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Institut de Mathématiques de Luminy, UPR 9016 – CNRS

163, Avenue de Luminy, Case 930, F-13288 Marseille Cedex 09

girard@iml.univ-mrs.fr

February 19, 1998

Abstract

El método inicial que imagino era relativamente sencillo. Conocer bien el español, recu-
perar la fe católica, guerrear contra los moros o contro el turco, olvidar la historia de Europa
entre los años de 1602 y de 1918, ser Miguel de Cervantes. Pierre Ménard estudió ese proced-
imiento (sé que logró un manejo bastante fiel del español del siglo diecisiete), pero lo descartó
por fácil. [. . . ]

Mi complaciente precursor no rehusó la colaboración del azar : iba componiendo la obra
inmortal un poco à la diable, llevado por inercias del lenguaje y de la invención. Yo he contráı
el misterioso deber de reconstruir literalmente su obra espontánea. Mi solitario juego está
gobernado por dos leyes polares. La primera me permite ensayar variantes de tipo formal o
psicológico ; la secunda me obliga a sacrificarlas al texto

�
original � y a razonar de un modo

irrefutabile esa aniquilación.
J.-L. Borges Pierre Ménard autor del Quijote, 1939.

The paper expounds the solution to our search for meaning [3] in a particular case : the
fragment of logic built from the neutral elements ⊥,>,1,0 by means of the connectives

&

,&,⊗,⊕.
As explained in the previous paper and summarized in the abstract, the task is to produce
a trivial meet between syntax and semantics, but in a non-trivial way. Typically, we cannot
content ourselves with a plain game-theoretic paraphrases of logic ; we have to deconstruct
familiar syntax and to reconstruct it in another way. But, as in the case of Ménard recon-
structing the Quijote, the synthesis is absolutely prior to the analysis. . . in particular the
presentation analysis/synthesis that we follow is completely alien to the very spirit of the
work.
We shall organize a sort of tunnel between syntax and semantics, with a meet in between :
the analysis will replace syntax with a game-theoretic variant, and synthesis will elaborate
an abstract notion of game, which can be specialized to our fragment and yield exactly the
analytic games.

Analysis We shall modify the extant sequent calculus into a hypersequentialized version
HC, which has internalized the alternation positive/negative to the extent that even
negative formulas disappear. . . the usual connectives being replaced with synthetic con-
nectives. The configurations of HC can be fully analyzed by means of various game-
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theoretic artefacts. Moreover, HC admits wrong logical rules (paralogisms 1), which are
essential to prove the basic equivalences between usual logic and the game version in HC.
These paralogisms have a heavy price : who uses them loses, and we end with a complete
equivalence between usual logic and winning strategies in a sort of analytic game.

Synthesis We can, starting with the geometrical idea of iterated division of space, build a
universal game. The disputes (i.e. the plays) of this game are equipped with a (sort of)
structure of coherent space. Then cliques in this coherent space may be seen as designs
(i.e. a very specific sort of strategy), and when a design is orthogonal to a counterdesign,
the unique dispute they share has at most one winner. If we define a behavior as a set
of designs equal to its biorthogonal, then logical formulas are interpreted as behaviors.
Then it is a matter of care to translate a design within a logical behavior into a paraproof
of the corresponding formula, and a winning design into a real proof. By the way, losing
corresponds to giving up or making a deliberate mistake to annoy the enemy, what is
called here a dog’s move, whose basic meaning (besides the fact that it might also make
your opponent lose) is that of an artificial obstruction : this is the geometrical meaning
of paralogisms.

Eventually, the paper ends into a trivial equivalence, what was sought. . . But this quest
for triviality was highly difficult : if the rest of the connectives is not yet available, there
is a reason for that : there is still a lot to do before reaching a state of highly non-trivial
triviality.
By the way, the framework here is only an approximation to the complete solution : it
seems necessary to present the material in a progressive way, first a simplified case (in which
for instance 8bf1 is not quite neutral), and then slightly complicate the pattern, the main
avenues remaining unchanged.

Remark. — Our interpretation is based on seven pillars, that we distinguish by different fonts/styles,
namely :

I Fingers (in French : doigts ; intuition : subformula index) i, j, k, . . .

I Hands (in French : mains ; intuition : formula) σ, ξ, η, . . .

I Blokes (in French : gonzes ; intuition : sequent) Ξ − Σ, or a,b, c, . . .

I Mauls (in French : mêlées ; intuition : proof of the empty sequent) m,n, p, . . .

I Disputes (in French : disputes ; intuition : process of normalization) [m0, . . . ,mn] or D,E,F, . . .

I Designs (in French : desseins ; intuition : proofs and paraproofs) S, T ,R, . . .
I Behaviors (in French : comportements ; intuition : the meaning of a formula) G,H,K, . . .

1 The hypersequentialized calculus

We recall that formulas are classified according to their polarity :

I 1,0 and formulas starting with ⊗,⊕ are positive.

I ⊥,> and formulas starting with

&

,& are negative.

We shall later introduce the atom 0[ (positive), the boot. As usual we should pay attention to
repetitions of formulas, i.e. the phenomenon of occurrences. But there is a very radical way
to do so, namely to have infinitely many constants —say 0[i,0i— and to use systematically
fresh constants.

1. To avoid misunderstandings : the mistakes are volontary, nothing to do with —say—
�

abduction � .
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1.1 Synthetic connectives

Take a formula, say positive ; then we can decompose it into its subformulas, and go on until
we stop, either because we reach an atom like 0, or a negative formula. Then our formula
looks like P = ψ[N1, . . . , Nk], where φ is a cluster of positive connectives and the Ni are
negative. We can rewrite this as P = φ[P1, . . . , Pk], where the Pi are the negations of the Ni.
Typically L⊕(M⊗N) will appear as a ternary operation φ[P,Q,R] = P⊥⊕(Q⊥⊗R⊥). The
major property of these new connectives is that they lead from positive to positive, i.e. that
there is no longer any negative formula. This is made technically possible by the focalization
property of Andreoli [1], which states the possibility of handling a cluster of connectives of
the same polarity as a single connective, see also [3], annex F.

Proposition 1

If X is a finite coherent space, then the following are equivalent :

I X is series/parallel, i.e. it can be built from the coherent space 1 by means of the
constructions & (series) and ⊕ (parallel).

I X harbors no horseshoe, i.e. no 4-element subgraph such that a _ b _ c _ d and
b ^ d ^ a ^ c.

I X can be contracted into one point by iteration of the operation : if x, y are undis-
cernible, i.e. ∀z 6= x, y (z _ x⇔ z _ y), then remove one of x, y.

Such an X is called contractile. If X 6= ∅ and C is a maximal clique in X and D is a
maximal anticlique in X, then C ∩D 6= ∅.

Proof. — Folkloric. 2

Definition 1

A n-ary synthetic connective X is a finite set of propositional variables {p1, . . . , pn}
equipped with a structure of contractile coherent space.

Typically :

1. The empty coherent space (corresponding to the constant 0 of linear logic)

2. The binary connective p1 _ p2, which corresponds to the connective p1
⊥ ⊗ p2

⊥ of linear
logic.

3. The binary connective p1 ^ p2, which corresponds to the connective p1
⊥ ⊕ p2

⊥ of linear
logic.

4. There is no synthetic connective corresponding to the constant 1 ; in fact the only rea-
sonable candidate would be the empty set which already takes care of the constant 0 ; a
coherent space with one point corresponds to the positivization of negation, i.e. ↓p is p⊥

made positive 2. The constant 1 will therefore be ↓0[, where 0[ is a new constant specific
of HC. By the way, interpreting 1 as ∅ would force 1 ⊕ 1 to be empty as well, but this
would cause a degeneracy of the interpretation, since 1⊕ 1 is a reasonable interpretation
of booleans.

2. In terms of games, a positive formula corresponds to
�

I start � , and negation is the interchange between
players ; ↓p is still positive, i.e. a dummy first move being added : ↓ is not involutive, since doing it twice
will produce the same plays, but with two additional dummy moves, which do matter !
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Definition 2

Let φ[N1, . . . , Nk,11, . . . ,1l] be a positive formula built on the formulas N1, . . . , Nk
(negative) and 11, . . . ,1l (occurrences of 1), by means of 0, ⊕, ⊗. Let 0[1, . . . ,0

[
l be

occurrences of the (positive) atom 0[. Then we construct a synthetic connective X on
a subset of the positive atoms N1

⊥, . . . , Nk⊥,0[1, . . . ,0[l :

1. If φ = 0, then X is the empty coherent space.

2. If φ = 1i (resp. Ni) then X is the unit coherent space on the atom 0[i (resp. Ni
⊥).

3. If φ = φ1 ⊕ φ2, then X = X1 ⊕ X2 (i.e. the parallel sum of the coherent spaces Xi)

4. If φ = φ1 ⊗ φ2, then X = X1 & X2 (i.e. the series sum of the coherent spaces Xi),
except if one of the Xi is empty, in which case X is empty as well.

Proposition 2

Let φ, X be as above, and let X be a non-empty maximal clique in X ; then

1. X cannot be empty, i.e. if φ = 0, there is no such X.

2. If φ is 1i or Ni, then X is the unique singleton clique of X.

3. If φ is φ1⊕φ2, then X is either a maximal non-empty clique in X1 or (exclusive or)
in X2.

4. If φ is φ1 ⊗ φ2, then X is the union of a non empty maximal clique in X1 and a
non-empty maximal clique in X2 : this excludes the case where one of X1,X2 is
empty.

Proof. — Obvious ; the proposition explains the peculiarities of definition 2. 2

1.2 The syntax of HC

Definition 3

The formulas in HC are defined inductively by :

1. The atom 0[ is a formula.

2. If X is a synthetic connective on the variables p1, . . . , pn and if P1, . . . , Pn are for-
mulas, then XP1, . . . , Pn is a formula.

From what precedes, one can associate to any positive formula P written in the fragment
1,0,⊥,>,⊗,⊕, &

,&, a unique formula of HC : one writes P as φ[N1, . . . , Nk, 11, 1l], where
φ is purely positive and the Ni are negative, and one replaces φ with the appropriate X,
applied to some of the Ni

⊥,0[j ; the 0[j are just occurrences of 0[ whereas the Ni
⊥ can in

turn be analyzed in the same way. Observe that 0[ does not correspond to anything in linear
logic, in particular one should not imagine that 0[ is a missing constant of LL (expressions
like 0[⊕ P do not seem to make sense in LL).

1.3 The calculus HC : cut-free part

Definition 4

A sequent Ξ − Σ consists in two multisets of formulas Ξ,Σ ; there must be at least
one formula in Ξ∪Σ and at most one formula in Ξ. A sequent with Ξ empty is said to
be major, a sequent ξ − Σ is said to be minor. We shall consider that we are working
with sets, i.e. that we are indeed dealing with occurrences.
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Definition 5

The rules of the (cut-free) sequent calculus HC are defined below ; some of them
will be considered as paralogisms, and therefore the other rules will be considered as
correct.

1. The hypothesis − Σ for any major sequent (paralogism) ; the expression hypothesis
means that the proof-tree is not quite well-founded, i.e. that something is missing.

2. The axiom 0[ − Σ (paralogism, unless Σ only consists in occurrences of 0[).

3. Let XP1, . . . , Pn be a formula, and let X be a non-empty maximal clique of X,
e.g. X = {pi1 , . . . , pik}. Then we are allowed to use the following rule : from
Pi1 − Σ1, . . . , Pik − Σk deduce − XP1, . . . , Pn,Σ1, . . . ,Σk.

4. Let XP1, . . . , Pn be a formula ; for each non-empty maximal clique X of X, e.g.
X = {pi1 , . . . , pik}, let us introduce ΥX = Pi1 , . . . , Pik . Then we are allowed to use
the following rule : from − ΥX ,Σ for each X, deduce XP1, . . . , Pn − Σ.

A paraproof is anything generated by these rules ; a proof is a paraproof without
paralogism.

Our distinction between axiom and hypothesis comes from the fact that in 1. Σ is major,
and that a rule introducing a major sequent should have at least one premise. This is not
the case for minor sequents, which have a well-defined rule introducing them, which may
be without premise ; this is why 2. is called axiom. By the way, the case X = ∅ (i.e. 0)
produces an axiom too, see below. It is quite easy to see that :

1. When X is empty, then there is no rule introducing X to the right, but X − Σ is an
axiom : this corresponds to the connective 0.

2. The rules of X[P1, P2] will correspond to the rules for the tensor P1
⊥ ⊗P2

⊥ (if P1 _ P2)
or the sum P1

⊥ ⊕ P2
⊥ (if P1 ^ P2).

3. The constant 1 is represented by ↓0[, but the situation is more complex :

(a) Since the only correct axioms are of the form 0[ − 0[, . . . ,0[, a real proof of a sequent
involving ↓0[ to the right must somewhere use the right rule for ↓, i.e. derive some
− Σ, ↓0[ from 0[ − Σ, whose only real proof consists in an axiom, but Σ must then
consist of occurrences of 0[. This corresponds to the

�
derived axiom � − 1,0[, . . . ,0[.

(b) Now given any paraproof of Ξ − Σ, one can produce a
�

weakened � paraproof of
Ξ − Σ,0[, by adding some 0[ to the right of all sequents of the paraproof. Moreover,
this operation preserves correctness. This indeed justifies the derived rule

�
From − Σ

derive 1 − Σ � , which is weakening.

(c) We therefore see that the rules for 1 and ⊥ are faithfully represented. However
the case of weakening is awfully non deterministic : typically, in the case of − XPQ,
where X means p⊥ ⊗ q⊥, the addition of 0[ to get − XPQ,0[ will involve a choice
between P and Q, e.g. to modify the premises P − and Q − into P − 0[ and Q −. In
other terms, we rediscover the absence of satisfactory proof-nets for the multiplicative
neutrals, that we shall formulate in a more drastic way : the multiplicative neutrals
are not quite neutral, at least in the present setting. In the next paper [4], they will
be neutral. But we refuse to introduce the full setting corresponding to exponentials
for such a marginal issue.
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From this it is quite easy to prove a correspondence between (real) cut-free proofs in HC
and cut-free proofs in the fragment of linear logic under study. Let us for instance look at
the less trivial part, i.e. how we can translate a proof of a sequent − A in our fragment into
a HC-proof.

1. We write the final sequent as − A if A is positive, or A⊥ − if A is negative. We also
modify the proof so as to use no identity axiom :

�
reverse η-conversion � .

2. We are iteratively led to the more general situation of a cut-free proof of a sequent Ξ − Σ,
made of positive formulas, and with at most one formula in Ξ. Moreover the proof does
not use the identity axiom of linear logic.

3. If Ξ = P , then, by appropriate permutations of rules, we can make sure that the last
rule of the proof introduces P to the left, typically P = A ⊗ B, then the premise is
A,B − Σ, and in case one of A,B is not negative, we iterate the process. Eventually we
get a portion of proof using only left rules, and starting with sequents Θi − Σ, where the
Θi are non-empty multisets of negative formulas. Indeed I can put the Θi to the right
by negating them, and I can produce a bijection f : Θf(X)

⊥ = ΥX so that the sequents
− Σ,ΥX , are exactly the premises of the left rule of the appropriate synthetic connective.

4. If Ξ = ∅, then we can apply focalization, i.e. that —up to permutation of rules— one of
the formulas of − Σ, say P , is such that a cluster of right rules has been applied, up to
the negative constituants of P ; the premises of the cluster are of the form − Σi, Ni, and
if we replace them by Ni

⊥ − Σi we are in the position to apply one of the right rules of
the appropriate synthetic connective. Observe that, due to the possibility of alternative
focalizations, several distinct HC-proofs can arise in this way.

5. One should be slightly more precise with 1,⊥, but this is a minor pedantic issue.

6. Last but not least : no paralogism is used in the translation.

1.4 The full HC

The consideration of cut forces one to use some proof-net technology, i.e. boxes and cut-links,
see [3].

Definition 6

By a box we mean a sequent, together with a justification. The justification can be —at
this stage— rather arbitrary, i.e. boxes interact through the formulas of the sequent,
which are the doors of the box ; observe that a box has at most one main door, i.e.
the formula which is on the left-hand side of the sequent, the others being auxiliary ;
the main door P is indicated by P − —after all the turnstile is a sort of door. Given
boxes B0, . . . ,Bn, we can produce a cut-net, by means of only two links :

I The boxes, seen as generalized axioms (conclusions : the formulas of the sequent,
but the main door is understood

�
negatively � ).

I The cut-link, which links a main door with an auxiliary door, which are occurrences
of the same formula. The cut-link has therefore two premises, no conclusion, and
the premises cannot be reused for another link.

Moreover the graph induced by the cut-net should be connected and acyclic.
The conclusion of the cut-net is Ξ − Σ, where Ξ,Σ consist of all formulas that are
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not used as premises of cut-links, Ξ listing the main doors and Σ listing the auxiliary
doors. It is easy to see that Ξ consists of at most one formula. However we cannot
claim that the conclusions form a sequent, since both Ξ and Σ might be empty. . . and
this is indeed the most important case ! When we want to allow − we speak of an
extended sequent.

The calculus with cuts is defined inductively as follows : a paraproof of a (n extended)
sequent consists in a cut-net with this sequent as conclusion, and whose boxes are justified
as follows :

1. A box with conclusions − Σ can be justified by the magical expression hypothesis.

2. A box with conclusions 0[ − Σ must be justified by the expression axiom.

3. A box with conclusions − XP1, . . . , Pn,Σ1, . . . ,Σk can be justified by means of a non-
empty maximal clique of X, e.g. X = {pi1 , . . . , pik}, together with cut-nets whose respec-
tive conclusions are Pi1 − Σ1, . . . , Pik − Σk.

4. A box with conclusions XP1, . . . , Pn − Σ must be justified by the data, for any non-
empty maximal clique X of X, e.g. X = {pi1 , . . . , pik}, of a cut-net whose conclusions are
− ΥX ,Σ, with ΥX = Pi1 , . . . , Pik .

Observe the difference between
�

must � (minor sequents) and
�

can � (major sequents).
Remember the distinction between cut-nets (with unjustified boxes), and paraproofs (where
the boxes are in turn justified by cut-nets).
The cut-free calculus is the particuliar case where all cut-nets which hereditarily occur are
indeed boxes.

1.5 Cut-elimination : eager version

In this process, all cuts will be eliminated. It is done as follows : we select a cut-link anywhere
(including in the hereditary justifications of the boxes) and then we proceed according to the
case. We now assume that our cut is between two occurrences of ξ, one being an auxiliary
door of a box B ending with the conclusions Ξ − Σ, ξ and the other the main door of a box
B′ whose conclusions are ξ − Σ′. The idea is to produce a cut-net whose conclusions are
Ξ − Σ,Σ′ and to replace the configuration

�
Two boxes and the cut-link � with it. In all

the minor cases, the cut-net is indeed a box, but in the main case it is a non-trivial cut-net,
i.e. some destruction of boxes has been performed.

hypothesis If Ξ = ∅ and B is justified as a hypothesis, then we just replace the two boxes
with a single one (conclusions − Σ,Σ′), justified as a hypothesis.

axiom If Ξ = 0[, then B is justified as an axiom ; then we just replace the two boxes with
a single one (conclusions 0[ − Σ,Σ′), justified as an axiom ; observe that, in case our
proof was a real one, correctness is respected.

negative commutation If Ξ = XP1, . . . , Pn, then B is justified by cut-nets nX , where
X varies through all maximal non-empty cliques of X. Each of these boxes nX has a
conclusion − Σ,ΥX , ξ and we can enlarge nX by means of a cut with the box B′ : this
yields a cut-net n′X whose conclusions are now − Σ,ΥX ,Σ

′. Then from the n′X we form
a box B′′ whose conclusions are Ξ − Σ,Σ′, which replaces the previous configuration.
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positive commutation If Ξ = ∅ and B is justified by cut-nets n1, . . . ,nk, but not with
the rule introducing ξ to the right, then one of the ni has ξ among its conclusions, say
i = 1. We cut n1 with B′, so as to get a cut-net n′1 ; then we can form a box with
n′1,n2, . . . ,n

′
k, say B′′, which replaces the previous configuration.

main case If Ξ = ∅ and B is justified by cut-nets n1, . . . ,nk, corresponding to a rule
introducing ξ to the right and assume that the respective conclusions of n1, . . . ,nk are
Pi1 − Σ1, . . . , Pik − Σk, and let X = {i1, . . . , ık}. Now B′ is justified by a bunch of
cut-nets, including one for X, say n′, whose conclusions are − Σ′,ΥX . ΥX is equal to
Pi1 , . . . , Pik , hence we can link the cut-nets n1, . . . ,nk with n′, yielding a cut-net n” :
this cut-net replaces our configuration.

Theorem 1

The procedure just described induces a deterministic full cut-elimination (strong nor-
malization).

Proof. — It would be out of proportion to prove such an easy result in full details. Let us
just give some hints as to the proof :

1. The first thing to check is that all operations preserve the property of being a cut-net :
immediate.

2. All possibilities of cut have been considered, so if the algorithm converges, all cuts will
be eliminated.

3. The small normalization theorem of [2] can be mimicked : associate a size to each box
and cut-net, namely :

(a) s(B) = 2 when B is axiom or hypothesis.

(b) s(B) = 1 +
∑
s(nX) when B is obtained by a

�
left rule � .

(c) s(B) = 1 + (s(ni1) . . . s(nik)), when B is obtained by a
�

right rule � .

(d) s(B) =
∏
s(Bi), when n is obtained from boxes Bi by means of cut-links.

It is easy to see that each step makes the size stricly decrease.

4. The last point is Church-Rosser, i.e. the determinism of the computation. This must be
obvious to people familiar with general proof-nets [2] or with interaction nets [6]. 2

2 Game-theoretic interpretation of HC

2.1 Cut-elimination : lazy case

Since the theorem is based on the decreasing of the size, we can investigate a lazy version,
namely not to use all our transformations. It will converge, i.e. stop, but not on a cut-free
paraproof, especially if we restrict our transformations to the main case, and do not even
allow to work inside boxes ; in that case, we can drastically simplify the size as :

1. s(B) = 0 when B is axiom or hypothesis.

2. s(B) = 1 + sup s(nX) when B is obtained by a
�

left rule � .
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3. s(B) = 1 + (s(ni1) + . . .+ s(nik)), when B is obtained by a
�

right rule � .

4. s(B) =
∑
s(Bi), when n is obtained from boxes Bi by means of cut-links.

and we rediscover the familiar linearity of lazy evaluation in the absence of exponentials.
But the question is to determine whether this is still interesting. For this we shall only
consider cut-nets with an empty conclusion −. The main point is that in such a cut-
net, at most one cut-link can be simplified : indeed there is exactly one (external) box
which has no main door, say − Σ, and this box is a hypothesis or it is justified by a right
introduction of ξ = XP1, . . . , Pn in which case this formula ξ is linked with a main door of
a box XP1, . . . , Pn − Σ′, which is also justified by a (here : left) introduction of the same ξ.
Then the main case applies, and we are left with a similar configuration. . . this procedure
is purely sequential, i.e. only one transformation can be performed at each step. When the
procedure stops, this is always because the major sequent is badly justified (hypothesis) :
otherwise, the formula ξ introduced to the right is distinct from 0[, hence we are in the main
case.
Now we decide to consider the cut-elimination steps as the moves in a particular play. Our
first concern is to individuate the players’s moves. For this, let us start with the simplest
case of a cut between P − and − P . After the first step we shall get —say— three boxes
(− P1, P5 ; P1 − and P5 −) with two cut-links, P1, P5 being immediate subformulas of
P . After the second step one of the Pi, say P5 will be split into —say— three immediate
subformulas, say P52, P55, P57, and the cut-net will now consist of five boxes (P52 −; P55 −;
P57 − P1; P1 −; − P52, P55, P57) with four cut-links. . . Now associate a parity to all the
hereditary subformulas of P , so that P is even, P5 is odd, P57 is even etc., i.e. the parity of
the depth of the subformula. Then one checks that :

1. Each sequent occurring at any stage in the process (i.e. any external box) has the property
that the right-hand side has s definite parity, which is opposite to the parity of the left-
hand side (if this makes sens). From this we can define a parity for any sequent, e.g.
P52 − is odd as well as P57 − P1 and − P1, P5, whereas − P and − P52, P55, P57 are even.

2. Each of the external cut-nets has a unique major sequent, and we observe that the parity
alternates. The first position is even, the second is odd, the third is even etc. We can
therefore see the process as the result of a dispute between the players Even and Odd.

3. If one the players stops, i.e. if cut-elimination cannot proceed further, it must be because
one of the players didn’t play, and this corresponds to a hypothesis. Clearly this player
loses. But what about the axiom for 0[ ? Indeed a configuration 0[ − Σi can be created
by an appropriate move from a configuration − Σ, Q, and Σi is now captive, in the sense
that, since 0[ cannot be activated, (remember : there is no right rule for 0[ !), it will
never be possible to proceed further. Thus the fact of giving part of the context Σ to 0[

is approximately the same as erasing Σi, and of course, erasing Σi may help a lot. This
is why this move is considered as unfair, more precisely to be a dog’s move. There is
however one exception : if Σi only consists of occurrences of 0[, we can hardly say that
some damage has been caused, since this part of the context was already frozen for ever.
We can summarize this by declaring that there two ways of losing :

give up Just stop playing (hypothesis).

dog’s move When playing, create a sequent 0[ − Σ, P , with P 6= 0[.
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2.2 Soundness

This is not yet the real thing, but just the remark that :

I A paraproof n of − P and a paraproof m of P − generate a finite dispute, noted nm, or
mn (we prefer not to distinguish in this notation between Even and Odd).

I If —say— n uses no paralogism, then Even wins the dispute nm.

As expected, soundness is basically a reformulation of cut-elimination.

2.3 Open your box, sir !

But we shall have some difficulty to prove a corresponding first approximation to complete-
ness. We ask for something very weak indeed : given a paraproof n of a sequent —say
− P—, is it possible to recover it from all disputes nm, when m varies through all para-
proofs of P − ? The difficulty is with unopened boxes : if a player can force his opponent
to open his boxes in the right way, then he is done.
Assume that Even plays following the paraproof n, and that Odd wants to reconstruct it.

I Even replaces − P with P1 −, P5 −, and Odd, obeying perinde ac cadaver replaces his
own P − with − P1, P5. Odd now must decide to check the paraproof above P1 − or
P5 −.

I He decides to see P5 − ; he knows that anyway the last rule of Even is the rule of a
specific connective X, whose premises are of the form − ΥX . He decides to check above
a specific − ΥX , and he chooses —say— X = {2, 5, 7}. Then Even obeys in turn like a
Jesuit and the new major sequent − P52, P55, P57 is created. . .

I Then Even must play or give up. If he plays, then Odd goes on as before.

I Eventually, a full branch of the tree will be explored.

Indeed, the exploration just described corresponds to a specific nm : the paraproof m starts
with a left-introduction rule, corresponding to a specific synthetic connective, it must have
a certain number of premises, including − Υ{1,5}, that we have actually used. . . but what
about the premise —say—− Υ{4,6,9}, if such a premise is needed ? This is simple, Odd gives
up (admits it as a hypothesis). In other terms, Odd can explore paraproofs only because
there are enough paralogisms, here

�
give up � .

Then the full structure can be reconstructed by allowing Odd to make other trials, i.e. the
paraproof n can been reconstructed from the disputes nm. But there is still a pending
question : if Even wins all disputes nm, does this mean that n is a real (i.e. correct) proof ?
In fact a strange phenomenon might perhaps happen when Odd explores a branch : at some
moment he couldn’t choose a move (i.e. a right introduction) corresponding to the formula
Q he would like to explore, to the effect that Even would win, but perhaps only for bad
reasons. In fact there could only be two possibilities :

1. Q begins with X, but there is no rule at all introducing Q the right : we are in the case
of the constant 0, the synthetic 0-ary connective. Odd would like to question 0 − Σ in n,
he cannot, but anyway this sequent is provable by a left introduction (no premise at all).

2. Q is 0[ and remember that there is no rule introducing 0[ to the right. But in this case,
Odd wants to check something like 0[ − Σ in n. But the presence of such a sequent in
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n can only be attributed to dog’s play, unless Σ is made of occurrences of 0[. In other
terms, either Even has already lost and Odd is wasting his time, or 0[ − Σ is a correct
axiom.

Since our potential objection didn’t work, n is a real proof as an easy consequence of the
additional remark that n is finite.
Let us reflect a little more on dog’s play : assume that Even wants to prove ⊥⊗⊥. Then he
starts splitting the tensor, and we get the configuration P −, Q − (for Even) against − P,Q
(for Odd), with P = Q = 1. Now if the poor Odd cannot play the dog, he must give up,
and Even has won too easily. So Odd will be allowed to play —say— 0[ − P and Even will
receive − 0[, on which he must give up, hence he loses. Now it would be excessive to give
the victory to Odd : since he

�
killed P � he loses too.

Dog’s play is not quite using a wrong rule, but using a rule in such a way that one premise
cannot be decently proven : typically, prove − P⊥ ⊗ 1,1 from P − and 0[− 1 is using a
correct rule. . . but introducing an

�
impossible � premise.

2.4 Projection

We now come to the syntactical aspect of the most important artefact, namely projection.
Assume for instance that our starting configuration is P −, Q − (for Even) against − P,Q
(for Odd). Now the dispute proceeds ; but would it be possible to produce a relativized
dispute, i.e. a dispute between P −, and − P ?. The answer is YES.
Let m be one of the configurations of the dispute ; the formulas occurring in m are either
subformulas of P or subformulas of Q. We decide to eliminate all subformulas q of Q as
follows : if we find two boxes Ξ − Σ,q and q − Σ′, we replace them with Ξ − Σ,Σ′. We
do this ad nauseam until we get a configuration made only of subformulas of P : these
configurations are the projections on P of the original ones.
Now consider any move, making us pass from a configuration to another. They fall into 4
classes, for which we indicate what happens to the respective projections of the initial and
final configurations.

P-Even (active) Even plays, with the focus in a subformula of P . Then this can mimicked
by the same move.

Q-Even (passive) Even plays, with the focus in a subformula of Q. This leaves no trace
on the projections.

Q-Odd (passive) Odd plays, with the focus in a subformula of Q. This move is not visible
on the projection.

P-Odd (active) Odd plays, with the focus on a subformula of P . Then it is possible
to find a move of Odd, with the same focus etc., which acts in the right way on the
projections.

In other terms a dispute can be projected as a dispute.
Projection is associative : if we had started with P − and Q − and R − (for Even) against
− P,Q,R (for Odd), then we could have projected on P in three ways, either directly, or by
first projecting on P,Q or on P,R : the three methods yield the same projection.
Projection is indeed the only convincing way to explain eager cut-elimination :
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Theorem 2

Let l,n,m be respective cut-free paraproofs of − P,Q and P − and Q − ; then we can
consider on one side the dispute lnm obtained by means of two cut-links, and project
it on P , so as to get a dispute lnm�P . We can also make a single cut-link on Q and
obtain through eager cut-elimination, a cut-free paraproof l(m) of − P , and we can
therefore produce a dispute l(m)n. Then

lnm�P = l(m)n

Proof. — Straightforward. 2

2.5 The game-theoretic translation

We are almost done with this side of the tunnel. The ultimate thing is to remove syntax :
for this we decide to specialize our construction w.r.t. a formula P of HC, and our results
—completeness, soundness— will refer to paraproofs of − P or P −.
We now consider the full tree of finite sequences of integers : I represent each subformula
of P by an element of the tree, typically P =< 0 >. If a subformula Q = XR1 . . . Rn is
represented by s, then we choose distinct indices i1, . . . , in, and represent R1 by s ∗ i1, Rn
by s ∗ in. The parity will correspond to the length of the sequence, i.e. < i0, . . . , in > has
the parity of n.
In fact we are not completely free in the choice of the indices : we must first split N into
two infinite subsets (even numbers and odd numbers if you want, but call them

�
simple �

and
�

multiple � ). Now, ik will be chosen simple when Rk 6= 0[, multiple otherwise.
Now our analysis led us to the point when the disputes nm can be described as particular
plays in a game involving this tree. Our problem is now to find an alternative description
of the same thing.

3 Disputes

3.1 Fingers, Hands and Blokes

Definition 7

Fingers are the elements of a denumerable set, say N ; we distinguish between simple
and multiple fingers, i.e. by writing N as the union of two infinite disjoint subsets, e.g.
even and odd numbers.
H is the tree of all finite sequences <x0, . . . , xn−1>, where xi ∈ N are fingers. The
elements of H of length 6= 0 are called hands ; according to the parity of n− 1 a hand
is even or odd. If we use

� ∗ � for concatenation, then σ ∗ τ 6 σ defines an order,
the subhand relation : if τ 6=<> one speaks of a strict subhand, if τ =<i>, of an
immediate subhand ; in that case parity alternates, e.g. an immediate subhand σ ∗ i
of an even hand σ is odd.
The hands s∗i with i simple are simple, whereas hands s∗i with i multiple are multiple.

Definition 8

A bloke Ξ − Σ consists in :

1. Two finite sets of hands Ξ,Σ ; these hands must be pairwise incomparable and Ξ∪Σ
must be non-empty
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2. The hands in Σ have the same parity ;

3. Ξ is either empty or consists of a single hand ξ of parity opposite to Σ (if non
empty) ; in the first case the bloke is major, otherwise it is minor ; the hand ξ of
the minor bloke b = ξ − Σ is the tutor of b.

The common parity of Σ and/or the parity opposite to Ξ is the parity of the bloke ;
there are therefore even blokes and odd blokes.
A bloke ξ − Σ with ξ multiple is said to be multiple ; other blokes are simple. A bloke
is schizoid when it is multiple, but its right-hand side contains at least one simple
hand.

We shall use the familiar conventions of sequent calculus, e.g. Σ,Σ′ for (disjoint) union, σ
instead of {σ}, so that we can write − Σ, σ or ξ − Σ, σ etc.

3.2 Mauls

Definition 9

The full maul M consists in all finite sequences of hands <σ0, . . . , σn−1>. This tree is
ordered as usual by : <σ0, . . . , σn+m−1>6<σ0, . . . , σn−1>.

Definition 10

An even maul m of is a finite subtree of M such that :

1. m is non-trivial, i.e. non restricted to its root <>

2. If a hand σ occurs in m, i.e. belongs to some <σ0, . . . , σn−1, σ>∈ m, then its parity
is equal to parity of n.

3. The hands occurring in m are pairwise incomparable, in particular there is at most
one sequence <σ0, . . . , σn−1, σ>∈ m ending with σ.

An odd maul is defined in the same way, except that the parity of σ such that
<σ0, . . . , σn−1, σ>∈ m is opposite to the parity of n.

In particular, we can associate blokes to a maul m, namely :

1. The bloke − Σ, with Σ = {σ;<σ>∈ m} ; this bloke is the unique major bloke of m. The
parity of m is equal to the parity of its major bloke.

2. For each ξ occurring in m through the sequence ` =<σ0, . . . , σn−1, ξ>∈ m, the bloke
ξ − Σ, with Σ = {σ; ` ∗ σ ∈ m}. These are the minor blokes of m.

Conversely, observe that a maul m can be recovered from its blokes : <σ0, . . . , σn>∈ m iff
σ0 belongs to the major bloke of m and for each i < n there is a minor bloke σi − Σ in m
with σi+1 ∈ Σ.

Example 1

Given a bloke Ξ − Σ we can form a maul by adding the atomic blokes σ − (for σ ∈ Σ)
and − ξ (for ξ ∈ Ξ). This maul is the standard maul associated with Ξ − Σ, and we
shall abusively note it Ξ − Σ.
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Remark. — An alternative presentation of a maul is a forest of hands (a forest is a partial order
such that for each x the set of points greater than x is linearily ordered). In that case the major
bloke is the set of maximal elements of the forest, whereas the minor bloke ξ − Σ gives the set Σ of
immediate predecessors of ξ.

It is sometimes convenient to introduce the unproper maul, namely the trivial tree reduced
to its root.

3.3 Actions and Disputes

Definition 11

Let m be a maul, with major bloke − Σ ; an action κ in m consists in the following
data :

1. A hand ξ ∈ Σ , the focus of the action ; we can therefore write
Σ = Σ′, ξ

2. A non-empty finite subset I of N ; let Ξ = {ξ ∗ i; i ∈ I}
3. For each i ∈ I a bloke ξ ∗ i − Σi ; we require Σ′ to be the disjoint union of the Σi.

Definition 12

The result m′ = κ(m) of the action κ is obtained as follows : m has a unique bloke
of the form ξ − Υ ; then κ(m) has exactly the same blokes as m′, except that − Σ is
replaced with the ξ ∗ i − Σi and ξ − Υ is replaced with − Υ,Ξ.

A direct description of m′ is the set of :

1. For any sequence <ξ, σ1, . . . , σn>∈ m, the sequence <σ1, . . . , σn>

2. For any sequence <σ0, . . . , σn>∈ m, with σ0 ∈ Σi, the sequence <ξi, σ0, . . . , σn>.

An action changes the parity of the maul. In images, if m is even, then Even acts, and
produces m′ which is odd ; then Odd may act etc.

Definition 13

A dispute is a finite sequence [m0, . . . ,mp], such that mi+1 = κi(mi) for appropriate
actions κi.
m0 is the initial maul of the action, mp its final maul ; n is the length (duration ?) of
the dispute.

The sequence of actions can be recovered from the sequence of mauls : this is why we never
indicate the actions of a dispute.

3.4 Output of a dispute

Definition 14

A dispute D is lost by Odd when one of the following holds :

schizoid bloke One of the odd blokes is of the form ξ − Σ, η, with ξ multiple and η
simple.

give up The last maul is odd.
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We define similarly the notion of dispute lost by Even. A dispute has necessarily at
least one loser, and by complement, at most one winner.

In general the starting maul is simple and contains no multiple hand. Then a schizoid odd
bloke ξ − Σ, η, with ξ multiple and η simple must have been created by an action of Odd,
what we call a dog’s move.
In order to win, Even must always be fair play, and should not give up, i.e. must be the last
to play. Of course unfair play will often be the only way to avoid giving up, at the price of
a draw. This is why we speak of

�
dog’s move � , see [3].

3.5 Projections

Definition 15

Let X,Y ⊂ H be two disjoint sets of hands closed under the subhand relation. X,Y
is said to realize an even splitting of a maul m when the following holds :

1. Every hand occurring in m belongs to X ∪ Y
2. If an even bloke of m contains a hand of X, then all hands of the bloke are included

in X. Odd splittings are defined in the same way.

A splitting is non-trivial when both X and Y meet m.

Example 2

An even bloke of m determines an even splitting : let X be the set of subhands of the
bloke and Y be the set of subhands of the other even blokes.

Definition 16

To any sequence in ` ∈ m we associate the projected sequence ` � X in which only
the elements of X remain. Then the projection of the maul m on X is defined as
m �X = {` �X; ` ∈ m}. Particular cases : projection on a bloke b of m, noted m � b,
and in case of an atomic bloke ξ − or − ξ of m, projection on the hand ξ, noted m,
m�ξ.

Another description of projection is by iterated removals, i.e.
�

use of cut � : removing one
hand σ from a maul consists in replacing the two blokes containing σ, i.e. Ξ − Σ, σ and
σ − Υ by Ξ − Σ,Υ (which need not be a bloke since it might be empty or have no definite
parity). Removing several hands is the iteration of the previous algorithm ; the result does
not depend on the order of the removals. Projecting m on X consists in removing all hands
which do not belong to X.

Proposition 3

Assume that X,Y realize a non-trivial splitting (even or odd) of m ; then m �X is a
maul.

Proof. — The splitting condition ensures that, whenever σ disappears, then a full bloke
containing σ disappears too. The result therefore follows from the fact that the removal of
a full bloke Ξ − Σ preserves the fact of being a maul (maybe unproper) ; in fact all blokes
containing one of the hands of the —say— even bloke Ξ − Σ are replaced with an odd bloke.
If the splitting is non-trivial, we get a proper maul. 2
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Proposition 4

Assume that X,Y realize a non-trivial splitting (even or odd) of m, and let m′ = m�X.
Then one can define for each hand ξ occurring in m a finite set X(ξ) of hands of X with
the following property : if we extend the map to sets of hands by X(Σ) =

⋃
σ∈ΣX(σ),

then

1. If − Σ is the major bloke of m then − X(Σ) is the major bloke of m′

2. If ξ ∈ X and ξ − Σ is a minor bloke in m, then ξ − X(Σ) is a minor bloke in m′

3. If ξ 6∈ X and ξ − Σ is a minor bloke in m, then X(ξ) = X(Σ)

Proof. — If ` ∗ ξ ∈ m, then we can consider all its extensions `′ ∗ σ ∈ m such that σ ∈ X
and which are maximal, i.e. such that no subextension ends in X ; X(ξ) is defined as the
set of the hands σ obtained in this way. The properties are obvious. 2

Proposition 5

If X,Y realize an even splitting of m and m′ is the result of an action from m, then
X,Y realize an even splitting of m′.

Proof. — Each new bloke in m′ is made of
�

subblokes � of a bloke of m with the same
parity. This is enough for the result. 2

We investigate the behavior of an action κ = (ξ,Σi) under non-trivial projection :

X-Even If the focus ξ of κ is in X and m is even, then the major bloke of m is included in
X and m′ �X = κ(m�X)

X-Odd If the focus ξ of κ is in X and m is odd, then projection replaces the major bloke
− Σ′, ξ by − X(Σ′), ξ. If κ′ is the action with the same focus, the same I, but with X(Σi)
instead of Σi, then clearly m′ �X = κ′(m�X).

Y-Even If the focus of κ is not in X and m is even, then m′ �X = m �X and the action
induces nothing.

Y-Odd If the focus of κ is not in X and m is odd : as above, nothing.

In other terms an action κ is projected into κ�X, which is either an action or nothing.
In case of consecutive actions, observe that, due to alternation of parities, cases X-Even or
Y-Even can only be followed by cases X-Odd or Y-Odd ; conversely case X-Odd can only be
followed by case X-Even, and case Y-Odd can only be followed by case Y-Even.
Let D = [m0, . . . ,mp] be a dispute and assume that X,Y realize a non-trivial splitting
(—say even—) of the initial maul ; then we can consider [m0 � X, . . . ,mp � X] which is
a sequence of mauls. Each κi � X is either an action or nothing ; and let i1, . . . , ik is
the increasing list of those which are actions. Then, between two consecutive mauls of the
sequence [m0 �X,mi1+1 �X, . . . ,mik+1 �X], only action κk matters ; this sequence is therefore
a dispute, and we have indeed proved the :

Proposition 6

The sequence [m0 � X,mi1+1 � X, . . . ,mik+1 � X], where i1, . . . , ik is the subsequence
made of those i such that the focus of κi belongs to X, is a dispute, called the projection
of [m0, . . . ,mp]. Notation : [m0, . . . ,mp]�X. Particular case : projection on a bloke of
m0, on a hand etc.
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Theorem 3

Let D be a dispute, let X,Y realize a non-trivial even splitting of its initial maul m
and let E, F be the respective projections of the disputes on X and Y then :

1. If Even wins D, then it wins both E and F.

2. If Even wins both E and F, then it wins D.

3. If Odd wins D and Even wins the projection E, then Odd wins the projection F.

Proof. —

1. Since Even wins, all even blokes are fair ; moreover, in the projected dispute, even blokes
disappear or remain the same. Let us now look at the last maul of the projected dispute :
if it is even, then its major bloke is in X and it comes from an even maul in the original
dispute, i.e. a kind X-Even, but since Even wins, it cannot be the final maul of the
original dispute.

2. Similar argument.

3. An odd bloke in F comes from an odd bloke in the original dispute. Assume this bloke
to be unfair : then it is of the form ξ − Σ, η, with ξ multiple and η simple, and it has
been obtained by iterated cuts, starting with an odd bloke ξ − Σ′, with even blokes (but
located in X) and other odd blokes. Since Even wins the projection on X, all these blokes
are fair, i.e. the result of the cuts is fair. If the last maul of the dispute F is odd, then
it comes from an odd maul in the original dispute (impossible, since it won by Odd) or
from an even maul with major bloke in X (impossible, since Even wins the projection on
X). 2

4 Designs and Behaviors

4.1 Chronicles and agendas

Our basic idea is to present a strategy S as the set of all disputes ST generated by a
counterstrategy T . For this we shall equip disputes with a structure of coherent space, and
try to define a strategy as any clique of the space ; since a clique and an anticlique intersect on
at most one point, this seems to be promising. Now what could be the notion of coherence ?
This is simple : if two disputes are distinct, it is because one the two players made a different
action, and even coherence should correspond to the case where Odd was the first one to
change his mind. This notion has the nice property of defining an unambiguous first action,
in case the initial maul is even. . . But it doesn’t work : the notion is not compatible with
projection. To understand this essential point, take the example of two disputes D,E, which
first differ on an action Y −Odd ; when I project them on X, this part cannot be seen (the
view ?, see below), which shows that Even cannot take this as a pretext to play different
actions of kind X-Even afterwards. This is why the notion of coherence must be localized,
and this leads to chronicles and agendas. By the way we are not quite producing a coherent
space, since D,E might be neither evenly or oddly coherent.
The notions defined below are presumably related to the views of

�
H2O-games � introduced

by Hanno Nickau [7] and Hyland & Ong [5].
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Definition 17

Let D = [m0, . . . ,mp] be a dispute, and let b be a bloke in mi+1 which is not in mi

(there is at most one such i), then b has a well-defined father in mi, namely a bloke a
of the same parity (b is said to be a son of a) : with the notation of definition 12 for
the action κi

1. If b is − Υ,Ξ, a is ξ − Υ

2. If b is ξi − Σi, a is − Σ, ξ

A chronicle is a sequence <a0; . . . ; ak−1> of blokes such that ai is the father of ai+1

for each i < n, and such that, in case k 6= 0, a0 is a bloke of m0, in which case it is
called the chronicle of ak−1. Each non-zero chronicle has a well-defined parity, and we
decide to give both parities to the empty chronicle.
The even agenda of D is the tree of its even chronicles. The odd agenda is defined in
the same way.

Proposition 7

A dispute is completely determined by its agendas (both of them are needed).

Proof. — The chronicles of length 1 give the blokes of m0 ; then if the initial maul is
—say odd—, with major bloke a, there is a first action exactly when there is a chronicle
of length 2, <a; ξ ∗ i − Σi>, in which case we know the focus ξ of this rule. Consider all
other chronicles of length 2 starting with a ; they are of the form <a; ξ ∗ i − Σi>, which
completely determines the first action, etc. 2

4.2 Coherence

Definition 18

Two disputes D = [n0, . . . , np] and E = [m0, . . . ,mq] are evenly coherent when the
following holds : n0 = m0 and whenever an even bloke − Σ occurs in both disputes
with the same chronicle, then it has the same sons in both disputes. Odd coherence is
defined in a similar way.

Proposition 8

If two disputes [n0, . . . , np] and [m0, . . . ,mq] share the same initial action κ, i.e.
n1 = m1, then they are evenly coherent iff their continuations [n1, . . . , np] and [m1, . . . ,mq]
are evenly coherent.

Proof. — Immediate. 2

Proposition 9

If two disputes D and E start with an even maul and are evenly coherent, then either
they are both of length 0, or they share the same first action.

Proof. — If D has a first action κ, then its even agenda contains all chronicles
<− Σ, ξ; ξ ∗ i − Σi > and <− Σ, ξ;− Σ > corresponding to κ, and since the even agenda of
E contains <− Σ, ξ >, all these chronicles must belong to the even agenda of E. This forces
the existence of a first action in E, with the same focus ξ, etc. 2
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Corollary 4

Two disputes are both evenly and oddly coherent iff they are equal.

Proposition 10

If two disputes D and E = [m0, . . . ,mp] are evenly coherent and q < p is such that mq

is odd, then D and F = [m0, . . . ,mq] are evenly coherent.

Proof. — The restriction to p means that some chronicles of E are shortened. So let us
consider a bloke a whose chronicles belongs to the even agendas of D and F ; then it has the
same sons in the even agenda of D and E. If a has a son in the even agenda of E, observe
that the action producing this son must be done without delay, i.e. it is a κq with q 6 p,
and since p = q is impossible for questions of parity, the son is still in the agenda of F. 2

Corollary 5

If m is even, then the trivial dispute
�

give up � [m] is evenly coherent only with itself ;
if m is odd, it is evenly coherent with anybody.

The next result expounds the behavior of coherence under projection.

Theorem 6

Let D = [n0, . . . , np] and E = [m0, . . . ,mq] be two disputes with the same initial maul
n0 = m0 = m. Assume that X,Y realizes a non-trivial even splitting of m, and let D′,
D”, E′ and E′′ be the projections D�X, D�Y , E�X, E�Y . Then :

1. If D and E are evenly coherent, so are D′ and E′.

2. Conversely if D′ and E′ are evenly coherent, as well as D′′ and E′′, so are D and E.

3. If D and E are oddly coherent, if D′ and E′ are evenly coherent, then D′′ and E′′

are oddly coherent.

4. Moreover, in case 3, if D and E are distinct so are their projections D′′ and E′′.

Proof. — All proofs are by induction on inf(m,n) :

1. Due to splitting, the even agendas of the projections are just the subtrees containing only
the chronicles starting with a bloke in X.

2. Similar argument.

3. We first consider the case where m �Y has only one odd bloke a : in particular the odd
agendas of the projections on Y will have only one chronicle of length one. If the dispute
D is non-trivial, and the dispute E shares the same initial action, then proposition 8 and
the induction hypothesis can be applied : this works when m is odd (by odd coherence)
or when it is even with major bloke in X (by even coherence of the projections on X).
Now if m is even, with major bloke in Y , then a is ξ − Υ, and the odd agenda of D′′

will contain <a;− Υ,Ξ> ; here we must remark that the hypothesis on a together with
the fact that Y realizes a splitting force all even blokes in m � Y to be atomic : then Ξ
determines the first action. Now if [m0, . . . ,mq] is trivial or has a different first action,
<a;− Υ,Ξ> will not be in the odd agenda of E′′, and since <a> is the unique chronicle
of length one in the two agendas, this proves odd coherence.
In general it is enough, using case 2, to prove the odd coherence of the projections of the
disputes on an arbitrary odd bloke a of m�Y . a is obtained from odd blokes b1, . . . ,bk of
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m, and we can consider all even blokes c1, . . . , cl which shake a hand of X with some bi :
if we take all hands occurring in some ci or bj and their

�
subblokes � , we get a set Z part

of an odd splitting Z, T of m such that the only blokes in Z ∩Y occur in a and whenever
an even bloke meets Z ∩ X it is contained in it. In fact (m � Y ) � a = (m � Z) � Z ∩ Y
and (m �Z) �Z ∩X = m �Z ∩X = (m �X) �Z ∩X. From this we see that the disputes
projected on Z, and the even splitting X∩Z, Y ∩Z, enjoy the hypotheses of the theorem ;
moreover (m �Z) �Z ∩ Y has a unique odd bloke, and we have reduced the problem to
the case already treated, without increasing inf(m,n).

4. If D′′ = E′′, they are evenly coherent and since D′ and E′ are evenly coherent the two
disputes are evenly coherent. So they are equal. 2

4.3 Designs

Definition 19

An even design, is a non-empty set S of disputes which are pairwise evenly coherent,
and which is closed under odd restrictions : if [m0, . . . ,mp] ∈ S and q < p is such
that mq is odd, then [m0, . . . ,mq] ∈ S. Observe that the maul m0 is common to all
[m0, . . . ,mp] ∈ S : this is the initial maul of S.
Besides the parity (odd/even) of a design, we may consider its polarity (positive/negative) :

1. S is positive when its parity is the same as the parity of m

2. S is negative when its parity is opposite to the parity of m

A design is a sort of strategy for the player, Even or Odd, corresponding to its parity ;
styling it positive means that this player actually starts (or at least should start) ; styling
it negative means that this player cannot start.

Definition 20

An even design is winning when its disputes are won by Even. Odd winning designs
are defined similarly.

The definitions make sense because even coherence is closed under odd restrictions, as well
as even winning.

4.4 Orthogonality

A positive design and a negative design have at most one dispute in common, since two
disputes in the intersection must be both evenly and oddly coherent ; if they actually meet,
the common dispute cannot be won by both disputers, hence at most one of the designs can
be winning.

Definition 21

Let S, T be even and odd designs ; we say that S, T are orthogonal when they intersect.
Given a set G of even designs we define its orthogonal G⊥ as the set of all odd designs
which are orthogonal to all designs in G. We define in a similar way the orthogonal of
a set of odd designs. As usual G ⊂ G⊥⊥ and G⊥⊥⊥ = G⊥.
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Proposition 11

Orthogonals are never empty, namely :

1. If G is positive, then G⊥ contains the design triv− made of all disputes of length
one and of the trivial dispute [m].

2. If G is negative, then G⊥ contains the design triv+ reduced to the trivial dispute
[m].

Proof. — Let us assume that m is even ; then :

1. All disputes in triv− are oddly coherent, and the presence of the trivial dispute ensures
closure under even restriction. Take a design S ∈ G, and a dispute in S, then it is either
of length zero, or can be restricted to a dispute of length one, still in S by odd restriction :
in both cases it contains an element of our design.

2. Take a design S in G, then it contains by even restriction the trivial dispute [m], i.e.
meets the design triv−. 2

The two designs of our proposition are called the trivial designs of G⊥. Of course none
of them is winning : indeed they are both based on giving up, the only difference being
that triv+ directly commits suicide, whereas triv− can only do this provided his opponent
didn’t commit suicide before him.

4.5 Behaviors

Definition 22

An even behavior G is a set of even designs equal to its biorthogonal ; its orthogonal,
which is a set of odd designs equal to its biorthogonal, is an odd behavior. The
extension |G| of G (which is also the extension of G⊥) is the set of disputes which
occur both in a design of G and a design of G⊥. The polarity, positive, or negative,
of a behavior, is defined as for designs.

We shall sometimes prefer to see a behavior as the pair G,G⊥, in which case G (identified
with G⊥) contains positive and negative designs, or even and odd designs. This may help
to simplify notations and the statement of results.

Proposition 12

The extension of G is closed under restriction.

Proof. — If [m0, . . . ,mp] ∈ |G| then [m0, . . . ,mp] ∈ S ∩ T , with S, T designs in G,G⊥

respectively. If q < p is such that mq is odd, then [m0, . . . ,mq] ∈ S. Now we modify T as
follows : we replace any dispute [n0, . . . , ni = mq, . . . , nr] ∈ T which is evenly coherent with
[m0, . . . ,mq] by its restriction [n0, . . . , ni]. The set T ′ thus defined is indeed a design. Now
if S ′ ∈ G, S ′ meets T ; if it happens that the meeting occurs in T −T ′, then the restriction
at length p of the common dispute belongs to S ′ ∩ T ′ : from this T ′ belongs to G⊥ and
[m0, . . . ,mq] ∈ |G|. 2
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Proposition 13

Let us order designs by inclusion. Then if S is a subdesign of T and S is in design G,
so is T . Conversely, any intersection of designs of G is still a design of G, provided
their union is a design. In particular any design S of G contains a minimum subdesign,
still in G.

Proof. — Immediate. The minimum subdesign of S is indeed S ∩ |G|. 2

Definition 23

The extension of S is defined as S ∩ |G|. A design equal to its extension will be
called clean). A useful part of a behavior G is a subset G′ ⊂ G such that the designs
T ∪ |G| ; T ∈ G′ are exactly the clean behaviors of G.

Remark. — The extension of S is what can be
�

observed � if we follow the behavior. But, as in
real life, designs may take into account impossible disputes (i.e. we overestimate our opponent). In
practice it is much simpler to work with unclean designs : typically, if G,H are negative, then a
design for G & H is also a design for G, and this will enable one to write G & H as G∩H. In some
sense, the fact that the extension of a design varies with the behavior is a form of polymorphism,
analogous to the fact that a pure λ-expression may receive several types.

4.6 Embeddings

Definition 24

An embedding is an injective map Φ from H to itself which preserves the relation
�

to
be an immediate subhand � , and the fact of being simple or multiple. Therefore an
embedding is either even which means that Φ(ξ) has the parity of ξ, or odd which
means that Φ(ξ) has a parity opposite to ξ.

If Φ is an embedding, then it is extended in the usual way to arbitrary sets of hands, and
therefore to blokes, by means of Φ(Ξ − Σ) = Φ(Ξ) − Φ(Σ). If m is a maul, the maul Φ(m)
is defined as the tree {<Φ(σ0), . . . ,Φ(σn−1)>;<σ0, . . . , σn−1>∈ m}. Finally, if [m0, . . . ,mp]
is a dispute, then the sequence Φ([m0, . . . ,mp]) = [Φ(m0), . . . ,Φ(mp)] is easily seen to be a
dispute.
An embedding can also be applied to a design, and to a behavior : Φ(G) = K⊥⊥, with
K = {Φ(S) ;S ∈ G} ; indeed K is a useful part of Φ(G). Using embeddings, it is not
difficult to define the notion of equivalent behaviors, and of course an even behavior may be
equivalent to an odd behavior.

4.7 Basic examples

Take an atomic maul, consisting of − ξ and ξ − ; then G = {triv+} defines a positive
behavior, whose orthogonal consists in all subsets of triv− which are designs (i.e. which
contain the trivial dispute). The behavior G is noted 0 (and then its orthogonal is noted
>) when ξ is simple, and 0[ when ξ is multiple. (To be precise, we should indicate ξ in the
notation, but any two choices can be related by appropriate embeddings).
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5 Behavioral connectives

We shall now combine behaviors to produce new ones ; these ways will correspond to the
connectives (multiplicative and additive) of linear logic. There is no particular difficulty,
except that the same definition may take up to three different forms :

analytic Usual binary connectives, e.g. ⊕,⊗. Since the polarity of the constituent behav-
iors in —say G ⊕G′— does matter, it is wiser to consider these operations as mapping
positive behaviors to positive behaviors, and to add a special unary connective for the
change of polarity.

synthetic Synthetic connectives ; here, given positive behaviors G1, . . . ,Gn, we construct
a new positive behavior XG1 . . .Gn, e.g. G1

⊥ ⊗ (G2
⊥ ⊕G3

⊥).

sequential Given a sequent − G1, . . . ,Gn or G0 − G1, . . . ,Gn of positive behaviors,
define a new behavior.

5.1 Sequents of behaviors

Let Ξ − Σ be an even bloke ; we shall (abusively) identify it with the corresponding standard
maul, see example 1.

Proposition 14

projection If T is an odd design with starting maul Ξ − Σ, and η ∈ Σ,Ξ, then the
set T �η of the projections on η of all disputes of T is an odd design with starting
maul η.

tensorization Given odd designs Tη with starting mauls − η for all η ∈ Σ,Ξ, then
the set

⊗
η Tη consisting of all disputes with starting maul Ξ − Σ whose respective

projections on the η belong to Tη, is an odd design.

application Given ν ∈ Σ,Ξ, together with an even design S with starting maul Ξ − Σ
and odd designs Tη with starting mauls − η for all η ∈ Σ,Ξ, η 6= ν (notation : TΥ),
then one can define the set S(TΥ), as the set of all D � ν such that D ∈ S and
D�η ∈ Tη for all η ∈ Σ,Ξ, η 6= ν. S(TΥ) is an even design.

focalization (S ∩⊗η Tη)�ν = S(TΥ) ∩ Tν .

Proof. — The result is almost immediate from theorem 6, projection coming from 1, ten-
sorization from 2, and application from 3. Focalization is essentially trivial. 2

Definition 25

Let Ξ − Σ be an —say— even bloke, and let Gη be, for each η ∈ Σ,Ξ, a positive
behavior with starting maul − η ; we assume that Gη is even for η ∈ Σ and odd for
η ∈ Ξ. We define a new behavior H = GΞ − GΣ, as K⊥, where K is the set of all
designs

⊗
η Tη where the Tη are odd behaviors (see definition 22) in Gη for η ∈ Σ,Ξ.

This behavior is positive exactly when Ξ is empty.

The following lemma is an essential application of dog’s play.
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Proposition 15

Let ν ∈ Σ,Ξ and let D be a dispute with initial maul − ν.

1. If Ξ = ∅ or ν ∈ Ξ and let D be a dispute with initial maul − ν. Then there is a
dispute Iν(D) projecting as D on ν and as

�
give up � on the η 6= ν. The map

D ; Iν(D) preserves coherence, even or odd.

2. If Ξ = ξ 6= ν, and let κ ∈ A (where A is the set of all first actions on the maul − ξ),
there is a dispute Iν,κ(D) projecting as D on ν, as the trivial play on the η 6= ν of Σ,
and as the one action dispute induced by κ on ξ. If D,D′ are are evenly coherent,
so are Iν,κ(D) and Iν,κ′(D

′).

Proof. —

1. Let Γ = Σ− ν. Then we just follow the actions of D, without splitting Γ, i.e. some even
blokes − ∆ will stay the same, some other blokes will be replaced with − ∆,Γ. In the
case of an action κ that we want to

�
follow � in − ∆,Γ, we decide to

�
give � Γ to the

∆i with the smallest index.

2. Assume that κ is induced by I and let Υ = ξ ∗ i ; i ∈ I, Γ = Σ,Υ− ν. The first action of
the dispute is given by κ, then we proceed as above. 2

Theorem 7

With the notations of definition 25 let H = GΞ − GΣ = K⊥ ; then :

1. Let us focalize on some ν ∈ Σ,Ξ ; then H consists in those even designs S such that
for all odd designs Tη in Gη (η ∈ Σ,Ξ, η 6= ν), S(TΥ) is an even design of Gν .

2. K is a useful part of K⊥⊥.

Proof. —

1. This is an immediate application of focalization : (S ∩⊗η Tη)�ν = S(TΥ) ∩ Tν .

2. We select a focus ν ∈ Σ,Ξ, and let Sν be an even design in Gν . Then we define
Iν(Sν) = {Iν(D); D ∈ Sν}, except if Ξ = ξ 6= ν, in which case
Iν(Sν) = {Iν,κ(D); D ∈ Sν , κ ∈ A} ∪ {[Ξ − Σ]}) ([Ξ − Σ] is the trivial dispute). In
both cases, Iν(Sν) is an even design with starting maul Ξ − Σ. Choose

⊗
η Tη ∈ K, and

assume that Sν ∩ Tν = {D} :

(a) If Ξ = ∅ or ν ∈ Ξ, then Iν(Sν) ∩⊗η Tη = {Iν(D)}.
(b) If Ξ = ξ 6= ν and Tξ is the trivial positive design, then

⊗
η Tη is trivial too and

Iν(Sν) ∩⊗η Tη 6= ∅.
(c) If Ξ = ξ 6= ν and Tξ has a common first action κ, then Iν(Sν) ∩⊗η Tη = {Iν,κ(D)}.
This shows that Iν(Sν) ∈ H, and that its extension is made of three possible kinds of
disputes, (a),(b),(c).
Select T ∈ H⊥. If T is positive and is trivial, then T is equal to

⊗
η Tη, where the Tη

are trivial. Otherwise, let Tν = T � ν. Let ν, Sν , Iν(Sν) ∈ H be as above ; then Iν(Sν)
intersects with T . The intersection cannot correspond to a kind (b), hence it is of kind
(a) or (c), i.e. it consists, depending on the polarity, in a dispute Iν(D) or Iν,κ(D). But
then D ∈ Sν ∩ Tν , and we have shown that Tν is an odd design in Gν . Now,

⊗
η Tη ∈ K

and clearly contains T , i.e. has the same extension.
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2

Remark. — The basic use of the theorem is as follows : given a sequent of behaviors GΞ − GΣ, it
enables one to focalize on some Gν , i.e. to work with S(TΥ) instead of S, and then to come back
to S.

5.2 Synthetic connectives

Definition 26

Let ξ be a simple hand, of —say— even parity. If D is any dispute with an initial
maul m of the form − ξ ∗ i0, . . . , ξ ∗ ik, let ↓D be the dispute [− ξ,D], to which a first
action has been added. If S is any design with starting maul m, then ↓S is the set of
all ↓D, when D ∈ S : it is a design of the same parity and opposite polarity.

Proposition 16

If G is any behavior with starting maul m then the set consisting of the trivial design
and of all ↓S, where S ∈ G, is a useful part of a behavior ↓G, with starting maul − ξ.
↓G has the same parity as G and opposite polarity. Moreover ↓(G⊥) = (↓G)⊥.

Proof. — Obvious. It basically consists in changing the first player, and adding a dummy
action. 2

Definition 27

Let ξ be a simple hand, of —say— even parity. Let F = {i1, . . . , in} be a finite set
of fingers ; for each i ∈ F let Gi be an odd positive behavior with starting maul
− ξ ∗ i. If X is a synthetic connective of arity n, then we define the even positive
behavior H = XGi1 , . . . ,Gin , with starting maul − ξ as K⊥⊥, where K consists in the
following designs :

I The trivial positive design triv+.

I For each maximal non-empty clique I ∈ X, for each negative (i.e. even) design
S ∈ − G⊥

I
the design ↓S. (Concretely, we add a first action, which is a splitting of

ξ along I.)

Proposition 17

1. H = K.

2. H⊥ =
⋂
I ↓(− G⊥

I
), the intersection being taken over all maximal non-empty cliques

of X.

Proof. — Almost obvious ; notice the extreme simplicity of the formulation. 2

5.3 Analytic connectives

If we turn our attention towards connectives like ⊕,⊗, then the situation is complex, since
we must take into account the polarity of the components. But there is an immediate
simplification, namely to use ↓ to change polarity, so that we need to define G ⊕ H and
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G⊕H only when G,H are positive behaviors distinct from 0[, with the same starting mauls,
say − ξ.
Then one needs two embeddings F ; F, so as to make disjoint the first respective actions
in the two behaviors. Once the behviors have modified in this way, then the additives take
a nice form, typically G⊥ & H⊥ = G⊥ ∩H⊥, etc.
One can observe that we don’t know how to define G ⊕ 0[ ; of course this construction is
not needed, since it corresponds to nothing in HC, neither in usual syntax. This is a small
mystery. . .

5.4 Isomorphisms

Basic isomorphisms (associativity, commutativity, neutrality, distributivity, absorbtion) are
easily obtained, e.g. G⊗ 0 ' 0. They are basically contained in proposition 17. Moreover
these isomorphisms are inner ones, i.e. can be obtained as proofs of logical equivalence, see
below. There is only one exception, namely the neutrality of 1 (and dually ⊥) : there are
definitely more designs in − G⊗ 1,H than in − G,H. This will be fixed in the next paper,
remember that 1 is an exponential.
To make things precise, we first define what is a morphism of —say— positive behaviors :

Definition 28

Let G,H,K be positive even behaviors with starting mauls η ∗ i, η ∗ j, η ∗ k (we can
freely choose the simple fingers i, j, k to produce variants) ; a morphism ϕ from G to
H is a design in G − H (beware of the following detail : in definition 25 G has been
taken odd for questions of presentation ; in particular theorem 7 can be now stated
as

�
G − H consists of those even designs S such that for all even designs T in G

ST ∈ H � .).
Assume that H has been assigned η∗2 and η∗4, and let Φ be the involutive embedding
which exchanges η ∗2 and η ∗4, i.e. Φ(η ∗2∗ τ) = η ∗4∗ τ , Φ(η ∗4∗ τ) = η ∗2∗ τ . Then
we consider all disputes D with starting maul η∗2 − η∗4, obtained as follows : in each
odd maul of the dispute, the even blokes are all of the form ξ − Φ(ξ) ; if Odd plays
using action κ, with data ξ, I, {Σi}i∈I , creating − Φ(ξ),Ξ, then Even replies with the
action Φ(ξ), I, {ξ ∗ i}i∈I . These disputes of even length are evenly coherent. Indeed
they form a morphism from H to itself, the identity, noted ιH.
Composition ψϕ with ψ ∈ H − K is defined as follows : assume that the three
behaviors have been assigned starting mauls, say η ∗ 0 for G, η ∗ 2 for the first H, η ∗ 4
for the second one, η ∗ 6 for K. Then ψϕ is the set of all projections E�(η ∗ 0 − η ∗ 6)
which project as follows, where E, with starting maul
{− η ∗ 0; η ∗ 0 − η ∗ 2; η ∗ 2 − η ∗ 4; η ∗ 4 − η ∗ 6; η ∗ 6 −} which projects :

1. As a dispute of ϕ on η ∗ 0 − η ∗ 2.

2. As a dispute of ψ on η ∗ 4 − η ∗ 6.

3. As a dispute of ιH on η ∗ 2 − η ∗ 4.

Proposition 18

1. The identity is a morphism and composition maps morphisms to morphisms.

2. Composition is associative, and the identity is neutral on both sides.

Proof. — Obvious. Notice that the identity is just the imitation strategy discussed in [3]. 2
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Theorem 8

We anticipate on next section, i.e. we assume that we know how to translate proofs
into designs ; then :

1. The identity of P − P is the interpretation of the (η-expanded version of) the
identity axiom P − P .

2. Composition corresponds to eager cut-elimination.

Proof. — This result might be boring to prove, hence we quail before this task. Anyway it
is is a straightforward consequence of theorems 2 and 7 and of corollary 10 (completeness).

2

From this, it is easy to produce the take the canoical proofs of —say—
P ⊗ (Q⊕R) − P ⊗Q⊕ P ⊗R and P ⊗Q⊕ P ⊗R − P ⊗ (Q⊕R), and to show that their
interpretations ϕ and ψ are inverse one of the other.
So what is wrong with P ' P⊗1 (only for P positive) ? The two behaviors are isomorphic,
but the isomorphism is not unique. In other terms, when Odd starts, splitting ξ into the
ξ ∗ i, including a multiple ξ ∗ j for 1, and then Even will react by imitation, but he must
give ξ ∗ j to some Φ(ξ ∗ i), with i 6= j. These various isomorphisms induce the same map,
but when they are used in a functorial way, i.e. in a context,

�
intensionality � —to take

an expression often used to compensate for the want of real structure— strikes back.

6 Adequation

We shall now look at the main results, completeness and soundness (in this order). For this
we shall start with a sequent − P (or P −) where P is a formula of HC and write the tree of
its subformulas, as explained in subsection 2.5. We just pay attention to give simple fingers
to usual formulas, and multiple fingers to subformulas of the form 0[.
The tree is finite and we can therefore, starting with the minimal subformulas, associate a
behavior Ξ − Σ to any sequent Ξ − Σ, with starting maul Ξ − Σ (if we identify abusively
a maul with a sequent).
Now, given a paraproof n of − P and a paraproof m of P −, we can construct, as in
subsection 2.2 a finite dispute nm, which is indeed a dispute in the technical sense we
introduced later. Now each n can therefore be interpreted as a design, namely the set of all
nm, when m varies trough the paraproofs of P −.

6.1 Completeness

Take a sequent Ξ − Σ of HC, and let Ξ − Σ, be the appropriate sequent of behaviors, that
we shall call G.

Theorem 9

1. If G is negative and S ∈ G is clean, then :

(a) If Ξ = 0[, then S is reduced to the trivial dispute.

(b) If Ξ = ξ = XP1 . . . Pn, let I be a non-empty maximal clique of X, and let
− Σ,Υ(I) be the result of the corresponding first action. Then

SI = {D; [ξ − Σ,D] ∈ S and the initial maul of D is − Σ,Υ(I)}
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is a design of − Σ,Υ(I). Furthermore, S is the union of the ↓SI and of the trivial
dispute.

2. If G is positive i.e. if Ξ = ∅, and if S ∈ G, then :

(a) Either S is the trivial design.

(b) Or there is some ξ ∈ Σ, and a first action ξ ∗ i,Σi ; i ∈ I common to all disputes
of S, which can therefore be written [Ξ − Σ; D] ; D ∈ T , for a certain design T .
Moreover, ξ corresponds to a formula XPi1 . . . Pin , and I is a maximal clique in
X. Finally, given i ∈ I, and let Ξi = ξ ∗ i ; then the projection of T on Ξi − Σi
belongs to the behavior Ξi − Σi.

Proof. — We assume that the starting maul is even.

1. In case ξ = 0[, then Odd cannot start, since his first action should project into an action
inside the behavior 0[. From this we see that the extension of S is reduced to the trivial
dispute.
Otherwise, one first establishes the result when Σ = ∅ : this is exactly proposition 17, 2.
Then by a back and forth focalization on ξ we get the general case.

2. By proposition 9, S is either reduced to the trivial dispute, or all the disputes in S share
the same initial action, ξ ∗ i,Σi ; i ∈ I. In a first step we treat the case where Σ = ∅,
which is basically definition 26 and proposition 17, 1. Then, we apply a back and forth
focalization on ξ to get the general case. 2

Corollary 10

Let S ∈ Ξ − Σ, S clean. Then S is the interpretation of a paraproof of HC. Moreover
in case S is winning, the proof is a real one, i.e. is correct.

Proof. — We iterate the previous theorem, and remark that all cases correspond to a rule
of HC : 1.(a) corresponds to the axiom for 0[ , 1.(b) corresponds to the left rule for X,
2.(a) corresponds to the hypothesis, 2.(b) corresponds to one of the right rules for X. From
this we can reconstruct a paraproof in HC from below, and an obvious finiteness argument
makes the paraproof finite. Now in case S is winning, no paralogism can be used, i.e. the
paraproof is correct. 2

6.2 Soundness

We assume that Ξ − Σ contains exactly one formula. Observe that, due to completeness,
any design T in G⊥ comes indeed from a paraproof m in HC. Now, if S is the interpretation
of a paraproof n of Ξ − Σ, and if T ∈ G⊥, then S ∩ T is nonempty : it contains nm. This
shows that S ∈ G. Finally, if S is winning, then all disputes nm are won by the side of n,
and from this we know that n is an actual proof, see subsection 2.3. We just proved the :

Theorem 11

If S is the interpretation of a paraproof n of Ξ − Σ, then S ∈ Ξ − Σ ; moreover, if n
is a real proof, S is a winning design.
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