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Abstract
Incompleteness — the absence of alternative natural numbers —

can be ascribed to a ready-made normativity, inducing a rigid de-
parture syntax/semantics. Geometry of Interaction, set in the non-
commutative universe of von Neumann algebras, makes normative as-
sumptions explicit, thus rending possible their internalisation, a possi-
ble way out from the semantic aporia. As an illustration, we define an
alternative “model”: logspace integers.

Foundational questions are cognitive: “What can we know?”, “How do we
know?”, “What are our preconceptions?”. Thus, the open problems in algo-
rithmic complexity, which address the efficiency of computation, are foun-
dational, although far from the stereotyped problem of consistency. Foun-
dations can — and must — question everything. . . including questions, the
only limit to this interrogation being efficiency. And the rigid departure be-
tween syntax and semantics — which is only appropriate in “usual” situations
— is the first dogma that foundations should put into question.

Consider natural numbers: several systems, yet only one model, the stan-
dard N. This extreme poverty (incompleteness) of the semantic universe is
a by-product of normativity. Indeed, the question “what is standard?” is
booby-trapped: it induces a meaningless dichotomy between standard, nor-
mal, integers and non-standard, abnormal ones. There is no way to escape
this aporia while sticking to the rigid distinction between syntax and se-
mantics, where subject and object — both clearly individuated — relate
according to a fixed protocol. This normativity is ready-made, i.e., hidden
and external: it goes without saying, moreover it proceeds from the sky.
By making normative requirements explicit, by internalising them as parts
of the “semantic”, objective, universe, we produce new “models” for natural
numbers. In some sense, normativity appears as a mobile curtain separating
the object from the subject; by the way, this would not be the only mobile
curtain of logic, think of the departure between sets and proper classes.
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This supposes a constructive viewpoint, i.e., an emphasis on the construc-
tion of natural numbers, with eventually a radical change of framework: the
replacement of combinatorics with operator algebras. This is rather natural,
since quantum physics — which radically puts into question the departure
subject/object — dwells in those spaces. Geometry of Interaction (GoI)
yields, for each n ∈ N, infinitely many isomorphic representations Nn, none
of them more “standard” than the others. In order to avoid interference,
this intrinsic isomorphy must be bridled, whence normativity. Syntactical
devices (formal system, typed calculus, complexity class) should therefore
correspond to various ways of taming the isomorphy classes of integers, thus
inducing a sort of normativity — no longer absolute, ready-made.

Normativity is usually what goes without saying. Take, for instance,
the handling of variables: outside their range of operationality, i.e., when
bound, variables are up to renaming (isomorphism). This discipline avoids
accidental coincidences, i.e., interference1. Due to the inherent rigidity of
syntax, there is no alternative normativity: this explains why the literature
on bound variables is so afflictive. In GoI, the various Nn are the same “up
to renaming”, i.e., up to isomorphy: what will eventually be recognised as
a variable, i.e., excluded from the interaction, depends upon the possible
interactions, i.e., upon the context. In this way, GoI proposes a sort of
“not-yet-frozen syntax”.

We shall implement these ideas in the framework of algorithmic complex-
ity, and produce “logspace integers”, corresponding to logspace computations.
The “model” thus constructed operates a departure of its own between iso-
morphic objects, some becoming standard, the others non-standard. Besides
these relative non-standard integers do exist truly non-standard ones: those
in charge of normativity.

The main technical references for this paper are [Girard, 2007, Girard, 2011].
The ideas sketched here will be developed in a forthcoming paper devoted
to transcendantal syntax. Thanks to Damiano Mazza for his careful reading
and to Paulin Jacobé de Naurois for his expertise on logspace.

1 One reality, several systems

The completeness theorem says that syntax refers to semantics. However,
when dealing with natural numbers, incompleteness prevails: anybody ac-
quainted with formal logic may easily name half a dozen formal arithmetics,
but only one model for them, N. Incompleteness thus means that, although
the difference between remarkable systems can be accounted for by models,
such models are by no means remarkable, there are but ad hoc doohickeys.
This concrete incompleteness — the absence of any convincing interpretation

1This point was never questioned, not even by the most outrageous AI-oriented “logics”.
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— is a common drawback of all logico-computational approaches to natural
numbers: formal arithmetics, typed calculi, complexity classes.

1.1 Formal systems, typed calculi and complexity classes

1.1.1 Formal systems

There is no standard axiomatisation of natural numbers: besides the widely
advertised Peano arithmeticPA, coexist the alternative (and somewhat more
flexible) PA2 (second order Peano arithmetic) or ZF (Zermelo-Fraenkel set
theory); not to speak of various subsystems of the former — e.g., weak arith-
metics — introduced for proof-theoretic reasons. None of these systems can
claim to be “the” system, since, by Gödel’s incompleteness, there is always
a true arithmetical formula not provable in it. Incompleteness can indeed
be turned into a (rather empty) machinery providing fresh axiomatisations:
if T is a sound system of arithmetic, then T + Con(T) is still sound, but
distinct from T.

Incompleteness offers no explanation for this plethora of systems whose
meaning remains unclear. According to the book, two classical systems are
distinct when separated by a model; but the only models distinguishing PA
from PA + Con(PA) are non-standard ones satisfying ¬Con(PA). Such
crazy models — obtained through a completion of PA + ¬Con(PA) — are
nothing but an illegible rewriting of the second incompleteness theorem: the
difference between PA and PA +Con(PA) accounts for the model, not the
other way around! If these systems can only be separated through non-
standard models, it is not because one of them is fishy: what is fishy here is
the very notion of model!

1.1.2 Typed calculi

Let us adopt a constructive viewpoint: mathematical objects are no longer
given to us, since we construct them. We can thus imagine a way out from
the aporia leading to models and non-standard integers: focusing on func-
tions of natural numbers, i.e., on the various ways of constructing them.
Formal systems are replaced with typed calculi, e.g., Martin-Löf’s theory of
types. These calculi enable one to define computable functions from N to
{0, 1} and Cantor’s diagonalisation — incompleteness ante litteram — en-
sures that none of them is complete: yet another empty machine providing
fresh systems.

The reference universe for the constructive approach is category theory.
Two systems can be distinguished by the choice of their morphisms. This is
undoubtedly a progress w.r.t. models: categories, morphisms etc. are usually
effective and meaningful, in sharp contrast to non-standard integers — the
meaningless and non-effective scions of model theory. However, putting the
burden on morphisms is reculer pour mieux sauter : there is no reasonably
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natural notion of morphism from N to {0, 1} that will account for the choice
of such and such functional system. For instance, the functions of that type
definable in system F have but one characterisation. . . that of coming from
system F, barely a manageable criterion. This comes from the fact that —
up to minor details — a morphism from N to {0, 1} always translates as a
plain subset of N. There are presumably “not enough” integers, but where
to find them? Or perhaps something essential — some missing structure —
has not been taken into account.

1.1.3 Complexity classes

The two previous approaches are basically equivalent: typed calculi present
the effective side of formal systems. Thus, a provably terminating algorithm
of PA2 can be represented in system F; conversely, a function of system F
is provably terminating in PA2. If we turn our attention towards extremely
weak formal systems, typed calculi are bound to represent complexity classes:
this is the case for light logics like LLL or ELL, two variants of linear logic
corresponding to polytime and elementary complexities.

The question is, so to speak, a refinement of the previous one: how can
we manage to “force” the morphisms from N to {0, 1} to be polytime or
logspace? Where to find the “missing integers” or the “missing structure”?
Are there polytime, logspace, integers?

1.2 Alternative integers

We cannot content ourselves with the usual credo saying that systems live
their own formalist life, thus reducing a system to a list of theorems — a
list mostly out of reach, thanks to undecidability. It is reasonable to require
that distinct axiomatisations of natural numbers describe distinct “realities”,
i.e., distinct “notions” of natural numbers.

First observe that not all formal systems are of interest: typically, un-
sound systems such as PA + ¬Con(PA) should not be accounted for. The
same applies to most sound systems, typically PA+Con(PA), more a “PhD
system” than one in which one would like to formalise arithmetic. Summing
up, we are not supposed to explain “all” systems: it will be enough to ex-
plain a few meaningful ones. The same holds for the constructive, functional,
aspect of the problem: not all typed systems are of interest. In the same
way, one should not seek a systematic account of complexity classes: some
of them may be just “PhD classes”.

The general pattern is obviously that of alternative integers: by this,
I mean integers “besides” the usual ones. I avoided the adjective “non-
standard” which would corner us to the rut of non-standard models: non-
standard integers are non-effective, moreover each belong in a model of its
own, outside of which it makes no sense. Even being aware of this basic
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misconception, the idea of an alternative integer is booby-trapped. Besides
usual, natural, numbers, there should be abnormal individuals: this distinc-
tion normal/abnormal is the result of a hidden normativity. Logic is usually
unaware of this normativity, more precisely tries to hide it behind general
considerations that one is in right to question at the foundational level.

We shall therefore try to expose the hidden normativity of logic, with
the secret hope that there is nothing like a standard, optimal, normativ-
ity; it will turn out that the same number — say 3 — has infinitely many
isomorphic representations; w.r.t. an evaluative context, two isomorphic rep-
resentations may behave differently. The role of normativity is to restrict the
choice of possible representations so as to make the evaluation “objective”,
independent of the representation. Abnormality thus becomes relative to the
evaluating context. This is not the end of the story: the internalisation of
normative constraints produces “watchdogs” which behave like integers w.r.t.
evaluations, but are clearly of a different nature.

1.3 A misfire: ordinals

Among the traditional explanations for the diversity of formal arithmetics,
one should mention the use of ordinal numbers, typically Gentzen’s assign-
ment of the ordinal ε0 to PA. Ordinals are normative devices, whose role
is to forbid draws (see infra) in the game-theoretic interpretation of proofs.
The good point is that normativity is made explicit; unfortunately, this nor-
mativity remains external. The approach is indeed a disappointment:

1. There is no conceptual background for ordinal assignments. The
München School produced, in its day, a correspondence between a long
list of not-too-meaningful subsystems of PA2 and a list of not-too-
understandable denumerable ordinals. The limited interest of both list
was not compensated for by some enlightening explanation as to the
nature of their relation.

2. The technique works for systems “not too far” fromPA. It is completely
inadequate for the full PA2 — no understandable ordinal can be found
— and for very weak complexity sensitive systems.

3. The stereotyped relation between ordinals and formal systems is mod-
elled on the following: if f , from N to N, is a provably terminating
recursive function of PA, then f ≤ φα for some α < ε0, where φα
is a hierarchy of recursive functions. This style of relation fails for
complexity-sensitive systems: complexity issues usually deal with func-
tions from N to {0, 1}, a priori bounded by the constant 1!
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2 On normativity

2.1 Ready-made normativity

The ready-made conception of logic (associated with the names of Frege
and Tarski) supposes that everything has its predetermined place. In this
essentialist world, the language (syntax) refers to the reality (semantics).
However, the same reality — N — is handled by distinct syntaxes which can
only be distinguished by “non-realities”, i.e., non-standard models.

Back to the failed promises of categories, observe that the word “mor-
phism” refers to the form, i.e., the essence. But, what is a morphism from N
to {0, 1}, besides a plain function, what is it supposed to preserve, comply
with? Since there is no answer to that question, there only remain discre-
tionary definitions of the kind: “The morphisms from N to itself are polytime
functions” or “The morphisms. . . are those functions definable in system F”.

2.2 A priori vs. a posteriori

A priori normativity constructs objects according to rules, like a construc-
tion kit. Typically, in a typed λ-calculus such as system F, the constructors
must preserve the types, i.e., obey to the law.

An example of normativity a posteriori is given by the pure λ-calculus.
λ-terms are defined and interact (through application and normalisation)
independently of any logical commitment. Now, we can decide to regroup
certain λ-terms into sets called types and define logical operations between
such types. For the same type of system F, we thus get two approaches:

1. The typed (system F) pattern: ΛXλxXx is of type ∀X(X ⇒ X).

2. The untyped pattern: λxx belongs to the type ∀X(X ⇒ X).

The two approaches are related: every typed λ-term of system F yields,
if we forget everything pertaining to types (here ΛX and the type super-
script X) an untyped term belonging to the same type. In certain cases, the
converse is true: for instance, any closed and normal pure λ-term in the type
nat := ∀X((X ⇒ X)⇒ (X ⇒ X)) comes from a typed λ-term of the same
type in F. This establishes, for those types, a completeness of the former
approach (normativity a priori) w.r.t. the latter (normativity a posteriori).

Normativity a posteriori yields more objects: they may belong to a type
without being constructible according to the book — i.e., predetermined
analytic patterns. This approach is therefore more promising.

However, everything depends upon the quality of the interpretation. In
spite of its robustness, λ-calculus is not suited for our purpose: we just
observed that nat, the type of integers, has no “stowaways”. The limitation
of this — by other standards, excellent — system is presumably due to
the fact that it is syntactic a priori. What still remains of the disputable
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departure syntax/semantics is the setting apart of a combinatorial world —
that of language. How can we seriously question natural numbers when N
plays, under the disguise of syntax, such a prominent role?

2.3 Games

The interpretation of logic by games, initiated by Gentzen, is subject to two
approaches:

2.3.1 Game semantics

A prenex formula A := ∀m∃n∀p . . . with k alternated quantifiers can be
described as a game: A is true when player I has a winning strategy. In this
game of finite duration k, winning strategies are Skolem functions: being
non-effective, they cannot be considered as proofs. By allowing “remorse”,
i.e., replays corresponding to the rule of contraction, Gentzen was able to
give an effective version of the same game: winning strategies become sorts
of infinite proofs in a game of duration2 ε0. Peano arithmetic can be seen as
a construction kit yielding winning strategies — the ones induced by proofs.

Although technically correct, this approach is very reductive and some-
how misses the point. The first hint is the remark that, of the two partners, I,
which tries to prove A, “plays syntax”, whereas II, which tries to confute A,
“plays semantics”. Since this approach encompasses the familiar departure
syntax/semantics, the expression “game semantics” — which insists upon
an obsolete opposition — is, at least, misleading. Indeed, since there is no
essential difference between I and II, syntax and semantics are no longer
separated by a Great Wall: nobody forbids I from “playing semantics”, II
from “playing syntax”, not to speak of intermediate or joint possibilities —
for instance, both playing semantics.

2.3.2 Norm as a game

Indeed, the idea of a game is so rich that normativity itself can be the thing
at stake! To sum up, game semantics reduces the debate to the question “Is
this true?”, an evaluative query; whereas the alternative approach developed,
e.g., in ludics poses the more general question “Is this appropriate?”, a deontic
query which encompasses the evaluative questioning about truth.

Indeed, “Is this true?” supposes at least that we know the question at
stake; foundationally speaking, we cannot escape the most basic questioning
“What is the question?”. I am not playing on words, gilding the (meta) lily,
and, by the way, questioning the question has deep technical implications.
Typically, in pure λ-calculus, we can see a type as a question whose answer

2Ordinal “duration” is topsy-turvied: moves are labelled by decreasing ordinals: this
ensures termination.
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lies in its inhabitants: thus, λxx can be seen as an answer to the questions
of the form A⇒ A, and also ∀X(X ⇒ X). This “anteriority” of the answer
over the question prompts the issue of subtyping, intersection types, which
might as well be called subquestioning, intersection of questions. . .

In terms of games, this questioning about questions poses the problem of
the rule of the game; indeed, specifying a rule is the same thing as choosing
the question. Now, proposing a game “without rules” as a solution seems
inadequate, since a game without rules is still a game — with a lax rule,
so lax that it makes it of little interest! Everything clarifies if we take into
account the possibility of a draw.

1. In a game-with-a-rule (game semantics), there is no draw: one of the
players wins. Typically, ordinals such as ε0 ensure this absence of draw.

2. In a game-without-a-rule (ludics), there can be draws: typically an
infinite play, but also a too long (i.e., infinite) delay before a move. The
idea is to forbid draws, thus forcing the players into a mutual discipline.
This discipline is a sort of rule of the game, no longer proceeding from
the sky: it is a by-product of interaction. The contention between
players is therefore not primarily about truth (winning) but about
norm (agreeing): what is appropriate?

Let us illustrate this point by an example (loosely) inspired from ludics:
the treatment of the formula ∃m∈X ∀n∈ Y m ≤ n (X,Y ⊂ N). In game
semantics, a strategy for I is of the form σ = {m0} × Y for some m0 ∈ X,
a strategy for II is a function τ from X to Y ; σ ∩ τ is a singleton {(m,n)}:
if m ≤ n, I wins, otherwise II wins. Now, let us introduce designs (which
are to strategies what pure λ-terms are to typed ones): a design is any
subset of N × N. If σ, τ are designs for I,II, then σ ∩ τ need no longer be
a singleton, in which case the result of the “play” is a draw. To the game
A := ∃m∈X ∀n∈Y m ≤ n, let us associate the following sets of designs:

• AI: all designs of the form σ = {m0} × Y ′, with m0 ∈ X, Y ′ ⊃ Y .

• AII: all designs τ such that τ ∩ (X × N) is a function from X to Y .

It is easy to verify that σ ∈ AI iff for all τ ∈ AII, σ ∩ τ is a singleton, i.e.,
if ](σ ∩ τ) = 1; in the same way, τ ∈ AII iff for all σ ∈ AI, ](σ ∩ τ) = 1.
In other terms, AI and AII refer to each other, and not to some external
rule of the game. Indeed, the role of the “rule for I” is played by the designs
τ ∈ AII, and vice versa, via the constraint “no draw”. The replacement of
strategies with designs has thus the following consequences:

Internalisation: the rule of the game no longer proceeds from the sky.

Subtyping: if B := ∃m∈X ′ ∀n∈ Y ′ m ≤ n, with X ⊂ X ′, Y ′ ⊂ Y , then
AI ⊂ BI and BII ⊂ AII.

Incarnation: strategies are definable as the minimal designs of AI and AII.
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2.4 Negation

Player I tries to prove A, player II tries to refute, i.e., to negate, A. This
is why the logical explanation of the most basic operation on games — the
swapping I/II — is precisely negation. Since swapping is involutive, intu-
itionistic negation does not fit into this pattern; classical negation neither,
because structural rules, especially contraction, are not self-dual3. This ex-
planation can only be carried out in the framework of linear logic, where
linear negation quite represents the swapping I/II. Summing up, we see
that negation does not merely refute, it forbids!

We observed in section 2.2 that the restriction to combinatorial methods
(this applies to syntax, but also to various games, including ludics) is booby-
trapped: how can we put N into question while presupposing it? This is the
reason for a drastic change of paradigm, Geometry of Interaction (GoI). By
replacing combinatorics with operator algebras (matrix algebras and their
generalisation: von Neumann algebras), we put ourself in a more constructive
situation w.r.t. integers; this is mainly due to the non-commutativity at work
in those structures.

3 Integers in GoI

3.1 An example: the number 4

In the absence of contraction4, proofs can be represented by plain matri-
ces. Thus, the proof of X ⇒ X,X ⇒ X,X ⇒ X,X ⇒ X ` X ⇒ X
(corresponding to the function f, g, h, k ; k ◦ h ◦ g ◦ f) is interpreted by:

L4 :=



0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0


(1)

L4 is indexed by the ten occurrences X1, . . . , X10 of X; Lij = 1 iff there
is an identity axiom — i.e., a link — between Xi and Xj , i.e., when one of
(i, j), (j, i) belongs to {(1, 9), (2, 3), (4, 5), (6, 7), (8, 10)}.

The contraction rule — fingernail of infinity in this finite world — en-
ables one to replace the four left occurrences of X ⇒ X with a single one,
thus yielding X ⇒ X ` X ⇒ X, hence `∀X((X ⇒ X) ⇒ (X ⇒ X)).

3Witness Gentzen’s entangled “cross-cuts”.
4I.e., in multiplicative-additive linear logic MALL.
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This proof is Curry-Howard isomorphic to the integer 4 of system F: if f
is of type A ⇒ A, then 4{A}(f) = f ◦ f ◦ f ◦ f . In order to perform the
contraction, we use the indices 1, 2, 3, 4 to distinguish the four contracted oc-
currences, 0 being used for the occurrence of X ⇒ X on the right. L4 can be
transformed into a 20×20 matrix (indexed by {1, . . . , 4}×{0, . . . , 4}): the in-
dices 1, . . . , 10 respectively become: 1.1, 2.1, 1.2, 2.2, 1.3, 2.3, 1.4, 2.4, 3.0, 4.0;
the absent 1.0, 2.0, 3.1, 3.2, 3.3, 3.4, 4.1, 4.2, 4.3, 4.4 induce blank lines and
columns (zeros). This inflated L4 can be written as the 4× 4 matrix:

M4 :=

 0 v u 0
v∗ 0 0 w
u∗ 0 0 0
0 w∗ 0 0

 (2)

whose entries are in turn 5× 5 matrices:

u :=


0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 v :=


0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 w :=


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (3)

Let π0, . . . , π4 be the orthoprojections:

π0 =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 π1 =


0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 π2 =


0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 . . .
(4)

then uu∗=π1, u
∗u=ww∗=π0, w

∗w=π4, vv
∗=π2+π3+π4, v

∗v=π1+π2+π3.
The partial isometries u, v, w are such that:

uπ0 = π1u uπi = 0 (i 6= 0)
vπi = πi+1v (i = 1, 2, 3) vπi = 0 (i = 0, 4)
wπ4 = π0w wπi = 0 (i 6= 4)

So to speak, u, v, w organise a “round-trip” π0 . . . π4 in 5 = 4 + 1 steps.

3.2 Representations

We can, more generally, interpret the number n by a 4×4 matrix Mn whose
entries are n+ 1× n+ 1 matrices:

M0 =

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 Mn =

 0 vn un 0
v∗n 0 0 w∗n
u∗n 0 0 0
0 wn 0 0

 (5)
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We would like to encode all integers within the same M4(H); for this

we need an algebra H together with embeddings Mn+1(C)
φn+1

� H. An
obvious choice for H is a type II1 von Neumann algebra, the hyperfinite
factor, in which usual matrix algebras embed (in a non unique way). If
an = φn+1(un), bn = φn+1(vn), cn = φn+1(wn), define Nn ∈M4(H):

N0 =

0 0 0 0
0 0 0 0
0 0 0 I
0 0 I 0

 Nn =

 0 bn an 0
b∗n 0 0 c∗n
a∗n 0 0 0
0 cn 0 0

 (6)

i.e., Nn := M4(φn+1)(Mn); an + bn + cn is a sort of circular permutation
of n + 1 projections πn.0, . . . , πn.n such that πn.0 + . . . + πn.n = I. More
precisely:

an = πn.1 an πn.0 (7)
bn = πn.2 bn πn.1 + πn.3 bn πn.2 + . . .+ πn.n bn πn.n−1 (8)
cn = a∗n(b∗n)n−1 hence (9)
cn = πn.0 cn πn.n (10)

Thus the πn,i can in turn be recovered as:

πn.0 : = cn c
∗
n (11)

πn.1 : = an a
∗
n (12)

πn.i+1 : = bn πn.i b
∗
n (1 ≤ i < n) (13)

If n ∈ N, a matrix Nn ∈ M4(H) of the type (7) and (in case n 6= 0)
enjoying (7–9) is called a representation of n. This is the only sensible def-

inition: since there is no standard embeddingMn+1(C)
φn+1

� H, the entries
an, bn, cn can only be characterised up to isomorphism.

3.3 Measurement as a determinant

For n 6= 0, there is a continuum of representations Nn of n, all of them
isomorphic: if N,N ′ are two representations of the same n ∈ N, there is
a unitary u ∈ H such that N ′ = M4(u)(N ′) (if u0 is any partial isometry
from πn.0 to π′n.0, define u1 := a′n u0 a

∗
n, ui+1 := b′n uib

∗
n (1 ≤ i < n) and let

u := u0 + . . .+ un).
Thus, among all representations of n, none is “more standard” than the

others. From an uncouth logicist standpoint, we gave but another definition
of natural numbers — the length of a round-trip replacing the cardinality of
a set —, nothing really exciting! Now remember that operator algebras were
designed to cope with quantum physics, in particular with the process of
observation and the possible interference with the object observed. In other
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terms, when dealing with an integer, the measurement may depend upon
the representation in a rather intricate way: this is non-commutativity. One
should not consider this possibility as irrelevant to a our discussion:

• The logic tradition, from Frege to category theory, consider objects up
to isomorphism; this supposes that the form — what isomorphisms
preserve — is given in advance. This essentialism, which can be advo-
cated in other contexts, is foundationally suspect.

• Complexity theory is about the difficulty of computation; it is a theory
without operating concepts, reduced to a phenomenology of Turing
machines. It is thus legitimate to seek an explanation of complexity
classes through the neighbouring idea of observation.

In Geometry of Interaction, the operator A ∈ K is “observed” by an
operator B ∈ K — the process being, like in games, symmetrical. The
output of this observation, the measurement, is the real number:

�A |B� := det(I −AB) (= det(I −BA)) (14)

Here we must say something about the scalar det(·) in a type II1 von
Neumann algebra (like H or the isomorphic M4(H)). The idea is that

the determinant should be invariant under the embeddings Mn(C)
φn
� H:

det(φn(M)) = det(M) for M ∈ Mn(C). To make the long story short,
this rests upon the invariance under the φn.k : Mn(C) 7→ Mnk(C) which
replace each entry with a diagonal k × k-matrix: det(φn.k(M)) = det(M);
this does not hold for the usual determinant Det(·) of Mn(C) which must
be “normalised” as det(u) := |Det(u)|

1
n : the exponent fixes the problems of

dimension, and the absolute value accounts for the impossibility of defining
z

1
n for all z ∈ C. Remembering that a vN algebra of type II1 admits a trace;

in H, the trace extends the normalised trace tr(u) := 1
nTr(u) ofMn(C).

− log det(1− u) = tr(u) +
tr(u2)

2
+

tr(u3)
3

+ . . . (15)

expresses the determinant when u is hermitian (or a product AB of hermi-
tians) and the spectral radius of u is < 1, e.g., when ‖u‖ < 1.

3.4 Interference

We shall thus “observe” our represented integers by means of matrices
Φ,Ψ, . . . ∈ M4(H). Then the following question arises : when observing
Nn are we observing n or a specific representation ? Indeed, although two
representions Nn, N

′
n of the same n are isomorphic, the measurements

�Nn | Φ� and �N ′n | Φ� need not be the same; indeed � Φ |Nn�
may be rather unpredictable, and certain measurements should be discarded

12



as “meaningless”. This is similar to the usual requirement about bound
variables: when combining formulas, make sure that their bound variables
are distinct. The act of discarding a measurement is strongly normative and
should not be pushed under the carpet. The point about GoI is that we get
the objects, so to speak, with their bound variables, although there is no
clear renaming technique like in logic. Objectivity of measurement :

If Nn, N
′
n are representations of n ∈ N, if Φ is an observation, then

�Φ |Nn�=�Φ |N ′n� .

is a normative requirement, calling for restrictions upon the shape of repre-
sentations and their observations.

3.5 An example : commutation

Consider the “observation”:

Φ :=

 0 v 0 0
v∗ 0 0 0
0 0 u 0
0 0 0 w

 (16)

Proposition 1
If u, v, w commute with the entries an, bn, cn of Nn, then

�Φ |Nn�= (det(I − vnwv∗nu))
1

2n+2 (17)

Proof : we restrict to the particular case where (15) converges. Observe that
tr(NnΦ)p = 0 when p is not a multiple of 2n+ 2, hence:

− log det(1−NnΦ) = tr((NnΦ)2n+2)
2n+2 + tr((NnΦ)4n+4)

4n+4 + tr((NnΦ)6n+6)
6n+6 + . . . and

(NnΦ)(2n+2)k =

An.k 0 0 0
0 Bn.k 0 0
0 0 Cn.k 0
0 0 0 Dn.k

 (18)

with:

An.k = πn.1 v
∗n−1u(vnwv∗nu)k−1vnwv∗ + . . .+ πn.n−1 v

∗u(vnwv∗nu)k−1vnwv∗n−1

Bn.k = πn.n v
n−1wv∗nu(vnwv∗nu)k−1v + . . .+ πn.2 vwv

∗nu(vnwv∗nu)k−1vn−1

Cn.k = πn.1 (vnwv∗nu)k

Dn.k = πn.0 (v∗nuvnw)k

tr(Cn.k) = tr(Dn.k) = tr((vnwv∗nu)k)
n+1 , tr(An.k) = tr(Bn.k) = n · tr(Cn.k) yield

tr((NnΦ)(2n+2)k) = tr(An.k+Bn.k+Cn.k+Dn.k)
4 = tr((vnwv∗nu)k)

2 , hence (17). 2
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Proposition 1 establishes objectivity of measurement under the hypothe-
sis that the coefficients u, v, w of the observation do commute with the entries
an, bn, cn of the representation: metaphorically, the “bound variables” of Nn

and Φ do not interfere. However, this remedy cures the disease by killing
the patient: if u, v, w must commute with all an, bn, cn, they must be scalars,
and one hardly sees how to express any non-trivial algorithm in this way!
We can loosen the situation by assuming a certain amount of commutation
a priori : this is the dialectal (or idiomatic) maintenance of GoI, at work in
[Girard, 2011]. We thus modify the definition of observations:

Definition 1 (Observations)
A dialect D is a matrix space Mk(C); an observation (of dialect D) is an
element ofM4(H)⊗D, i.e., a 4× 4 matrix with entries in H⊗D =Mk(H).
The output of the observation of Nn by Φ is the measurement:

�Φ |Nn� := det(I − Φ(Nn ⊗ Ik)) (19)

Even in this relaxed setting, commutation remains too drastic, i.e., leaves
very few interesting observations.

3.6 Normativity by subalgebras

The translation of logical rules done in [Girard, 2011] — especially of the
exponentials et work in the encoding of Dedekind integers — induces a re-
striction on the observations together with a co-restriction on the “objects”,
i.e., on the representations. This joint restriction ensures objectivity of mea-
surement without assuming commutation.

Without entering into something as normative as the logical maintenance
of exponentials, we can directly seek joint restrictions of the pairs observa-
tion/representation. The simplest idea is that of a restriction to specific
subalgebras: we shall seek pairs (I,O) of subalgebras of H such that the
restriction Nn ∈M4(I), Φ ∈M4(O)⊗D (D arbitrary), ensures objectivity:

∀Nn, N
′
n ∈M4(I) ∀Φ ∈M4(O)⊗D �Φ |Nn�=�Φ |N ′n� (20)

Let us call such a pair (I,O) a normative pair. Among normative pairs,
(H,C · I): if the entries of Φ belong to the dialect space D, then we are in
— rather, isomorphic to — the situation of proposition 1: the objectivity
of measurement is ensured for all representations of natural numbers. More
generally, if I,O are such that, whenever u ∈ I, v ∈ O, then uv = vu, then
(20) holds.

4 Logspace integers

If we seek a non-trivial (i.e., non-commuting) normative pair, then the most
natural example is given by the the crossed product to be defined below; the
big surprise is that this restriction corresponds to logspace computation!
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4.1 A normative pair

Consider5 the infinite tensor power K :=
⊗

n>0H′ of ω copies of some H′
isomorphic to H. For future reference, we note Hi the subalgebra of K
consisting of the I ⊗ . . .⊗ u⊗ I ⊗ . . . (the

⊗
un s.t. un = I for n 6= i). The

group S of (finite) permutations of N operates on K by σ(
⊗
un) :=

⊗
uσ(n).

The crossed product KoS internalises S, the action of σ becoming an inner
automorphism:

σ ·
⊗

un = (
⊗

uσ(n)) · σ (21)

Let H := K o S. Among the remarkable subalgebras of H: the Hi, K
and the algebra S generated by S. These subalgebras ar all isomorphic to
H, the unique hyperfinite factor of type II1.

Proposition 2
Any automorphism θ1 ofH1 can be uniquely extended into an automorphism
θ of H which is the identity on S.

Proof : if θ1(u⊗I⊗ . . .) = ϑ(u)⊗I⊗ . . ., define θ(σ ·
⊗

n un) := σ ·
⊗

n ϑ(un).
2

Corollary 2.1
(H1,S) is a normative pair.

Proof : assume thatNn, N
′
n ∈M4(H1); thenN ′n =M4(θ1)(Nn) =M4(θ)(Nn)

for some automorphism θ1 of H1. If Φ ∈M4(S)⊗Mk(C), then:

det(I − Φ · (M4(θ1)(Nn)⊗ Ik)) = det(I −M4k(θ)(Φ · (Nn ⊗ Ik)))
= det(I − Φ · (Nn ⊗ Ik))

since the determinant is invariant under the isomrphismM4k(θ).
2

4.2 Logspace operators

We now turn our attention towards computation.

Definition 2 (Logspace operators)
A logspace operator is any Φ ∈ M4(S) ⊗ D, where D = Mk(C) is a ma-
trix algebra, such that the entries of the 4k × 4k matrix Φ are finite linear
combinations

∑
λisi of elements si ∈ S with positive coefficients λi > 0.

Φ being a logspace operator, consider the set:

[Φ] := {n ∈ N ; ∀Nn ∈M4(H1) �Φ |Nn�= 1} (22)
5This section requires some familiarity with vN algebras, especially with crossed prod-

ucts, see, e.g., [Kadison and Ringrose, 1986].
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Theorem 1 (Logspace integers)
The set [Φ], as a set of tallies (see remark 1, infra) is in NL (non-deterministic
logspace).

Proof : let us compute Φ(Nn ⊗ Ik) and its iterates. The elements of S

occurring in the entries of Φ generate a finite subgroup SΦ; let N ∈ N be
such that σ(i) = i for all σ ∈ SΦ and i ≥ N . We can, w.l.o.g., place
ourself in

⊗
1,...,N HoS[1, . . . , N ]. Since (H1,S) is a normative pair, we can

replace the entries of Nn with n+1×n+1 matrices whose entries are 0, 1; in
particular, H is replaced withMn+1(C). Our computation eventually takes
place inM4(C)⊗Mk(C)⊗ (Mn+1(C)⊗ . . .⊗Mn+1(C)) o S[1, . . . , N ]. Φ
and Nn ⊗ Ik have thus been reduced to finite-dimensional operators, on a
space of dimension 4k(n+ 1)N ·N ! whose canonical base can be written

{(ai(j1, . . . , jN );σ) ; 1 ≤ a ≤ 4, 1 ≤ i ≤ k, j1 . . . , jN ≤ n, σ ∈ S[1, . . . , N ]}

• Φ((ai(j1, . . . , jN );σ)) is a sum: if τ “occurs” in the entry Φa′i′,ai, then
(a′i′(jτ(1), . . . , jτ(N)); τσ) occurs in Φ(ai(j1, . . . , jN );σ) with the same
multiplicity.

• (Nn ⊗ Ik)((ai(j1, . . . , jN );σ)) = 0 if the entries Na′,j′;a,j1 are all null.
Otherwise, let Na′,j′;a,j1 be the only nonzero entry of Nn of this form;
then (Nn ⊗ Ik)((ai(j1, . . . , jN );σ)) = (a′i(j′1, j2, . . . , jN );σ).

det(I − Φ(Nn ⊗ Ik)) = 1 iff Φ(Nn ⊗ Ik) is nilpotent. This is the same
as saying that the iterates (Φ(Nn ⊗ Ik))p((ai(j1, . . . , jN ); ι)) are all null for
sufficiently great p (e.g., p = 4k(n+ 1)N ), ι denoting the identity permuta-
tion. Now, Φ being fixed, it is plain that the process of iteration yielding
the (Φ(Nn ⊗ Ik))p((ai(j1, . . . , jN ); ι)) is logspace: indeed it takes place in
a universe of size s(n) = 4k(n + 1)N · N ! whose elements can be written
with approximately log(n).N + log(4kN !) digits. Indeed, non-deterministic
logspace: when computing Φ((ai(j1, . . . , jN );σ)), several choices τ ∈ Φa′i′,ai

are available. Nilpotency is therefore coNL, which is the same as NL. 2

Remark 1
The theorem should be stated for binaries, see section 4.4 for the exact
relation with NL. Theorem 1 is only a prototype which relies on the dumb
tally representation of natural numbers; since, as a binary, the tally n encodes
the number 2n, theorem 1 indeed says that 2[Φ] := {2n ; n ∈ [Φ]} is in NL.

The choice of the coefficients λi in the entries
∑
λisi is irrelevant, as

long as they stay positive. In particular, they can be chosen small enough to
ensure ‖Φ‖ ≤ 1, an essential requirement of GoI. One can also require them
to be rational: this may simplify technical issues.
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4.3 Normative vs. non-standard

Normativity occurs because we are specifically interested in measurements,
i.e., in observations; and, as logicians, in general properties of observations:
“What can we observe?”, “Is this style of observation more efficient that that
one?”. . .

At the level of the objects “observed”, normativity induces a departure
standard/non-standard. We must distinguish between two forms of non-
standardness, relative and absolute.

4.3.1 Relative non-standardness

W.r.t. normativity by the subalgebras H1,S, the integers — rather their
representations — Nn ∈M4(H1) are standard. This means that
Nn, N

′
n ∈ M4(H1) cannot be distinguished by observations: they are, so to

speak, the same “up to bound variables”. The other representations should
be styled “non-standard”; they are, however, plainly isomorphic to standard
integers and their “non-standardness” is only relative to our observational
normativity.

Non-standard integers yield additional objects to which the observation
may be applied. Due to interference, the measurement thus obtained may be
completely meaningless. But, this need not be always the case: for instance,
(H2,S) is also a normative pair, hence the non-standard integers
Nn ∈ M4(H2) yield consistent “alternative” measurements: the example is
a bit too simple, since the same result can be achieved by applying τ12Φτ12

— where τ12 is the transposition 1 � 2 — to “standard” Nn.

4.3.2 Absolute non-standardness

Normativity by subalgebras is external: both the object (the natural number
“observed”) and the subject (the “observation” Φ) are coerced into algebras
of their own, so as to inhibit unwanted interferences.

An internal normativity is much more satisfactory; we can internalise
normativity on both sides — numbers and observations — the case of ob-
servations being the most interesting one. So how can we ensure that
Φ ∈ M4(S) ⊗ D? In a second step, how can we ensure that the entries
of Φ are finite linear combinations

∑
λisi of elements of S, with6 λi ∈ Q+?

The answer lies in the introduction of additional objects, the “watchdogs
of normativity”. These objects are formal linear combinations a =

⊕
λi •Ai

of operators. The measurement �A |B� of (14) is generalised into:

�
⊕

λi •Ai |
⊕

µj •Bj� :=
∏
ij

�Ai |Bj�λiµj (23)

6The replacement R+ ; Q+ ensures that there are only denumerably many entries.
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In [Girard, 2011], internal normativity takes the form � a | b� 6= 0, 1.
Assuming that �N0 |Φ� 6= 0, 1, most normative queries can be expressed
under the form:

�N0 ⊕ λ •A	 λ •B |Φ� 6= 0, 1 (24)

For instance, if (24) holds for all λ ∈ R, then �A |Φ�=�B |Φ� . Taking
A ∈ M4(K), B := θ(A), where θ1, θ are as in proposition 2, we can thus
express the constraint Φ ∈ M4(S) ⊗ D. The constraint Nn ∈ M4(H1) can
in turn be recovered from �Nn |Φ�=�Nn |Ψ� , for any observations Φ
and Ψ :=M4k(σ)(Φ), where σ is any element of S such that σ(1) = 1.

Since non “integer-like”, the proper linear combinations a =
⊕
λi •Ai

in charge of the law, are intrinsically non-standard. The question is to de-
termine whether or not they can be of some use, i.e., if the measurements
� a | Φ� are meaningful. The question extends, of course, to those a in
charge of other “laws” that Φ may or may not break.

4.4 Logspace binaries

In view of our concern for complexity issues, the tallies just discussed must
be replaced with the set S of lists of 0, 1, which is in bijection with N∗: the
list s encodes the binary number 1s. The empty sequence therefore encodes
1; the maps s ; s0 and s ; s1 respectively encode the functions n ; 2n
and n ; 2n+ 1. These binaries can be typed in system F by
bin := ∀X((X ⇒ X) ⇒ ((X ⇒ X) ⇒ (X ⇒ X))), that GoI handles by
means of 6× 6 matrices (instead of the 4× 4 matrices used for nat).

To a list s of 0, 1, we associate representations:

B<> =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 I
0 0 0 0 I 0

 Bs =


0 cs 0 es as 0
c∗s 0 d∗s 0 0 g∗s
0 ds 0 fs bs 0
e∗s 0 f∗s 0 0 h∗s
a∗s 0 b∗s 0 0 0
0 gs 0 hs 0 0

 (25)

If s =< s1, . . . , sn > (si ∈ {0, 1}), then the entries as, . . . , hs are partial
isometries. Indeed, consider the sets:

as := {0}, bs = ∅ if s1 = 0 bs := {0}, as = ∅ if s1 = 1
cs := {i 6= 0, n ; si = si+1 = 0} ds := {i 6= 0, n ; si = 0, si+1 = 1}
es := {i 6= 0, n ; si = 1, si+1 = 0} fs := {i 6= 0, n ; si = si+1 = 1}
gs := {n}, hs = ∅ if sn = 0 hs := {n}, gs = ∅ if sn = 1

The entries as, . . . , hs are characterised by the existence of projections
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πs.0, . . . , πs.n such that I = πs.0 + . . .+ πs.n and:

as =
∑
i∈as

πs.i+1 as πs.i bs =
∑
i∈bs

πs.i+1 bs πs.i

cs =
∑
i∈cs

πs.i+1 cs πs.i ds =
∑
i∈ds

πs.i+1 ds πs.i

es =
∑
i∈es

πs.i+1 es πs.i fs =
∑
i∈fs

πs.i+1 fs πs.i

gs =
∑
i∈gs

πs.i+1 gs πs.i hs =
∑
i∈hs

πs.i+1 hs πs.i

πs,0 = (gs + hs)(cs + ds + es + fs)n−1(as + bs)

From which we can define the notions of representation of s. A pair
(I,O) of subalgebras of H ensuring objectivity :

∀Bs, B′s ∈M6(I) ∀Φ ∈M6(S)⊗D �Φ |Bs�=�Φ |B′s� (26)

is called a normative pair. Again, the typical normative pair is (H1,S).

Definition 3 (Logspace operators)
A logspace operator is any Φ ∈ M6(S)⊗D, where D =Mk(C) is a matrix
algebra such that the entries Φa.p,b.q Φ (as a 6k× 6k matrix) are finite linear
combinations

∑
λisi of elements si ∈ S with λi > 0.

Φ being a normative operator, consider the set:

[Φ] := {s ∈ S ; ∀Bs ∈M6(H1) �Φ |Bs�= 0} (27)

Then we get the following (immediate) analogue of theorem 1.

Theorem 2 (Logspace integers)
The set [Φ] is in NL (non-deterministic logspace).

Conversely, consider a non-deterministic logspace algorithm F , applying
to binaries. F makes use of N “fingers” simultaneously visiting a binary
s ∈ S of length n, with locations ]1, . . . , ]n occupied by the digits 0 or 1,
and an additional location, the origin ]0; depending on the configuration
(i1, . . . , iN ; a), i.e., the data (0, 1, origin) simultaneously read by the N
fingers and the current state (represented by a ∈ A, A finite), one can
prompt certain transitions, which combine three actions: a change of state,
a rearranging of the fingers and a move of the “thumb” (finger ]1) forwards
or backwards (next or previous location, the origin standing after ]n and
before ]1); let f1, . . . , fr be the possible transitions, so that F = {f1, . . . , fr}.
We say that s is accepted by F when F , acting on s, has no loops. This
definition implies that certain configurations may prompt no transition at
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all; otherwise, due to the finiteness of the configuration space, the algorithm
must loop.

The computation will be encoded in the algebra M6N (H) ⊗ MA(C),
which can be written: M6(H) ⊗ D, with D := M6N−1×A(C). In order to
encode F by an operator, it will be enough to encode — in a faithful way —
each transition f1, . . . , fr ∈ F by adequate operators φ1, . . . , φr ∈M6(S)⊗D
and define Φ := µ1φ1 + . . .+ µrφr, with µ1, . . . , µr > 0.

The execution of F applied to s will therefore be represented by the
iterates ((Bs ⊗ ID)Φ)p (p ∈ N), which are linear combinations of “mono-
mials”, i.e., alternated products BsfBsgBs . . . Bsh of transitions f, g, . . . , h
and Bs (indeed, Bs ⊗ ID). Each monomial is a partial isometry whose final
projection is of the form (mi1i1 ⊗ . . .⊗miN iN ⊗maa) · (πs.q1 ⊗ . . .⊗ πs.qN ),
where n is the length of s, i1, . . . , iN ∈ {1, . . . , 6}, q1, . . . , qN ∈ {0, . . . , n}
and πs.0, . . . , πs.n are the projections associated with Bs; such a projection
is the product of (i1, . . . , iN ; a) := mi1i1 ⊗ . . . ⊗miN iN ⊗maa, representing
the current configuration and πs.q1 ⊗ . . .⊗ πs.qN representing the simultane-
ous location (q1, . . . , qN ) of the N digits q1, . . . , qN ; let us abbreviate it as
((i1, q1), . . . , (iN , qN ); a). Obviously:

if i = 1, 2 then qi ∈ cs ∪ ds
if i = 3, 4 then qi ∈ es ∪ fs
if i = 5, 6 then qi = 0

The integers i1, . . . , iN ∈ {1, . . . , 6} encode the data possibly read by the
fingers, respectively 0, 0, 1, 1, begin, end. This encoding is redundant: each
of the basic data “digit 0”, “digit 1”, “origin” gets two possible encodings,
respectively {1, 2}, {3, 4}, {5, 6}. Indeed, our representations do combine a
“forward trip”, leading from {2, 4, 5} to {1, 3, 6} and an adjoint “backward
trip”, leading from {1, 3, 6} to {2, 4, 5}. This duality of encoding is thus of a
dynamic nature.

To the transition f , prompted by the configuration (i1, . . . , iN ; a) we can
associate φ ∈M6(S)⊗D:

φ := (mki1 ⊗miσ(2)i2 ⊗ . . .⊗miσ(N)iN ⊗mba) · σ (28)

where σ ∈ S({1, . . . , N}) ⊂ S is the reordering of the fingers, which induces
an operator of S, still noted σ, b ∈ A is the next state. k is defined as
“iσ(1) up to a change of direction”; in other terms, k ∈ {2, 4, 5} if the thumb
“moves forward”, k ∈ {1, 3, 6} if the thumb “moves backward” and {iσ(1), k}
is included in one of the sets {1, 2}, {3, 4}, {5, 6}.

Bs ·φ · ((i1, q1), . . . , (iN , qN ); a) is a partial isometry with final projection
ν = ((ik, qσ(1)±1), (iσ(2), qσ(2)) . . . , (iσ(N), qσ(N)); b), where (k, qσ(1)±1) is the
next location of the thumb: in case of a forward move ν = ((ik, qσ(1)+1), . . .)
with k ∈ {1, 3, 6}, in case of a backward move ν = ((ik, qσ(1)−1), . . .) with
k ∈ {2, 4, 5}.
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We just proved (or rather sketched):

Theorem 3
If X ⊂ S is in NL, then X = [Φ] for a logspace operator Φ.

NON SI NON LA
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