drawbacks (1) and (2), but dras-
tically reduces (3) : if we choose the right moment to use a ⊗-rule, then we can immediately
perform a cluster of positive rules, up to the moment we reach negative constituents. Typ-
ically, take − Γ, A ⊗ (B ⊗ C) ; I am not sure that the last rule is a ⊗-rule, but if I accept
to bet, I can immediately proceed with the internal tensor, i.e. it is not more dangerous to
split into A and B and C than into A and B ⊗ C.
This is indeed the algorithmic contents of our proof of associativity : if A is interpreted as
the set of contexts Γ such that − Γ, A is provable, then A•.B• is the set of contexts Γ such
that − Γ, A ⊗ B is provable, with the ⊗-rule as the last rule, and the double orthogonal
corresponds to the general case when the last rule might work on the context Γ ; the abuse of
biorthogonals corresponds to an alternation between the context and A⊗B, and positivity
enables one to make only one final alternation.
The distinction positive/negative makes sense for quantifiers as well : ∀ is negative, ∃ is pos-
itive. As to exponentials, the situation is more complex :

�
! � behaves like a combination

ΦΨ, Φ positive, Ψ negative, and therefore exponentials have a strange associative behavior,
reflected in !(A&B) =!A⊗!B, the only socialization between the negative & and the positive
⊗. Exponentials are therefore strongly temporal ; they definitely scanse (at least) one step.

F.5 Synthetic connectives

A current misconception, which has been mine for a long time, is to consider that any
formula φ[A1, . . . , An] defines a connective. This is indeed not the case, since we may fail

37. There is something like this, in the theory of the Chess openings, where one can reach the same position
through transpositions of moves : this has a tactical value, namely to reduce possibilities of the opponent.
The same occurs here : if we perform the invertible operations first, we augment the possibilities, i.e.
invertible rules are the locks which command non-invertible ones.
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to find specific rules for this connective (and the rules for its dual φ[A1
⊥, . . . , An⊥]⊥). The

condition for the existence of specific rules is exactly that we can perform the deconstruction
of φ as a cluster. This is exactly true when φ is homogeneous, i.e. is a cluster of connectives
of the same polarity. Let us give two examples :

1. P ⊕ (Q ⊗ R) defines a ternary connective, with two rules, which can be justified by
focalization ; the rule of the dual P & (Q

&

R) is obtained by invertibility.

2. P ⊕ (Q&R) does not define a connective ; in fact its dual P & (Q⊕R) is problematic :
the two rules

�
From − Γ, P and − Γ, Q derive − Γ, P & (Q ⊕ R) � and

�
From − Γ, P

and − Γ, R derive − Γ, P & (Q ⊕ R) � are not enough. For instance they will not be
sufficient to prove − P⊥ ⊕ (R⊥ &Q⊥), P & (Q⊕R).

NON SI NON LA
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